array/antenna design in ni awrde - national chiao …3gpptrend.cm.nctu.edu.tw/05....

26
ni.com/awr Array/Antenna, Beamforming Design in NI AWRDE & LabVIEW

Upload: doanthuan

Post on 03-Oct-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

ni.com ni.com/awr

Array/Antenna, Beamforming Design in NI AWRDE & LabVIEW

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Antenna Array Flow

Analyst ® 3D-FEM solver

AXIEM® 3D-planar-MOM solver VSS®

RF System Simulator

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Antenna Magus

• An antenna synthesis tool • Library of available of antenna

types • Set initial design

specifications. • Can tweak design. • Imported into AXIEM for EM

verification. • Can continue tweaking in

AXIEM

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

User Interface

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Workflow II: Designing the Antenna

• New Design>Design for Operating frequency

• Click “Design”

• Confirm/Modify “Parameter” shown in “Sketch”>Estimate Performance

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Workflow II: Designing the Antenna

• “Tweak” parameters for tuning

• Chang representation of plot if you like

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Workflow III: Export to AWR do EM Simulation

• Export Mode>Export and open model

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Array Synthesis

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

AWR Design Environment

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

VSS for RF System Simulation

• Develop component specifications • RF Budget and Spur Analysis • Understand impairments of the RF Link • Graphically develop custom algorithms • End-to-end simulations with modulated signals • Hardware in loop simulations

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

VSS for RF System Simulation

RF Budget Cascaded gain

Input/output IP3

Noise figure, etc.

RF Inspector Heritage tone inspector to identify the cause of

an inter-modulation product of an RF link

RF System End-to-End analysis C/N, BER, ACPR, EVM, etc.

Circuit co-simulation Matlab co-simulation

Communication Standards

WiMAX, IS2000, UWB, WCDMA 3GPP LTE, QAM, OQPSK, MPSK, GSM EDGE, DVB, 802.11a/b/g/n/ac

The most complete RF system simulation functionality in one

integrated tool

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Typical Implementation

• Phased arrays implemented using discrete blocks • Define gain & phase offset for each element

• Specify RF link for each array element

• Allows implementation of beamforming algorithms

• Good for relatively small phased arrays

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

VSS Phased Array Configuration

• TX/RX modes • Several divider types

• Distance units • Metric

• Imperial

• Wavelength (l)

• Signal frequency • For metric/imperial

• Steering angles

• Angles of Incidence

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Phased Array Geometry

• Standard array geometry configurations • Lattice (rectangular, triangular)

• Circular (multiple concentric circles)

• Custom configurations • Configured via X/Y locations

dx

dy

g

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Gain Tapers

• Standard tapers: • Dolph-Chebyshev

o Side-lobe ratio (dB)

• Taylor

o Side-lobe ratio (dB)

o Near-equal side lobes

• Uniform

• User defined tapers • Gain/phase vectors for each element

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Phased Array Test Bench

• Phased array characterization • Antenna pattern, array response, HPBW, etc.

• RF analysis and planning

• System level simulations with modulated signals

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Linear Array Example

• Linear array with 16 elements, NX=16, dx=l/2

• Dolph-Chebyshev taper, SLR=40dB

• Steering angles: q =15, f =45

• Measured HPBW = 12.8

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Planar Array Example

• Rectangular lattice, NX=16, NY=4, dX=dY=l/2

• Dolph-Chebyshev, SLR=40dB, along X direction

Measured HPBW = 12.1

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Implement Array in EM Tools

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Feeding Design and Insitu Antenna 3D Pattern

-90

-90

00

1

2

3

4

QHYB

PHASE2A=-90 Deg

180

0

00

1

2

3

4

DHYB

CAPID=C1C=c pF

CAPID=C2C=c pF

M_PROBEID=VP1

M_PROBEID=VP2

NL_AMPID=AM2GAIN=-6 dBNF=0 dBIP2H=40 dBmIP3=30 dBmP1DB=10 dBm

1

2

SUBCKTID=S1NET="Single Element"

PORT1P=1Z=50 OhmPwr={0} dBm

PORTP=2Z=50 Ohm

c=7

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Beamforming Circuit Implementation

-90

-90

00

1

2

3

4

QHYB

PHASE2A=-150 Deg

180

0

00

1

2

3

4

DHYB

CAPID=C1C=c pF

CAPID=C2C=c pF

M_PROBEID=VP1

M_PROBEID=VP2

NL_AMPID=AM2GAIN=-6 dBNF=0 dBIP2H=40 dBmIP3=30 dBmP1DB=10 dBm

1

2

SUBCKTID=S1NET="Single Element"

PORT1P=1Z=50 OhmPwr={0} dBm

PORTP=2Z=50 Ohm

c=7

TRX module Link-

budget/ Design Feed/Beamforming

Circuit Design Feeding/Antenna

Co-simulation

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Full RF System Analysis in VSS

TPID=in

TPID=out

PHARRAYID=A1THETA=THETA RadPHI=PHI RadTHETA_ST=rad(THETA_st_deg) RadPHI_ST=

802.11ac

TX

B

1

2

80211ACID=A2TX_Mode=MCS=6: 64QAM, r=3/4TX_Power=-10 dBmBandwidth=Channel BW 80MHzGuardInterval=800nPayload=1024SMPSYM=_SMPSYMCTRFRQ=5.250 GHz

802.11ac

RX

EVM (sc) (sym)

P

IQ

B

1 2

3

4

5 6 7

80211ACID=A4Bandwidth=Auto

TPID=Constellation1

TPID=DUT_In1

TPID=DUT_Out1

TPID=EVM1

TPID=EVM_vs_Subcarrier1

TPID=EVM_vs_Symbol1

TPID=Power1

TPID=Rx_Bitstream1

TPID=TxBitstream1

Fading

MULTIPATH_FADINGID=A5CTRFRQSEL=PropagatedPATHLOSS=40

1

2

3

4

SUBCKTID=S1NET="TGC2610_SM"

THETA = 55

constants("c0") : Frq = CtrFrq*1.01CtrFrq = 5.25e9

N = 4 PHI = 0M = 4

THETA_st_deg=0AMP_B2ID=A3GAIN=10P1DB=10IP3= IP2= MEASREF= OSAT= NF=3NOISE=AutoRFIFRQ=

OSC_SID=A6NET="M"PORT=1FRQ= HARMIDX=1PWR= PHS=0 DegCTRFRQ= SMPFRQ= ZS=_Z0 OhmTN=_TAMB DegKNOISE=AutoPNOISE=No phase noise

2.05 2.1 2.15

Frequency (GHz)

Spectrum_interband_a

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

DUT In (dBm)

DUT In2 (dBm)

DB(PWR_SPEC(TP.TP1,1000,0,10,0,-1,0,-1,1,0,4,0,1,0)) (dBm)

d1: Graphs_Auto

d2: Graphs_Auto

d3: Graphs_Auto-45 -25 -5 10

Output Power vs Input Power

-20

-15

-10

-5

0

5p1

DB(Re(P_node(TP.TP1,TP.TP2,0,1,0)))[*,X] (dBm)RF_PID Feedback

p1: Signal Node Power, dBmFreq=1 GHz

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

RFB Cumulative Gain for TX

-20

0

20

40

60

S4\BPFB (F1) S4\AMP_B (A1) S4\BPFB (F2) S4\MIXER_B (Mixer1) S4\BPFE (F3) S4\AMP_B (A2) S4\BPFE (F4) S4\MIXER_B (Mixer2) S4\BPFB (F5) S4\AMP_B (A5) S4\AMP_B (A4) S4\BPFB (F6) S4\ISOLATOR (S8) TX_ANTENNA (S7)

p1

1459.54 dB

DB(C_GA(TP.Start,TP.Stop,1,0,1))[1]RFB Tx System

p1: Available Gain, Cumulative, dBFreq=9015 MHz-5000 0 5000 10000 15000 20000 25000 30000 35000 40000

Frequency (MHz)

RFI for TX

-400

-300

-200

-100

0

100

9015 MHz59.55 dBm

RFB C_NF for TX

0

1

2

3

4

5

S4\BPFB (F1) S4\AMP_B (A1) S4\BPFB (F2) S4\MIXER_B (Mixer1) S4\BPFE (F3) S4\AMP_B (A2) S4\BPFE (F4) S4\MIXER_B (Mixer2) S4\BPFB (F5) S4\AMP_B (A5) S4\AMP_B (A4) S4\BPFB (F6) S4\ISOLATOR (S8) TX_ANTENNA (S7)

p1

4.647 dB

DB(C_NF(TP.Start,TP.Stop,0,1,0,1))[1]

RFB Tx System

p1: Cascaded Noise Figure, Signal, Cumulative, dBFreq=9015 MHz

RF Link Analysis

• Cascade analysis of a typical TX transmit link

PORTDOUTPORTDIN AMP_B

1 2

NL_S

ISOLATOR

M_PROBE

BPFB

MMIC PA

340MHz

10MHz

8665MHz

9015MHz

Behavioral PA

or

BPFE BPFBBPFBBPFB AMP_BAMP_B

TP

TONETONE

IN OUT

LO

MIXER_B

IN OUT

LO

MIXER_B BPFE

AMP_B

Results:

• Cascaded NF = 4.65dB

• Available Gain = 59.5dB

• Power level at 9015MHz = 59.55dBm

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

Time EVM Power (ns) System Diagram 1 System Diagram 1 1.6e+005 -36.65 -0.032489 1.64e+005 -36.649 -0.032488 1.68e+005 -36.65 -0.03249 1.72e+005 -36.65 -0.032486 1.76e+005 -36.647 -0.032486 1.8e+005 -36.649 -0.032489 1.84e+005 -36.649 -0.032486 1.88e+005 -36.65 -0.032488 1.92e+005 -36.65 -0.03249

System Level Design and Analysis

• Signal sources and receivers from LabVIEW

• Conformance test benches • Standard and custom measurements

• Seamless integration with circuit designs (MWO)

• Blazing fast simulations!

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

From Design to Manufacturing Test with Same IP

Verification/Validation

Manufacturing Test

Common IP

Design/Simulation

Prototype

ni.com NCTU 5G Seminar

ni.com | © 2015 AWR Group of NI. All rights reserved

VSS and LabVIEW for Comms

Signal Analysis •Comms Standards receiver •Conformance measurements - Bit Error Rate (BER), ACPR, EVM, Receiver sensitivity, etc.

•Custom IP, algorithm development

Baseband Transmitter

RF Impairments

Baseband Receiver

RF Channel Simulation •Robust behavioral RF models - amps, mixers, filters, etc.,

•Data based models - measured, simulated

•AWR designed circuits (MWO)

RF System

- An integrated RF system design platform -

TX RX

RF Channel Model

DC offset, IQ mismatch, Interference,

Linearity, Phase Noise, Frequency variation, etc.,

Signal Generation •Comms Standards transmitter - WiMAX, IS2000, UWB, WCDMA, LTE,802.11a/b/g, etc.,

•Create custom/new waveforms

C R

Digital Data

Encode D/A Decode Digital Data A/D

-0.4 -0.2 0 0.2 0.4

IQ

-0.4

-0.2

0

0.2

0.4

IQ(TP.Spectrum,300,1,1,0,0,0)

System

-105 -95 -85 -75 -65 -55 -45 -35 -25

SNR

5

10

15

20

25

30

DB(ACPR(VSA.M1,10.1,4,0.1,-1,-0.1,4,0.1,4,1,0,1,0,0,0,0.5,0.01,5,10,2))[x]

Increasing Sweep

DB(ACPR(VSA.M1,10.1,4,0.1,-1,-0.1,4,0.1,4,1,0,1,0,0,0,0.5,0.01,5,10,2))[x]

Decreasing Sweep

DB(ACPR(VSA.M1,10.1,4,0.1,-1,-0.1,4,0.1,4,1,0,1,0,0,0,0.5,0.01,5,10,2))[x]

Increasing Sweep No Hyst

DB(ACPR(VSA.M1,10.1,4,0.1,-1,-0.1,4,0.1,4,1,0,1,0,0,0,0.5,0.01,5,10,2))[x]

Decreasing Sweep No Hyst

AWR Model or DUT

or or

modulate de-modulate