acc2017 present wo backup...

46
Stochastic approximation based methods for computing the optimal thresholds in remote-state estimation with packet drops Jhelum Chakravorty Joint work with Jayakumar Subramanian and Aditya Mahajan McGill University American Control Conference May 24, 2017 1 / 18

Upload: others

Post on 11-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Stochastic approximation based methods for

computing the optimal thresholds in remote-state

estimation with packet drops

Jhelum Chakravorty

Joint work with Jayakumar Subramanian and Aditya Mahajan

McGill University

American Control ConferenceMay 24, 2017

1 / 18

Page 2: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

Sequential transmission of data

Zero delay in reconstruction

2 / 18

Page 3: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

Applications?Smart grids

2 / 18

Page 4: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

Applications?Environmental monitoring, sensor network

2 / 18

Page 5: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

Applications?Internet of things

2 / 18

Page 6: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

Applications?Smart grids

Environmental monitoring, sensor network

Internet of things

Salient features

Sensing is cheap

Transmission is expensive

Size of data-packet is not critical

2 / 18

Page 7: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Motivation

We study a stylized model.

Characterization of the fundamental trade-off between estimationaccuracy and transmission cost!

2 / 18

Page 8: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The remote-state estimation setup

TransmitterMarkov process ReceiverErasure channelXt Ut Yt Xt

Xt+1 = aXt +Wt

Ut = ft(X0:t, Y0:t−1), 2 {0, 1}

Xt = gt(Y0:t)ACK/NACK

St 2 {ON(1-ε), OFF(ε)}

Source model Xt+1 = aXt +Wt , Wt i.i.d.

3 / 18

Page 9: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The remote-state estimation setup

TransmitterMarkov process ReceiverErasure channelXt Ut Yt Xt

Xt+1 = aXt +Wt

Ut = ft(X0:t, Y0:t−1), 2 {0, 1}

Xt = gt(Y0:t)ACK/NACK

St 2 {ON(1-ε), OFF(ε)}

Source model Xt+1 = aXt +Wt , Wt i.i.d.

a,Xt ,Wt ∈ R, pdf of Wt : φ(·) - Gaussian.

3 / 18

Page 10: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The remote-state estimation setup

TransmitterMarkov process ReceiverErasure channelXt Ut Yt Xt

Xt+1 = aXt +Wt

Ut = ft(X0:t, Y0:t−1), 2 {0, 1}

Xt = gt(Y0:t)ACK/NACK

St 2 {ON(1-ε), OFF(ε)}

Source model Xt+1 = aXt +Wt , Wt i.i.d.

Channel model St i.i.d.; St = 1: channel ON, St = 0: channel OFFPacket drop with probability ε.

3 / 18

Page 11: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The remote-state estimation setup

Transmitter Ut = ft(X0:t ,Y0:t−1) and Yt =

{

Xt , if UtSt = 1

E, if UtSt = 0.

Receiver Xt = gt(Y0:t)Per-step distortion: d(Xt − Xt) = (Xt − Xt)

2.

Communication Transmission strategy f = {ft}∞t=0

strategies Estimation strategy g = {gt}∞t=0

3 / 18

Page 12: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The optimization problem

Discounted setup: β ∈ (0, 1)

Dβ(f , g) := (1 − β)E(f ,g)[

∞∑

t=0

βtd(Xt − Xt)∣

∣X0 = 0

]

Nβ(f , g) := (1 − β)E(f ,g)[

∞∑

t=0

βtUt

∣X0 = 0

]

Long-term average setup: β = 1

D1(f , g) := lim supT→∞

1TE

(f ,g)[

T−1∑

t=0

d(Xt − Xt)∣

∣X0 = 0

]

N1(f , g) := lim supT→∞

1TE

(f ,g)[

T−1∑

t=0

Ut

∣X0 = 0

]

4 / 18

Page 13: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The optimization problem

Constrained performance: The Distortion-Transmission function

D∗β(α) := Dβ(f

∗, g∗) := inf(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number oftransmissions is less than α

4 / 18

Page 14: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

The optimization problem

Constrained performance: The Distortion-Transmission function

D∗β(α) := Dβ(f

∗, g∗) := inf(f ,g):Nβ(f ,g)≤α

Dβ(f , g), β ∈ (0, 1]

Minimize expected distortion such that expected number oftransmissions is less than α

Costly performance: Lagrange relaxation

C ∗β (λ) := inf

(f ,g)Dβ(f , g) + λNβ(f , g), β ∈ (0, 1]

4 / 18

Page 15: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Decentralized control systems

Team: Multiple decision makers to achieve a common goal

5 / 18

Page 16: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Decentralized control systems

Pioneers:

Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972

5 / 18

Page 17: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Decentralized control systems

Pioneers:

Theory of teams

Economics: Marschak, 1955; Radner, 1962

Systems and control: Witsenhausen, 1971; Ho, Chu, 1972

Remote-state estimation as Team problem

No packet drop - Marshak, 1954; Kushner, 1964; Åstrom,Bernhardsson, 2002; Xu and Hespanha, 2004; Imer and Basar,2005; Lipsa and Martins, 2011; Molin and Hirche, 2012;Nayyar, Başar, Teneketzis and Veeravalli, 2013; D. Shi, L. Shiand Chen, 2015

With packet drop - Ren, Wu, Johansson, G. Shi and L. Shi,2016; Chen, Wang, D. Shi and L. Shi, 2017;

With noise - Gao, Akyol and Başar, 2015–20175 / 18

Page 18: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Remote-state estimation - Steps towards optimal solution

Establish the structure of optimal strategies (transmission andestimation)

Computation of optimal strategies and performances

6 / 18

Page 19: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 1 - Structure of optimal strategies: Lipsa-Martins 2011

& Molin-Hirsche 2012 - no packet drop

Optimal estimator

Time homogeneous!

Xt = g∗t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aXt−1, if Yt = E.

7 / 18

Page 20: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 1 - Structure of optimal strategies: Lipsa-Martins 2011

& Molin-Hirsche 2012 - no packet drop

Optimal estimator

Time homogeneous!

Xt = g∗t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aXt−1, if Yt = E.

Optimal transmitter

Xt ∈ R; Ut is threshold based action:

Ut = f ∗t (Xt ,U0:t−1) = f ∗(Xt) =

{

1, if |Xt − aXt | ≥ k

0, if |Xt − aXt | < k

7 / 18

Page 21: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 1 - Structure of optimal strategies: Lipsa-Martins 2011

& Molin-Hirsche 2012 - no packet drop

Optimal estimator

Time homogeneous!

Xt = g∗t (Yt) = g∗(Yt) =

{

Yt , if Yt 6= E;

aXt−1, if Yt = E.

Optimal transmitter

Xt ∈ R; Ut is threshold based action:

Ut = f ∗t (Xt ,U0:t−1) = f ∗(Xt) =

{

1, if |Xt − aXt | ≥ k

0, if |Xt − aXt | < k

Similar structural results for channel with packet drops.7 / 18

Page 22: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 2 - The error process Et

τ (k): the time a packet was last received successfully.Et := Xt − at−τ (k)Xτ (k) , Et := Xt − at−τ (k)Xτ (k) ;

8 / 18

Page 23: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 2 - The error process Et

τ (k): the time a packet was last received successfully.Et := Xt − at−τ (k)Xτ (k) , Et := Xt − at−τ (k)Xτ (k) ;

d(Xt − Xt) = d(Et − Et).

8 / 18

Page 24: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Step 2 - The error process Et

τ (k): the time a packet was last received successfully.Et := Xt − at−τ (k)Xτ (k) , Et := Xt − at−τ (k)Xτ (k) ;

= Xt − a(Xt−1 − Et−1)

=

{

aEt−1 +Wt−1, if Yt = E

Wt , if Yt 6= E

8 / 18

Page 25: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Performance evaluation - JC-AM TAC ’17, NecSys ’16

f (k)(e) =

{

1, if |e| ≥ k

0, if |e| < k

Till first successful reception

L(k)β (0) := E

[

τ (k)−1∑

t=0

βtd(Et)∣

∣E0 = 0

]

M(k)β (0) := E

[

τ (k)−1∑

t=0

βt∣

∣E0 = 0

]

K(k)β (0) := E

[

τ (k)∑

t=0

βtUt

∣E0 = 0

]

9 / 18

Page 26: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Performance evaluation - JC-AM TAC ’17, NecSys ’16

f (k)(e) =

{

1, if |e| ≥ k

0, if |e| < kEt is regenerative process

Renewal relationships

D(k)β (0) := Dβ(f

(k), g∗) =L(k)β (0)

M(k)β (0)

N(k)β (0) := Nβ(f

(k), g∗) =K

(k)β (0)

M(k)β (0)

9 / 18

Page 27: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of D, N

L(k)β (e) =

ε[

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn

]

, if |e| ≥ k

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn, if |e| < k ,

10 / 18

Page 28: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of D, N

L(k)β (e) =

ε[

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn

]

, if |e| ≥ k

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn, if |e| < k ,

M(k)β (e) and K

(k)β (e) defined in a similar way.

10 / 18

Page 29: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of D, N

L(k)β (e) =

ε[

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn

]

, if |e| ≥ k

d(e) + β

n∈R

φ(n − ae)L(k)β (n)dn, if |e| < k ,

ε = 0: Fredholm integral equations of second kind - bisectionmethod to compute optimal threshold

ε 6= 0: Fredholm-like equation; discontinuous kernel, infinitelimit - analytical methods difficult

10 / 18

Page 30: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimality condition (JC & AM: TAC’17, NecSys ’16)

D(k)β ,N(k)

β , C (k)β - differentiable in k

Theorem - costly communication

If (k , λ) satisfies ∂kD(k)β + λ∂kN

(k)β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.

11 / 18

Page 31: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimality condition (JC & AM: TAC’17, NecSys ’16)

D(k)β ,N(k)

β , C (k)β - differentiable in k

Theorem - costly communication

If (k , λ) satisfies ∂kD(k)β + λ∂kN

(k)β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.

C ∗β (λ) := Cβ(f

(k), g∗;λ) is continuous, increasing and concave in λ.

11 / 18

Page 32: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimality condition (JC & AM: TAC’17, NecSys ’16)

D(k)β ,N(k)

β , C (k)β - differentiable in k

Theorem - costly communication

If (k , λ) satisfies ∂kD(k)β + λ∂kN

(k)β = 0, then, (f (k), g∗) optimal

for costly comm. with cost λ.

C ∗β (λ) := Cβ(f

(k), g∗;λ) is continuous, increasing and concave in λ.

Theorem - constrained communication

k∗β(α) := {k : N(k)β (0) = α}. (f k

β(α)

, g∗) is optimal for theoptimization problem with constraint α ∈ (0, 1).

D∗β(α) := Dβ(f

(k), g∗) is continuous, decreasing and convex in α.

11 / 18

Page 33: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Main results

12 / 18

Page 34: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

Difficulty

Numerically compute L(k)β , M(k)

β and K(k)β ; use renewal

relationship to compute C(k)β and D

(k)β .

Need to solve Fredholm-like integral - computationally difficult.

13 / 18

Page 35: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

Difficulty

Numerically compute L(k)β , M(k)

β and K(k)β ; use renewal

relationship to compute C(k)β and D

(k)β .

Need to solve Fredholm-like integral - computationally difficult.

Simulation based approach

Two main approaches - Monte Carlo (MC) and TemporalDifference (TD)

MC - High variance due to one sample path; low bias

TD - Low variance due to bootstrapping; high bias

13 / 18

Page 36: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

Difficulty

Numerically compute L(k)β , M(k)

β and K(k)β ; use renewal

relationship to compute C(k)β and D

(k)β .

Need to solve Fredholm-like integral - computationally difficult.

Simulation based approach

Two main approaches - Monte Carlo (MC) and TemporalDifference (TD)

MC - High variance due to one sample path; low bias

TD - Low variance due to bootstrapping; high bias

Exploit regenerative property of the underlying state (error)process

Renewal Monte Carlo (RMC) - low variance (independentsample paths from renewal) and low bias (since MC)

13 / 18

Page 37: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

Difficulty

Numerically compute L(k)β , M(k)

β and K(k)β ; use renewal

relationship to compute C(k)β and D

(k)β .

Need to solve Fredholm-like integral - computationally difficult.

Key idea

Renewal Monte Carlo

Pick a k , compute sample values L, M, K till first successful

reception

Sample average to compute L(k)β , M

(k)β , K

(k)β .

Stochastic approximation techniques to compute optimal k .

13 / 18

Page 38: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

13 / 18

Page 39: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Computation of optimal thresholds

Key steps of the algorithms

Noisy policy evaluation - MC until successful reception:constitutes one episode; sample average over few episodes tofind L, M, K and hence C and D.

Policy improvement - Smoothed Functional

ki+1 = ki − γiη

(

C (ki + βη)− C (ki − βη))

Policy improvement - Robbins-Monro

ki+1 = ki − γi (αM − K ).

13 / 18

Page 40: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Validation of simulation results

Results validated by comparing with analytical results of nopacket-drop case: JC-AM, TAC ’17.

Costly performance - Error in k∗: 10−2 − 10−3; Error in C ∗:10−4 − 10−5

Constrained performance - Error in k∗: 10−3; Error in D∗:10−3 − 10−5

14 / 18

Page 41: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimal thresholds from simulations

Costly performance:

1 2 3 4 5 6 7

·104

5

10

λ = 100

λ = 300

λ = 500

Iterations

Th

resh

old

Figure: Costly communication: β = 0.9, ε = 0.3.

15 / 18

Page 42: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimal thresholds from simulations

Constrained performance:

1,000 2,000 3,000 4,000 5,000

1

2

3α = 0.1

α = 0.3

α = 0.5

Iterations

Thre

shold

Figure: Constrained communication using RM: β = 0.9, ε = 0.3.

15 / 18

Page 43: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimal trade-off between distortion and communication

cost

20 40 60

2

4

6

8

10

λ

C∗ 0.9(λ)

ε = 0.0

ε = 0.3

ε = 0.7

Figure: Costly communication: β = 0.9, ε ∈ {0, 0.3, 0.7}.

16 / 18

Page 44: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Optimal trade-off between distortion and communication

cost

0.2 0.4 0.6 0.8

1

2

3

4

α

D∗ 0.9(α

)

ε = 0.0

ε = 0.3

ε = 0.7

Figure: Constrained communication: β = 0.9, ε ∈ {0, 0.3, 0.7}.

16 / 18

Page 45: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Future work

Markovian erasure channel -Thresholds at t are function of channel-state at t − 1

Higher dimension -

Xt ∈ Rm is ASU

?=⇒ AXt +Wt is ASU

Notion of stochastic dominance in higher dimension

17 / 18

Page 46: ACC2017 present wo backup slides.1box5637.temp.domains/.../wp-content/uploads/2017/12/2017-acc-sli… · Title: ACC2017_present_wo_backup_slides.1.1 Author: Jhelum Chakravorty Joint

Thank you!

18 / 18