ab initio simulation in materials science, dierk raabe, lecture at ihpc singapore

75
D. Raabe, F. Roters, P. Eisenlohr, H. Fabritius, S. Nikolov, M. Petrov O. Dmitrieva, T. Hickel, M. Friak, D. Ma, J. Neugebauer Düsseldorf, Germany WWW.MPIE.DE [email protected] - Institute for High Performance Computing Singapore 1. Nov 2010 Dierk Raabe Using ab-initio based multiscale models and experiments for alloy design

Upload: dierk-raabe

Post on 23-Jun-2015

672 views

Category:

Education


2 download

DESCRIPTION

This is a talk on using ab initio models in computational materials science

TRANSCRIPT

Page 1: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

D. Raabe, F. Roters, P. Eisenlohr, H. Fabritius, S. Nikolov, M. PetrovO. Dmitrieva, T. Hickel, M. Friak, D. Ma, J. Neugebauer

Düsseldorf, [email protected]

IHPC - Institute for High Performance Computing Singapore 1. Nov 2010 Dierk Raabe

Using ab-initio based multiscale models and experiments for alloy design

Page 2: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

2

TitaniumAluminiumMagnesiumNickelSteelsIntermetallics

New materials for key technologies: Aero-space

Page 3: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

3

New materials for key technologies: mobility on land and water

SteelsMagnesiumAluminiumTitanium

Page 4: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

4

New materials for key technologies: Power plants

SteelsNickelIntermetallics

Page 5: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

5

New materials for key technologies: Green energy

SteelsCu(In,Ga)Se2

CdTe

Page 6: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

6

New materials for key technologies: infrastructure

Steels

Page 7: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

7

New materials for key technologies: Health

TITANIUMMAGNESIUMPOYLMERSBONE

Page 8: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

8

New materials for key technologies: Information, energy, lighting

GoldCopperIII-V semiconductors

Page 9: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Overview

Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

Page 10: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

10

Ab initio and crystal modeling

Counts, Friák, Raabe, Neugebauer: Acta Mater. 57 (2009) 69

ELECTRONIC RULES FOR ALLOY DESIGN: ADD ELECTRONS RATHER THAN ATOMS

OBTAIN DATA NOT ACCESSIBLE OTHERWISE

COMBINE TO ATOMIC SCALE EXPERIMENTS

MOST EXACT KNOWN MATERIALS THEORY

CAN BE USED AT CONTINUUM SCALE

Page 11: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

11www.mpie.de

Replace empirical by knowledge-based alloy design

Page 12: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Time-independent Schrödinger equation

h/(2p)

Many particles (stationary formulation)

Square |y(r)|2 of wave function y(r) of a particle at given position r = (x,y,z) is a measure of probability to observe it there

Raabe: Adv. Mater. 14 (2002)

Page 13: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

i electrons: mass me ; charge qe = -e ; coordinates rei j atomic cores:mass mn ; charge qn = ze ; coordinates rnj

Time-independent Schrödinger equation for many particles

Raabe: Adv. Mater. 14 (2002)

Page 14: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Adiabatic Born-Oppenheimer approximation

Decoupling of core and electron dynamics

Electrons

Atomic cores

Raabe: Adv. Mater. 14 (2002)

Page 15: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Hohenberg-Kohn-Sham theorem:

Ground state energy of a many body system definite function of its particle density

Functional E(n(r)) has minimum with respect to variation in particle position at equilibrium density n0(r)

Chemistry Nobelprice 1998

Hohenberg Kohn, Phys. Rev. 136 (1964) B864

Page 16: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Total energy functional

T(n) kinetic energyEH(n) Hartree energy (electron-electron repulsion)Exc(n) Exchange and correlation energyU(r) external potential

Exact form of T(n) and Exc(n) unknown

Hohenberg Kohn, Phys. Rev. 136 (1964) B864

Page 17: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Local density approximation – Kohn-Sham theory

Parametrization of particle density by a set of ‘One-electron-orbitals‘These form a non-interacting reference system (basis functions)

2

ii rrn

Calculate T(n) without consideration of interactions

rdrm2

rnT 2i

i

22

*i

Determine optimal basis set by variational principle

0rrnE

i

Hohenberg Kohn, Phys. Rev. 136 (1964) B864

Page 18: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

18

Ab initio: theoretical methods

Density functional theory (DFT), generalized gradient approximation (GGA); also LDA

Vienna ab-initio simulation package (VASP) code or SPHINX; different pseudo-potentials, Brillouin zone sampling, supercell sizes, and cut-off energies, different exchange-correlation functions, M.-fit

Entropy: non-0K, dynamical matrix, configuational analytical

Hohenberg Kohn, Phys. Rev. 136 (1964) B864

Page 19: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

19

Ab initio: typical quantities of interest in materials mechanics

Lattice structures (e.g. Polymers, carbides, Laves)

Lattice parameter (e.g. alloys, solute limits)

Ground state energies of phases, free energies

Elastic properties

Simple defect structures and formation energies, e.g. vacancies, interstitials, dislocation cores

Energy landscapes for athermal transformations

Raabe: Adv. Mater. 14 (2002)

Page 20: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

20Raabe, Zhao, Park, Roters: Acta Mater. 50 (2002) 421

Theory and Simulation: Multiscale crystal mechanics

Page 21: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Overview

Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 22: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

22

115 GPa

20-25 GPa

Stress shieldingElastic Mismatch: Bone degeneration, abrasion, infection

Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475

BCC Ti biomaterials design

Page 23: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

23

Design-task: reduce elastic stiffness

Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475

M. Niinomi, Mater. Sci. Eng. 1998

Bio-compatible elements

BCC Ti biomaterials design

From hex to BCC structure: Ti-Nb, …

Page 24: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Construct binary alloys in the hexagonal phase

Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475

Page 25: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475

Construct binary alloys in the cubic phase

Page 26: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

26

MECHANICALINSTABILITY!!

Ultra-sonic measurement

exp. polycrystals

bcc+hcp phases

Ti-hex: 117 GPa

theory: bcc polycrystals

XRDDFT

po

lycr

ysta

l Yo

un

g`s

mo

du

lus

(G

Pa)

Raabe, Sander, Friák, Ma, Neugebauer, Acta Materialia 55 (2007) 4475

Elastic properties / Hershey homogenization

hexbcc

Page 27: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

27

Ti-18.75at.%Nb Ti-25at.%Nb Ti-31.25at.%Nb

Az=3.210 Az=2.418 Az=1.058

[001]

[100] [010]

Young‘s modulus surface plots

Pure Nb

Az=0.5027

Az= 2 C44/(C11 − C12)

Ma, Friák, Neugebauer, Raabe, Roters: phys. stat. sol. B 245 (2008) 2642

HersheyFEMFFT

HersheyFEMFFT

Ab initio alloy design: Elastic properties: Ti-Nb system

Page 28: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

28

More than one million hip implants per year:

Take-home message

elastically compliant Titanium-alloys can reduce surgery

www.mpie.de

Page 29: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Overview

Raabe: Adv. Mater. 14 (2002), Roters et al. Acta Mater.58 (2010)

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 30: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

30

Str

ess

s [M

Pa]

1000

800

600

400

200

0

0 20 40 60 80 100Strain e [%]

TRIPsteel

TWIP steel

Ab-initio methods for the design of high strength steels

www.mpie.de

martensite formation

twin formation

Hickel, Dick, Neugebauer

Page 31: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

31www.mpie.de

Ab-initio methods for the design of high strength steels

C AB

B

C

Hickel, Dick, Neugebauer

Page 32: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

32

twinning

Page 33: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

33

Microstructure hierarchy

Dmitrieva et al., Acta Mater, 2010

Page 34: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

34

Mn atomsNi atomsMn iso-concentration surfaces at 18 at.%

APT results: Atomic map (12MnPH aged 450°C/48h)

70 million ionsLaser mode (0.4nJ, 54K)

Dmitrieva et al., Acta Mater, in press 2010

Martensite decorated by precipitations

Austenite

?

?

Page 35: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

M A

Mn layer 1Mn layer 2

35

Mn layer2Mn layer 1

Mn iso-concentration surfaces at 18 at.%

Thermo-Calc

Phase equilibrium Mn-contents:

27 at. % Mn in austenite (A)

3 at. % Mn in ferrite (martensite) (M)

1D profile: step size 0.5 nm

M A M

depletion zonenominal 12 at.% Mn

APT results: chemical profiles

Dmitrieva et al., Acta Mater, in press 2010

Page 36: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

36

precipitates in a`

no precipitates in

12MnPH after aging (48h 450°C)

nmDtxDiff 302

nmxDiff 2

Raabe, Ponge, Dmitrieva, Sander: Adv. Eng. Mat. 11 (2009) 547

Page 37: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Mean diffusion path of Mn in austenite

(aging 450°C/48h) 2 nm

37

M A

Mn layer 1Mn layer 2

nominal 12 at.%

Thermo-Calc

Phase equilibrium Mn content:

27 at. % in austenite

3 at. % in ferrite (martensite)

10 nm

Ti, Si, Mo

Mn-rich layer

AMPB migration

Mn diffusion

phase boundary

aging

Newaustenite

(formed during aging)

DICTRA

AM

original positionphase boundary

final positionphase boundary

APT results and simulation: DICTRA/ThermoCalc

Dmitrieva et al., Acta Mater, in press 2010

Page 38: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

38

Develop new materials via ab-initio methods

www.mpie.de

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 39: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

39

Nano-precipitates in soft magnetic steels

size Cu precipitates (nm)

{JP 2004 339603}

15 nm

magneti

c lo

ss (

W/k

g)

Fe-Si steel with Cu nano-precipitates

nanoparticles too small for Bloch-wall interaction but effective as dislocation obstacles

mechanically very strong soft magnets for motors

Page 40: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

40

Cu 2 wt.%

20 nm

120 min

20 nm

6000 minIso-concentration surfaces for Cu 11 at.%

Fe-Si-Cu, LEAP 3000X HR analysis

Fe-Si steel with Cu nano-precipitates

450°C aging

Page 41: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 42: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 43: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 44: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

Modeling: ab-initio, DFT / GGA, binding energies

Fe-Si steel with Cu nano-precipitates

Page 45: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

45

Ab-initio, binding energies: Cu-Cu in Fe matrix

Fe-Si steel with Cu nano-precipitates

Page 46: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

46

Ab-initio, binding energies: Si-Si in Fe matrix

Fe-Si steel with Cu nano-precipitates

Page 47: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

47

For neighbor interaction energy take difference (in eV)

(repulsive) = 0.390 (attractive) = -0.124 (attractive) = -0.245

ESiSibin

ESiCubin

E CuCubin

Ab-initio, binding energies

Fe-Si steel with Cu nano-precipitates

Page 48: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

48

Ab-initio, use binding energies in kinetic Monte Carlo model

Page 49: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

49

Develop new materials via ab-initio methods

www.mpie.de

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 50: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

50

Counts et al.: phys. stat. sol. B 245 (2008) 2630

Counts, Friák, Raabe, Neugebauer: Acta Mater. 57 (2009) 69

Ab-initio design of Mg-Li alloys

Y: Young‘s modulusr: mass densityB: compressive modulusG: shear modulus

Weak under normal load

Weak under shear load

Page 51: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

51

Develop new materials via ab-initio methods

www.mpie.de

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 52: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

52

The materials science of chitin composites

Fabritius, Sachs, Romano, Raabe : Adv. Mater. 21 (2009) 391

Page 53: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

53

Exocuticle

Endocuticle

Epicuticle

Exocuticle and endocuticle have different stacking density of twisted plywood layers

Cuticle hardened by mineralization with CaCO3

Page 54: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

54

Page 55: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

55

exocuticleexocuticle

endocuticleendocuticle

Page 56: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

56

180° rotation of fiber planes180° rotation of fiber planes

Page 57: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

57

Page 58: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

58

Normal direction

Page 59: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

59

Page 60: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

60

Page 61: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

61

Page 62: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

62

Page 63: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

63

Page 64: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

64

Page 65: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

65Sachs, Fabritius, Raabe: Journal of Structural Biology 161 (2008) 120

Structure hierarchy of chitin-compounds

Nikolov et al.: Adv. Mater. 22 (2010) p. 519; Al-Sawalmih et al.: Adv. Funct. Mater. 18 (2008) p. 3307 Fabritius et al.: Adv. Mater. 21 (2009) 391

Page 66: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

66

P218.96 35.64 19.50 90˚α-Chitin

Space groupUnit cell dimensions (Bohrradius)

a b c γPolymer

Carlstrom, D.

The crystal structure of α -chitin

J. Biochem Biophys. Cytol., 1957, 3, 669 - 683.

P218.96 35.64 19.50 90˚α-Chitin

Space groupUnit cell dimensions (Bohrradius)

a b c γPolymer

Carlstrom, D.

The crystal structure of α -chitin

J. Biochem Biophys. Cytol., 1957, 3, 669 - 683.

What is -chitin?

Nikolov et al. : Adv. Mater. 22 (2010), 519

Page 67: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

67

Hydrogen positions?H-bonding pattern ?

two conformations of -chitin

108 atoms / 52 unknown H-positions

R. Minke and J. Blackwell, J. Mol. Biol. 120, (1978)

What is -chitin?

Page 68: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

68

CPU time Accuracy

•Empirical Potentials Geometry optimization Molecular Dynamics (universal force field)

~10 min

High

Low

~10000 min

~500 min Medium

Resulting structures

~103

~102

~101

•Tight Binding (SCC-DFTB)

Geometry optimization (SPHIngX)

•DFT (PWs, PBE-GGA) Geometry Optimization (SPHIngX)

Hierarchy of theoretical methods

Nikolov et al. : Adv. Mater. 22 (2010), 519

C, C N H

Page 69: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

rmax = 3.5Åmax = 30°

Hydrogen bond geometric definition

ground state conformation

1

3

2

4

a [Å] b [Å] c [Å]

PBE - GGA 4.98 19.32 10.45

Exp. [1] 4.74 18.86 10.32

meta-stable conformation

1

3

2

4

5

cb

H

C

O

N

DFT ground state structure

69Nikolov et al. : Adv. Mater. 22 (2010), 519

Page 70: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

70

0.00

0.20

0.40

0.60

0.80

1.00

1.20

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

Lattice elongation [%]

En

erg

y E

- E

0 [k

ca

l/mo

l]

a_Lattice

b_Lattice

c_Lattice

c

b

C, C N H

Nikolov et al. : Adv. Mater. 22 (2010), 519

Ab initio prediction of α-chitin elastic properties

Page 71: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

71

Hierarchical modeling of stiffness starting from ab initio

Nikolov et al. : Adv. Mater. 22 (2010), 519

Page 72: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

72

Hierarchical modeling of stiffness starting from ab initio

Page 73: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

73

Develop new materials via ab-initio methods

www.mpie.de

Ab initio in materials science: what for ?

Ab initio to continuum models (mechanics)Titanium (ab initio and continuum)

Mn-steels (identify mechanisms)

Steel with Cu precipitates (atom scale experiments)

Mg-Li alloy design (ab initio property maps)

Singapore crab (ab initio and homogenization)

Conclusions and challenges

Page 74: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

74

Length [m]

10-9

10-6

10-3

100

10-15 10-9 10-3 103 Time [s]

Boundary conditions

Crystals and anisotropy

Kinetics of defects

Structure of defects

Structure of matter

D. Raabe: Advanced Materials 14 (2002) p. 639

Scales in computational crystal plasticity

Page 75: Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singapore

75

* DFT: density functional theory

Raabe, Sander, Friák, Ma, Neugebauer: Acta Mater. 55 (2007) 4475

From ab-initio to polycrystal mechanics

Gb, Gb2 , ...<E>