active antenna array

3
 Alcatel-Lucent Innovation Days – December 2008 Context: In traditional macro-cellular base stations, the RF (radio frequency) hardware contributes:    half or more of the total equipment costs    three quarters of the total cabinet volume    the most power-hungry devices in base stations: the power amplifiers. Space and costs issues increase in more advanced MIMO, beam steering and other intelligent antenna schemes. These require multiples of the RF transmit and receive paths of standard base stations with each path having its own set of RF hardware. In active antenna arrays complete RF transceivers are integrated into each antenna element. Stacking these elements forms the array (Figure 1): the number and geometry depend on desired size, power output and capabilities. Each element is fed with a digital RF stream, allowing for independent signal transmission from each element. Figure 1: Active antenna array conc ept with a column array (left) and single antenna module (right) Alcatel-Lucent is prototyping new technologies and novel RF hardware architectures to enable production of macro and microcell base stations with small footprints, reduced power requirements, and cost- effective RF hardware solutions that are scalable for advanced beam steering and MIMO schemes. Challenge: In realizing this vision, many technical challenges have been addressed:    Miniaturizing RF hardware to fit weight and size parameters of typical antenna radomes.    Increasing overall solution realiability.    Minimizing component and systems costs.    Maximizing overall power efficiency. Innovation: Scalable, Distributed Power Amplification Power amplification is distributed in two ways: (a) Between antenna elements: Each power amplifier sits behind an antenna element. Traditional passive antenna solutions’ high- powered RF feeder cables and passive distribution networks are eliminated, saving power. (b) Within antenna elements: Power amplifi- cation is split into parallel devices within the antenna element. This results in further power savings via switching off devices for low cell traffic loads. Figure 2: Power amplifier concept Distributed solutions also help with reliability. Even if a device or module fails, there is only graceful degradation. The system still operates. Replacement of failing modules can be done on a scheduled basis. Metalized Plastics to Reduce Weight Novel antenna and filter solutions have been created that enable use of plastic injection-moulded parts with surface metalization (Figure 3). This enables a dramatic reduction in overall weight. Figure 3: Metalized plastic antenna element Low power delay Low power delay attenuator Signal IN distortion    S    i   g   n   a    l      d    i   s    t   o   r    t    i   o   n undistorted Signal OUT Power Amp. Module Parallel Power Amp. Modules 1 4 1 1 8 8 Low power delay Low power delay attenuator Signal IN distortion    S    i   g   n   a    l      d    i   s    t   o   r    t    i   o   n undistorted Signal OUT Power Amp. Module Parallel Power Amp. Modules 1 4 1 1 8 8  Active Antenna Arrays Small-Footprint, Scalable RF Solutions for Base Stations Radome 8 x 2 column 2 Antenna Elements Diplexer Radio Amplifier Cooling Fins (passive cooling) Radome 8 x 2 column 2 Antenna Elements Diplexer Radio Amplifier Cooling Fins (passive cooling)  BELL LABS Research Project

Upload: mitsuosakamoto

Post on 07-Apr-2018

236 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Active Antenna Array

8/4/2019 Active Antenna Array

http://slidepdf.com/reader/full/active-antenna-array 1/2

 

Alcatel-Lucent Innovation Days – December 2008

Context:In traditional macro-cellular base stations, the RF(radio frequency) hardware contributes:

    half or more of the total equipment costs

    three quarters of the total cabinet volume

    the most power-hungry devices in basestations: the power amplifiers.

Space and costs issues increase in more advancedMIMO, beam steering and other intelligent antennaschemes. These require multiples of the RF transmit

and receive paths of standard base stations with eachpath having its own set of RF hardware.

In active antenna arrays complete RF transceivers areintegrated into each antenna element. Stacking theseelements forms the array (Figure 1): the number andgeometry depend on desired size, power output andcapabilities. Each element is fed with a digital RFstream, allowing for independent signal transmissionfrom each element.

Figure 1: Active antenna array concept with a column array(left) and single antenna module (right)

Alcatel-Lucent is prototyping new technologies andnovel RF hardware architectures to enable productionof macro and microcell base stations with small

footprints, reduced power requirements, and cost-effective RF hardware solutions that are scalable foradvanced beam steering and MIMO schemes.

Challenge:

In realizing this vision, many technical challengeshave been addressed:

    Miniaturizing RF hardware to fit weight andsize parameters of typical antenna radomes.

    Increasing overall solution realiability.

    Minimizing component and systems costs.

    Maximizing overall power efficiency.

Innovation:

Scalable, Distributed Power Amplification Power amplification is distributed in two ways:

(a)  Between antenna elements: Each poweramplifier sits behind an antenna element.Traditional passive antenna solutions’ high-powered RF feeder cables and passivedistribution networks are eliminated, savingpower.

(b)  Within antenna elements: Power amplifi-cation is split into parallel devices within theantenna element. This results in furtherpower savings via switching off devices forlow cell traffic loads.

Figure 2: Power amplifier concept

Distributed solutions also help with reliability. Evenif a device or module fails, there is only gracefuldegradation. The system still operates. Replacementof failing modules can be done on a scheduled basis.

Metalized Plastics to Reduce Weight

Novel antenna and filter solutions have been createdthat enable use of plastic injection-moulded partswith surface metalization (Figure 3). This enables adramatic reduction in overall weight.

Figure 3: Metalized plastic antenna element

Low power delay

Low power delay

attenuator

Signal IN

distortion

   S   i  g  n  a   l  -   d   i  s   t  o  r   t   i  o  n

undistortedSignal OUT

Power Amp. Module Parallel Power Amp. Modules

1

4

1

1

8

8

Low power delay

Low power delay

attenuator

Signal IN

distortion

   S   i  g  n  a   l  -   d   i  s   t  o  r   t   i  o  n

undistortedSignal OUT

Power Amp. Module Parallel Power Amp. Modules

1

4

1

1

8

8

 

Active Antenna ArraysSmall-Footprint, Scalable RF Solutions for Base Stations

Radome 8 x 2 column

2 Antenna Elements

Diplexer

Radio

Amplifier

Cooling Fins (passive cooling)

Radome 8 x 2 column

2 Antenna Elements

Diplexer

Radio

Amplifier

Cooling Fins (passive cooling) 

BELL LABS Research Project

Page 2: Active Antenna Array

8/4/2019 Active Antenna Array

http://slidepdf.com/reader/full/active-antenna-array 2/2

 

The antenna element design also provides someisolation between transmit and receive (over 20 dB inarray configurations). This reduces the requirementson the front-end filters. It enables introduction of aninnovative low-cost cavity resonator structure in thefilters, with printed-circuit-board-based couplingbetween resonators (Figure 4).

Figure 4: Metalized filter concept: Resonator structure (top)and filter using PCB-coupled resonators (bottom)

Low-Cost ManufacturingThe concept uses low-power power amplifier devices,metalized plastic parts and is assembled on printedcircuit boards. This means manufacturing can employstandard pick’n’place machines and surface-mounttechnology thereby minimizing manufacturing costs.

Single Solution, Multiple Deployment Scenarios:

Current prototype active antenna elements transmit~5W average power. By varying the number of active

antenna elements and their geometry, the solutioncan address a number of different market segments:

    One or two elements can be used for low-footprint microcells.

    A vertical column of 8 or 10 elements wouldbe used for a macrocell sector with the addedbenefit of adaptive vertical beamsteering.

    Square or rectangular arrays could be used foradvanced forms of MIMO or beam-steering.

Figure 5: Prototype of a square antenna array configuration

BENEFIT:  Power-scalable, small-footprint RFsolutions for beam-steering and MIMO applicationsreduce unit cost, are more efficient and increasereliability.

Contact:Francis Mullany, [email protected] Access DomainAlcatel-Lucent Bell Labs

Résumé:

Alcatel-Lucent a mis au point et développé des prototypes de technologies destinés à la production de filtres en plastique métalliséet d'amplificateurs de puissance à répartition. Ces produits, faciles à fabriquer, permettront la mise en œuvre de solutions de

réseaux d'antennes actives de nouvelle génération. Dans cette nouvelle architecture de réseaux d'antennes actives, les chaînes RFvolumineuses et coûteuses sont miniaturisées, leurs coûts sont réduits. Elles sont intégrées à l'arrière de chaque élément d'antenne,

pour composer le réseau d'antennes d'une station de base cellulaire. Des composants en plastique métallisé sont utilisés dans des

dispositifs compacts et ultralégers innovants, qui peuvent être assemblés sur des cartes de circuits imprimés à l'aide de la

technologie standard de montage en surface. L'ensemble de cette architecture satisfait aux normes de radiocommunication

cellulaire et offre la fiabilité requise pour fonctionner en haut d'une tour. Au final, cette architecture de station de base présente un

encombrement réduit et dispose de la souplesse et de l 'évolutivité nécessaires pour les algorithmes de pointage de faisceau et les

algorithmes MIMO avancés.