active magnetic attitude control system providing three-axis inertial attitude

19
Active magnetic attitude control system providing three-axis inertial attitude M. Ovchinnikov, V. Penkov, D. Roldugin, A. Guerman Keldysh Institute of Applied Mathematics of RAS University of Beira Interior

Upload: fawn

Post on 11-Jan-2016

30 views

Category:

Documents


2 download

DESCRIPTION

Active magnetic attitude control system providing three-axis inertial attitude. M. Ovchinnikov, V. Penkov , D.  Roldugin , A.  Guerman Keldysh Institute of Applied Mathematics of RAS University of Beira Interior. Contents. Main goal Problem statement Geomagnetic field vectors - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Active magnetic attitude control system providing three-axis inertial attitude

Active magnetic attitude control system providing three-axis inertial attitude

M. Ovchinnikov, V. Penkov, D. Roldugin, A. Guerman

 Keldysh Institute of Applied Mathematics of RASUniversity of Beira Interior

Page 2: Active magnetic attitude control system providing three-axis inertial attitude

Contents• Main goal• Problem statement

– Geomagnetic field vectors– Analysis methods

• Analysis– Fast and moderate rotations– Slow rotation without gravity– Optimal control gains– Gravity influence

• Conclusion

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems2

Page 3: Active magnetic attitude control system providing three-axis inertial attitude

Main goal• To overcome two principal MACS problems

– Underactuation, that is the torque is perpendicular to the geomagnetic induction vector

– Torque value limit due to the limited power and dimension capabilities

• To assess gravity effect on the inertial attitude

3Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems

Page 4: Active magnetic attitude control system providing three-axis inertial attitude

Problem statement

• Euler and osculating equations are used• Satellite is equipped with three magnetorquers• Attitude is known• Control torque or control and gravitational torques 

are taken into account• Orbit is a Keplerian one• Averaged and IGRF models are used• Control torque is based on the PD-controller

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems4

23 32 31 13 12 21, , ,T

ak k a a a a a a m B ω a a

Page 5: Active magnetic attitude control system providing three-axis inertial attitude

• Averaged: Geomagnetic induction vector evenly rotates on the cone surface

Geomagnetic field models

• IGRF

5Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems

Page 6: Active magnetic attitude control system providing three-axis inertial attitude

Analysis methods

• System in arbitrary motion is often analyzed using numerical methods. Not enough assumptions can be made to simplify the system

• Floquet theory

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems6

Transient motionMultiple scales 

method

Arbitrary motionNumerical analysis

Steady-state motionPoincare method

Page 7: Active magnetic attitude control system providing three-axis inertial attitude

Fast/moderate rotation

• Control gains are comparable• Mean influence of the positional control part 

and gravitational torque is equal to zero• The control is identical to the “-Bdot” one and 

to the eddy currents• The angular velocity is exponentially damped 

to the orbital velocity value

7Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems

Page 8: Active magnetic attitude control system providing three-axis inertial attitude

Slow rotation. Averaged equations• Averaged linearized equations without gravity

• Damped oscillations for each angle• Linearized averaged equations are asymptotically stable, so 

initial equations allow asymptotically stable limit cycle. The solution is in the vicinity of the averaged equations equilibrium, so the averaging is valid on the unlimited time interval

1 1

1 1

1 1

2 0,

2 0,

2 4 0.

p q p q

A Ap q p q

B BA A

p pC C

8Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems

Page 9: Active magnetic attitude control system providing three-axis inertial attitude

Control gains

2 1 1: 2

12

18

2aK K K

2 22 28 8a aK K K K K

22 1 28 8 ,a aK K K

22 2

1 22

8

2 1 aK K

21,2

23,4 12

1 1

25,6 22

2 2

2 20 02 20 0

1 2

18 ,

2

1 18 ,

2

1 18 ,

2

, ,

, 2

a

a

a

a a

K K K

KK K

KK K

B BK p q k K p q k

A A

B A C p q pA

9Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems

Page 10: Active magnetic attitude control system providing three-axis inertial attitude

Floquet theory: more accurate results

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems10

Page 11: Active magnetic attitude control system providing three-axis inertial attitude

Poincare method: damping effect

• Three-axis control with gravity, orbital plane motion

• Oscillations without damping

• Damping-driven modulus change for discrete frequency values

• Approximate solution

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems11

2 sin 0

0

0

2arcsin sn ,

2 cn ,

k u

k u

2E 1 KK

k k k kk k

0 exp 2k k u

Page 12: Active magnetic attitude control system providing three-axis inertial attitude

Periodic solutions

• Periodic solutions are found numerically• Approximate formulas for the amplitude 

depending on satellite parameters are found• Simple formula may be used in the vicinity of 

necessary attitude

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems12

2

2 2

14 sin 2 2 cos2

2 4 2 4u u

Page 13: Active magnetic attitude control system providing three-axis inertial attitude

Floquet theory: stability area change

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems13

2(1.0255, 1.5393, 1.8172) , 30 , 600·kg mdiag i km J o

Page 14: Active magnetic attitude control system providing three-axis inertial attitude

Floquet theory: stability area change

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems14

Page 15: Active magnetic attitude control system providing three-axis inertial attitude

Floquet theory: stability area change

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems15

2(1.0255, 1.5393, 1.8172) , 60 , 600·kg mdiag i km J o

Page 16: Active magnetic attitude control system providing three-axis inertial attitude

Floquet theory: stability area change

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems16

Page 17: Active magnetic attitude control system providing three-axis inertial attitude

Periodic solutions amplitude

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems17

Page 18: Active magnetic attitude control system providing three-axis inertial attitude

Results

• Three-axis attitude is proven to be accessible• Simple formulas for optimal control gains are 

found• More accurate Floquet-based optimal 

parameters are found• Gravity effect is found to be controversial, 

acting as control or disturbing torque in general

Mar 24-26, 20142nd IAA Conference on Dynamics and

Control of Space Systems18

Page 19: Active magnetic attitude control system providing three-axis inertial attitude

Acknowledgment

2nd IAA Conference on Dynamics and Control of Space Systems

19

The work was supported by RFBR grants №№ 12-01-33045, 13-01-00665, 14-01-31313project Odyssea

Mar 24-26, 2014