-adaptive hp a fully automatic goal-oriented finite element … · 2011. 2. 10. · c....

36
Progress Report (Baker-Atlas) A Fully Automatic Goal-Oriented hp-Adaptive Finite Element Strategy for Simulations of Resistivity Logging Instruments. David Pardo ([email protected]), C. Torres-Verdin, L. Demkowicz, L. Tabarovsky, A. Bespalov Collaborators: Science Department of Baker-Atlas, J. Kurtz, M. Paszynski February 22, 2005 Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Upload: others

Post on 29-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Progress Report (Baker-Atlas)

    A Fully Automatic Goal-Oriented hp-AdaptiveFinite Element Strategy for

    Simulations of Resistivity Logging Instruments.

    David Pardo ([email protected]),C. Torres-Verdin, L. Demkowicz, L. Tabarovsky, A. Bespalov

    Collaborators: Science Department of Baker-Atlas, J. Kurtz, M. Paszynski

    February 22, 2005

    Institute for Computational Engineering and Sciences (ICES)The University of Texas at Austin

  • OVERVIEW

    1. Overview2. Mathematical Formulation of Electrodynamic Problems

    • Maxwell’s Equations and Boundary Conditions

    • Variational Formulation

    • Axial Symmetry

    3. Error Estimation: Towards Certified Solutions• Control of Modeling and Discretization Errors

    • Automatic Built-in Error Estimation

    • Benchmarking Problems

    4. Numerical Results

    5. Conclusions and Future Work

    The University of Texas at Austin

  • David Pardo 22 Feb 2005

    MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

    Time Harmonic Maxwell’s Equations:

    ∇× E = −jωµH

    ∇× H = (σ + jω²)E + Jimp

    Reduced Wave Equation:E-Formulation H-Formulation

    ∇×

    (

    1

    µ∇ × E

    )

    −(ω2²−jωσ)E = −jωJ imp ; ∇×

    (

    1

    σ + jω²∇ × H

    )

    +jωµH = ∇×1

    σ + jω²J imp

    Boundary Conditions (BC):

    • Perfect Electric Conductor Surface:

    n × E = 0 ; n · H = 0

    • Idealized Antennas (Impressed Surface Electric Current):

    n ×1

    µ∇× E = −jωJimpS ; n × H = J

    impS

    The University of Texas at Austin2

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

    Variational formulation

    The reduced wave equation in Ω,

    E-Formulation: ∇ ×(

    1

    µ∇ × E

    )

    − (ω2² − jωσ)E = −jωJ imp

    H-Formulation: ∇ ×(

    1

    σ + jω²∇ × H

    )

    + jωµH = ∇ ×1

    σ + jω²J imp

    Variational formulation:

    E-Formulation:

    Find E ∈ HD(curl; Ω) such that:∫

    1

    µ(∇ × E)(∇ × F̄) dV −

    (ω2² − jωσ)E · F̄ dV =

    −jω

    Jimp · F̄ dV + jω

    ΓN

    JimpS · F̄ dS ∀ F ∈ HD(curl; Ω)

    H-Formulation:

    Find H ∈ H̃S + HD(curl; Ω) with J̃impS = n × H|S and such that:

    1

    σ + jω²(∇ × H)(∇ × F̄) dV + jω

    µH · F̄ dV =∫

    ∇ × (1

    σ + jω²Jimp) · F̄ dV ∀ F ∈ HD(curl; Ω)

    The University of Texas at Austin3

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    MAXWELL’S EQUATIONS (FREQUENCY DOMAIN)

    Variational formulation in cylindrical coordinatesUsing cylindrical coordinates (ρ, φ, z):

    Eφ-Formulation:

    Find Eφ ∈ H̃1D(Ω) such that:∫

    1

    µ(∂Eφ

    ∂z

    ∂F̄φ

    ∂z+

    1

    ρ2∂(ρEφ)

    ∂ρ

    ∂(ρF̄φ)

    ∂ρ) dV −

    k2Eφ · F̄φ dV =

    −jω

    J impφ · F̄φ dV + jω

    ΓN

    J impφ,S · F̄φ dS ∀ Fφ ∈ H̃1

    D(Ω) .

    Eρ,z-Formulation:

    Find E = (Eρ, 0, Ez) ∈ H̃D(curl; Ω) such that:∫

    1

    µ(∂Eρ

    ∂z

    ∂F̄ρ

    ∂z+

    ∂Ez

    ∂ρ

    ∂F̄z

    ∂ρ) − k2

    EρF̄ρ + EzF̄z dV = −jω

    J impρ

    F̄ρ + Jimpz

    F̄z dV +

    ΓN

    J impρ,S F̄ρ + Jimpz,S F̄z dS ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

    Hφ-Formulation:

    Find Hφ ∈ f1(Jimpρ,S , J

    impz,S ) + H̃

    1

    D(Ω) such that:

    1

    σ + jω²(∂Hφ

    ∂z

    ∂F̄φ

    ∂z+

    1

    ρ2∂(ρHφ)

    ∂ρ

    ∂(ρF̄φ)

    ∂ρ) dV − jω

    µHφ · F̄φ dV =

    1

    σ + jω²(∂J imp

    ρ

    ∂z−

    ∂J impz

    ∂ρ)F̄φdV ∀ Fφ ∈ H̃

    1

    D(Ω) .

    Hρ,z-Formulation:

    Find H = Hρ, 0, Hz) ∈ f2(Jimpφ,S ) + H̃D(curl; Ω) such that:

    1

    σ + jω²(∂Hρ

    ∂z

    ∂F̄ρ

    ∂z+

    ∂Hz

    ∂ρ

    ∂F̄z

    ∂ρ) − jω

    µ(HρF̄ρ + HzF̄z) dV =

    1

    σ + jω²(∂Jφ

    ∂zF̄ρ +

    1

    ρ

    ∂(ρJ impφ )

    ∂ρF̄z) dV ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

    The University of Texas at Austin4

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Sources of Error

    Physical (Real) ProblemExact GeometryExact PhysicsExact InstrumentsNo Boundaries

    No Errors in the Solution

    −→

    Mathematical ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsSome Boundaries

    Errors Associated to:GeometryApproximationsCoupling PhysicsMaterial Coefficients

    −→

    Computational ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsBoundary Conditions

    Errors Associated to:Mathematical ModelingGeometry and BC’sThe Code (Bugs)Discretization

    The University of Texas at Austin5

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Sources of Error

    Computational ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsBoundary Conditions

    Solution is Not Exact Due toErrors in:

    • Mathematical Modeling

    • Geometry and BC’s

    • The Code (Bugs)

    • Discretization

    The University of Texas at Austin5

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Discretization Error

    The self-adaptive goal-oriented hp-adaptive strategy provides a veryaccurate built-in discretization error estimator.

    Coarse grid Fine grid(hp) (h/2, p + 1)

    -

    global hp-refinement

    Discretization Error Estimate for Coarse Grid =Fine Grid Solution - Coarse Grid Solution

    The University of Texas at Austin6

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Sources of Error

    Computational ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsBoundary Conditions

    Solution is Not Exact Due toErrors in:

    • Mathematical Modeling

    • Geometry and BC’s

    • The Code (Bugs)

    • Discretization

    The University of Texas at Austin6

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Avoiding Errors in the Code Using Benchmarking Examples

    Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz)

    Solenoid Antenna Toroid Antenna

    10−80

    10−60

    10−40

    10−20

    100

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Amplitude (V/m)

    Dis

    tanc

    e in

    z−a

    xis

    from

    tran

    smitt

    er to

    rece

    iver

    (in

    m)

    −180 −90 0 90 1800

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Phase (degrees)

    Dis

    tanc

    e in

    z−a

    xis

    from

    tran

    smitt

    er to

    rece

    iver

    (in

    m)

    Analytical solutionNumerical solution

    Analytical solutionNumerical solution

    10−80

    10−60

    10−40

    10−20

    100

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Amplitude (A/m)

    Dis

    tanc

    e in

    z−a

    xis

    from

    tran

    smitt

    er to

    rece

    iver

    (in

    m)

    −180 −90 0 90 1800

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    Phase (degrees)

    Dis

    tanc

    e in

    z−a

    xis

    from

    tran

    smitt

    er to

    rece

    iver

    (in

    m)

    Analytical solutionNumerical solution

    Analytical solutionNumerical solution

    Electric Field Magnetic Field

    The University of Texas at Austin7

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Sources of Error

    Computational ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsBoundary Conditions

    Solution is Not Exact Due toErrors in:

    • Mathematical Modeling

    • Geometry and BC’s

    • The Code (Bugs)

    • Discretization

    The University of Texas at Austin7

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Avoiding Errors in the Code Using Benchmarking Examples

    Solutions in a Homogeneous Lossy (1 Ω m) Media (2 Mhz) in Presence ofa Conductive Mandrel

    Solenoid Antenna Toroid Antenna

    10−10

    10−5

    100

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Amplitude (V/m)

    Dis

    tan

    ce

    in

    z−

    axis

    fro

    m tra

    nsm

    itte

    r to

    re

    ce

    ive

    r (in

    m)

    Analytical solution

    Mandrel Resisitivity: 10−7

    Mandrel Resisitivity: 10−5

    Mandrel Resisitivity: 10−3

    Mandrel Resisitivity: 1

    −180 −90 0 90 1800.5

    1

    1.5

    2

    2.5

    3

    3.5

    Phase (degrees)

    Dis

    tan

    ce

    in

    z−

    axis

    fro

    m tra

    nsm

    itte

    r to

    re

    ce

    ive

    r (in

    m)

    Analytical solution

    Mandrel Resisitivity: 10−7

    Mandrel Resisitivity: 10−5

    Mandrel Resisitivity: 10−3

    Mandrel Resisitivity: 1

    10−5

    100

    105

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Amplitude (A/m)

    Dis

    tan

    ce

    in

    z−

    axis

    fro

    m tra

    nsm

    itte

    r to

    re

    ce

    ive

    r (in

    m)

    −180 −90 0 90 1800.5

    1

    1.5

    2

    2.5

    3

    3.5

    Phase (degrees)

    Dis

    tan

    ce

    in

    z−

    axis

    fro

    m tra

    nsm

    itte

    r to

    re

    ce

    ive

    r (in

    m)

    Analytical solution

    Mandrel Resisitivity: 10−7

    Mandrel Resisitivity: 10−5

    Mandrel Resisitivity: 10−3

    Mandrel Resisitivity: 1

    Analytical solution

    Mandrel Resisitivity: 10−7

    Mandrel Resisitivity: 10−5

    Mandrel Resisitivity: 10−3

    Mandrel Resisitivity: 1

    Electric Field Magnetic Field

    The University of Texas at Austin8

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    TOWARDS CERTIFIED SOLUTIONS

    Summary

    Computational ProblemApprox. GeometryMaxwell’s EquationsPerfect InstrumentsBoundary Conditions

    Solution is Not Exact Due toErrors in:

    • Mathematical Modeling

    • Geometry and BC’s

    • The Code (Bugs)

    • Discretization

    The University of Texas at Austin8

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    10 cm.

    50 c

    m.

    100

    cm.

    10000 Ohm m

    1 Ohm m

    100 Ohm m

    100 Ohm m0.1

    Ohm

    m

    z

    25 c

    m.

    25 c

    m.

    150

    cm.

    CASI

    NG 0

    .000

    001

    Ohm

    m

    Axisymmetric 3D problem.

    Five different materials.

    Size of computational domain:SEVERAL MILES.

    Material properties varying byup to TEN orders of magnitude(10000000000!!!).

    Objective: DetermineSecond Difference of PotentialReceiving Electrodes.

    The University of Texas at Austin9

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Logging Through Casing (Benchmark Problem)Rock Formation: Homogeneous Media

    10000100010010110

    −9

    10−8

    10−7

    10−6

    Resistivity (Ohm m)

    Sec

    ond

    Diff

    eren

    ce o

    f Pot

    entia

    l (no

    rmal

    ized

    ) in

    Vol

    ts

    Kaufmann Approx. FormulaExact 2nd DerivativeExact 2nd Diff. of Pot.Numerical 2nd Diff. of Pot.

    The second vertical difference of the Electric Potential is proportional to the formationconductivity.

    The University of Texas at Austin10

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Final Log Obtained by Our Finite Element Software

    0.001 0.01 0.1 1 10−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Second Difference of Potential (normalized) in micro Volts

    Po

    sitio

    n o

    f R

    ece

    ivin

    g E

    lectr

    od

    es (

    z−

    axis

    ) in

    m

    Electrodes at the borehole centerElectrodes at the borehole wallExact solution for one layer formation

    0.0001 0.001 0.01 0.1 1−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Second Difference of Potential (normalized) in micro Volts

    Po

    sitio

    n o

    f R

    ece

    ivin

    g E

    lectr

    od

    es (

    z−

    axis

    ) in

    m

    Electrodes at the borehole centerElectrodes at the borehole wallExact solution for one layer formation

    Resistivity of casing = 10−6 Resistivity of casing = 10−7

    The University of Texas at Austin11

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Approximation Error

    0 0.05 0.1 0.15 0.2 0.25−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Relative Error of Second Difference of Potential (in %)

    Po

    sitio

    n o

    f R

    ece

    ivin

    g E

    lectr

    od

    es (

    z−

    axis

    )

    5500 6000 6500 7000 7500 8000 8500−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Number of Unknowns

    Po

    sitio

    n o

    f R

    ece

    ivin

    g E

    lectr

    od

    es (

    z−

    axis

    )

    The University of Texas at Austin12

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Damaged Casing

    HALF THICKNESSCASING AREA

    0.00001 Ohm m

    0.000001 Ohm mCASING RESISTIVITY

    LESS RESISTIVE AREA

    0.1

    m0.1

    m

    Imperfect Casing

    0.2m

    0.2m

    1.3m

    1.3 m

    FO

    RM

    AT

    ION

    FO

    RM

    AT

    ION

    BOREHOLE

    CASING

    ELECTRODES

    The University of Texas at Austin13

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Damaged Casing

    0.0001 0.01 1 100 10000−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Second Difference of Potential (normalized) in micro Volts

    Pos

    ition

    of R

    ecei

    ving

    Ele

    ctro

    des

    (z−a

    xis)

    in m

    Perfect casingDamaged casingDamaged casing using a calibrated toolExact solution for one layer formation

    In the presenceof damagedcasing, the useof calibratedinstruments isessential.

    The University of Texas at Austin14

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    10 cm.

    50 c

    m.

    100

    cm.

    10000 Ohm m

    1 Ohm m

    100 Ohm m

    100 Ohm m0.1

    Ohm

    m

    z

    CASI

    NG 0

    .000

    01 O

    hm m

    165

    cm.

    20 c

    m.

    Axisymmetric 3D problem.

    Toroid Antennas.

    Size of computational domain:SEVERAL MILES.

    Different frequencies.

    Material properties varying byup to NINE orders ofmagnitude (1000000000!!!).

    Objective: DetermineFirst Difference of Electric andMagnetic Fields.

    The University of Texas at Austin15

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    First Difference of Electric Field at Different Frequencies

    10−15

    10−12

    10−9

    10−6

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Amplitude of Electric Field (V/m)

    First Difference of E Field Vertical Derivative

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    Antennas located at the Borehole CENTER

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    10−15

    10−12

    10−9

    10−6

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Amplitude of Electric Field (V/m)

    First Difference of E Field Vertical Derivative

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    Antennas located at the Borehole WALL

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    Toroid antennas are more sensitive to the rock formation resistivity whenlocated on the borehole’s wall

    The University of Texas at Austin16

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    First Difference of Magnetic Field at Different Frequencies

    10−15

    10−12

    10−9

    10−6

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Amplitude of Magnetic Field (A/m)

    First Difference of Magnetic Field (Normalized)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    Antennas located at the Borehole CENTER

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    10−15

    10−12

    10−9

    10−6

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Amplitude of Magnetic Field (A/m)

    First Difference of Magnetic Field (Normalized)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−1

    −0.5

    0

    0.5

    1

    1.5

    2

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    Antennas located at the Borehole WALL

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    0.1 Hz10 Hz1 Khz10 Khz100 Khz1 Mhz

    The University of Texas at Austin17

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Electromagnetic Fields at Different Frequencies

    0.001 0.01 0.1 1 10 100 100010

    −12

    10−11

    10−10

    10−9

    10−8

    10−7

    10−6

    Am

    plitu

    de

    of E

    lectr

    om

    ag

    ne

    tic F

    ield

    s (

    A/m

    an

    d V

    /m) First Difference of EM Fields

    Frequency (in Khz)0.001 0.01 0.1 1 10 100 1000

    −150

    −100

    −50

    0

    50

    100

    150

    Ph

    ase

    (d

    eg

    ree

    s)

    Frequency (in Khz)

    Magnetic FieldElectric Field (z−component)

    Magnetic FieldElectric Field (z−component)

    ElectromagneticFields are al-most constantfor frequenciesbelow 1 kHz. Asudden drop inthe amplitudeoccurs at fre-quencies above20 kHz.

    The University of Texas at Austin18

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    � � �� � �

    � � �� � �

    � � �� � �

    � �� �

    � �� �

    � �� �

    � � �� � �

    � � �� � �

    � � �� � �

    � � �� � �

    � � �� � �

    � � �� � �

    � ����� � � �

    � � �� � �

    5.5" Borehole radio ; 0.5" Casing ; 2" Cement

    175m

    =58

    0’50

    m=

    165’

    475m

    =16

    00’

    0.00

    001

    Oh

    m m

    1 O

    hm

    m

    2 O

    hm

    m

    20 Ohm m

    5 Ohm m

    5 Ohm m

    Axisymmetric 3D problem.

    Five different materials.

    Different positions of receivingantenna.

    Toroidal Transmitterand receiver separated by upto half a mile.

    Objective: DetermineFirst Difference of PotentialReceiving Electrodes.

    The University of Texas at Austin19

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Final Log Obtained by Our Finite Element Software

    Magnetic Field Electric Field

    10−12

    10−11

    10−10

    10−9

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 0 m

    Amplitude of Magnetic Field (A/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    10−11

    10−10

    10−9

    10−8

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 0 m

    Amplitude of Electric Field (V/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    If the transmitter antenna is located on the surface of a cased well, thereceived EM signal within the borehole is too weak.

    The University of Texas at Austin20

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Final Log Obtained by Our Finite Element Software

    Magnetic Field Electric Field

    10−9

    10−8

    10−7

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Frequency: 1 Hz

    Amplitude of Magnetic Field (A/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    50 m250 m500 m

    50 m250 m500 m

    10−12

    10−10

    10−8

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Frequency: 1 Hz

    Amplitude of Electric Field (V/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    50 m250 m500 m

    50 m250 m500 m

    If the transmitter antenna is located on the surface of a cased well, thereceived cross-well EM signal is too weak.

    The University of Texas at Austin21

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Final Log Obtained by Our Finite Element Software

    Magnetic Field Electric Field

    10−11

    10−10

    10−9

    10−8

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 500 m

    Amplitude of Magnetic Field (A/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    10−12

    10−11

    10−10

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 500 m

    Amplitude of Electric Field (V/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    If the transmitter antenna is located on the surface of a cased well, a 60meters layer of water cannot be detected by using cross-well EM signals.

    The University of Texas at Austin22

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    THROUGH CASING RESISTIVITY INSTRUMENTS

    Final Log Obtained by Our Finite Element Software

    Magnetic Field Electric Field

    10−8

    10−7

    10−6

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 500 m

    Amplitude of Magnetic Field (A/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    10−9

    10−8

    10−7

    −100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100Distance from Casing: 500 m

    Amplitude of Electric Field (V/m)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    −180 −90 0 90 180−100

    −80

    −60

    −40

    −20

    0

    20

    40

    60

    80

    100

    Phase (degrees)

    Po

    sitio

    n o

    f re

    ce

    ive

    r a

    nte

    nn

    a in

    th

    e z

    −a

    xis

    (in

    m)

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    0.1 Hz NO INV0.1 Hz 60m INV100 Hz NO INV100 Hz 60m INV

    If the transmitter antenna is located downhole a cased well, it is feasibleto perform meaningful cross-well EM measurements.

    The University of Texas at Austin23

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    100 c

    m50 c

    m

    100 Ohm m

    10000 Ohm m

    1 Ohm m

    100 Ohm m

    15 c

    m100 c

    m

    0.0

    00001 O

    hm

    m0.1

    Oh

    m m

    Description of Antennas

    10 c

    m

    10000 Ohm m

    Borehole0.1 Ohm m

    10000 Rel. Perme.

    0.0

    00001 O

    hm

    mM

    an

    dre

    l

    Radius=10.8 cm

    Radius 7.6 cm

    Magnetic Buffer

    Goal: To Compute FirstDifference of Potentialon Receiving Antennas

    The University of Texas at Austin24

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    Eφ (normalized) for a solenoid antenna

    0.1 0.18 0.3−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Amplitude of Electric Field (V/m)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    −180 −90 0 90 180−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Phase (degrees)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    100 Ohm m

    1 Ohm m

    10000 Ohm m

    100 Ohm m

    Frequency: 2 Mhz

    The University of Texas at Austin25

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    First Difference of Eφ (normalized) for a solenoid antenna

    0.05 0.075 0.1 0.125−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Amplitude of Electric Field (V/m)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    −180 −90 0 90 180−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Phase (degrees)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    100 Ohm m

    1 Ohm m

    10000 Ohm m

    100 Ohm m

    Frequency: 2 Mhz

    The University of Texas at Austin26

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    First Difference of Eφ (normalized) for a solenoid antenna

    0.0003 0.0008−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Amplitude of Electric Field (V/m)

    Pos

    ition

    of r

    ecei

    ver

    ante

    nna

    in th

    e z−

    axis

    (in

    m)

    −180 −90 0 90 180−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Phase (degrees)

    Pos

    ition

    of r

    ecei

    ver

    ante

    nna

    in th

    e z−

    axis

    (in

    m)

    100 Ohm m

    1 Ohm m

    10000 Ohm m

    100 Ohm m

    Frequency: 2 Mhz, NO MAGNETIC BUFFER

    The University of Texas at Austin27

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    First Difference of Hφ (normalized) for a toroid antenna

    10−6

    10−4

    10−2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Amplitude of Magnetic Field (A/m)

    Pos

    ition

    of r

    ecei

    ver

    ante

    nna

    in th

    e z−

    axis

    (in

    m)

    −180 −90 0 90 180−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Phase (degrees)

    Pos

    ition

    of r

    ecei

    ver

    ante

    nna

    in th

    e z−

    axis

    (in

    m)

    100 Ohm m

    1 Ohm m

    10000 Ohm m

    100 Ohm m

    Frequency: 2 Mhz

    The University of Texas at Austin28

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    LOGGING INSTRUMENTS WITH A MANDREL

    First Difference of Ez (normalized) for a toroid antenna

    10−4

    10−2

    100

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Amplitude of Electric Field (V/m)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    −180 −90 0 90 180−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Phase (degrees)

    Pos

    ition

    of r

    ecei

    ver a

    nten

    na in

    the

    z−ax

    is (i

    n m

    )

    100 Ohm m

    1 Ohm m

    10000 Ohm m

    100 Ohm m

    Frequency: 2 Mhz

    The University of Texas at Austin29

    High Performance Finite Element Software

  • David Pardo 22 Feb 2005

    CONCLUSIONS

    • It is possible to simulate a variety of EM logging instrumentsby using the self-adaptive goal-oriented hp-FEM.

    • For TCRT, preliminary simulations suggest to

    1. Place antennas on the borehole’s wall,2. use calibrated instruments,3. use low frequencies (typically below 5 kHz),4. use downhole antennas for cross-well EM measurements, and5. avoid the use of cross-well EM measurements for assesment of

    water injection.

    • For LWD instruments, preliminary simulations suggest to

    1. Use both solenoid and toroid antennas,2. use magnetic buffers to amplify EM signals, and3. compute first differences of EM fields.

    Institute for Computational Engineering and Sciences

    The University of Texas at Austin30

    High Performance Finite Element Software

  • FUTURE WORK

    Within the next 3 months

    • Implementation of the goal-oriented self-adaptive algorithmfor 2D edge elements. It would allow us to solve 2.5 Dproblems.

    • Parallel implementation of the 2D code (Maciek Paszynski).

    Long term goals

    • Solve 3D problems with casing at DC.

    • Solve 3D problems with mandrel at AC.

    • Invert coupled sonic and EM measurements in 2D.

    The University of Texas at Austin