aaas#symposium#report# convergence… · aaas#symposium#report# #...

13
AAAS Symposium Report Convergence Science: A Revolution for Health Solutions AAAS Symposium February 15, 2014 at the 2014 Annual AAAS Meeting Organizers: Joseph M. DeSimone, University of North Carolina at Chapel Hill and NC State University Amanda Arnold, Massachusetts Institute of Technology with Crista Farrell, University of North Carolina at Chapel Hill Sarah Mueller, University of North Carolina at Chapel Hill Moderator: Susan J. Hockfield, Massachusetts Institute of Technology Speakers: Dennis A. Ausiello, Massachusetts General Hospital Belinda Seto, National Institute of Biomedical Imaging and Bioengineering Chad Mirkin, Northwestern University Joseph M. DeSimone, University of North Carolina at Chapel Hill and NC State University Introduction In biomedical research, significant breakthrough potential exists at the intersection of the life sciences, the physical sciences, and engineering disciplines. This deliberate collaboration, known as Convergence science, has inspired leading U.S. research institutions—including Stanford University, Georgia Institute of Technology, Harvard University, University of Michigan, University of Chicago, Northwestern University, Massachusetts Institute of Technology, and many more—to develop dedicated multidisciplinary centers on their campuses. Convergence science enhances the multidimensional promising areas such as cell based therapeutics, nanobiotechnology, engineering approaches to microbial threats, imaging at all scales, immuneengineering, and microbiome engineering. During the first portion of this symposium, leaders in relevant fields discussed Convergence as a framework for advancing efforts in predictive health and illustrative examples of health risk predictors with genomic, neuroimaging and big data, as well as how to stand up a Convergence style institute. Additionally, panelists reviewed education and workforce questions in the context of Convergence that must be addressed to meet the scientific and technological challenges of the 21 st Century. The potential benefit of taking a broader perspective on Convergence, expanding beyond the life sciences, physical sciences, and engineering fields, to incorporate the social sciences and humanities, was also discussed. Following the presentations, forty attendees participated in small group discussions with the panelists and moderators on questions regarding data for predictive health; the breadth and depth of Convergence; implementing Convergence; and Convergence grand challenges.

Upload: others

Post on 04-Aug-2020

6 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

AAAS  Symposium  Report    Convergence  Science:  A  Revolution  for  Health  Solutions  AAAS  Symposium    February  15,  2014  at  the  2014  Annual  AAAS  Meeting    Organizers:  Joseph  M.  DeSimone,  University  of  North  Carolina  at  Chapel  Hill  and  NC  State  University  Amanda  Arnold,  Massachusetts  Institute  of  Technology  with  Crista  Farrell,  University  of  North  Carolina  at  Chapel  Hill  Sarah  Mueller,  University  of  North  Carolina  at  Chapel  Hill  Moderator:    Susan  J.  Hockfield,  Massachusetts  Institute  of  Technology    Speakers:  Dennis  A.  Ausiello,  Massachusetts  General  Hospital    Belinda   Seto,  National   Institute   of   Biomedical   Imaging   and   Bioengineering    Chad  Mirkin,  Northwestern  University    Joseph   M.   DeSimone,  University   of   North   Carolina   at   Chapel   Hill  and   NC   State   University    Introduction      In  biomedical  research,  significant  breakthrough  potential  exists  at  the   intersection  of  the   life  sciences,   the   physical   sciences,   and   engineering   disciplines.   This   deliberate   collaboration,  known   as   Convergence   science,   has   inspired   leading   U.S.   research   institutions—including  Stanford   University,   Georgia   Institute   of   Technology,   Harvard   University,   University   of  Michigan,   University   of   Chicago,   Northwestern   University,   Massachusetts   Institute   of  Technology,   and   many   more—to   develop   dedicated   multidisciplinary   centers   on   their  campuses.   Convergence   science  enhances   the  multidimensional   promising   areas  such   as   cell-­‐based  therapeutics,  nanobiotechnology,  engineering  approaches  to  microbial   threats,   imaging  at  all  scales,  immune-­‐engineering,  and  microbiome  engineering.      During  the  first  portion  of  this  symposium,  leaders  in  relevant  fields  discussed  Convergence  as  a  framework   for   advancing   efforts   in   predictive   health   and   illustrative   examples   of   health   risk  predictors  with  genomic,  neuroimaging  and  big  data,  as  well  as  how  to  stand  up  a  Convergence-­‐style   institute.   Additionally,   panelists   reviewed   education   and   workforce   questions   in   the  context   of   Convergence   that   must   be   addressed   to   meet   the   scientific   and   technological  challenges   of   the   21st   Century.   The   potential   benefit   of   taking   a   broader   perspective   on  Convergence,  expanding  beyond  the  life  sciences,  physical  sciences,  and  engineering  fields,  to  incorporate  the  social  sciences  and  humanities,  was  also  discussed.    Following   the  presentations,   forty   attendees  participated   in   small   group  discussions  with   the  panelists   and  moderators  on  questions   regarding  data   for  predictive  health;   the  breadth  and  depth  of  Convergence;  implementing  Convergence;  and  Convergence  grand  challenges.      

Page 2: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

Susan  J.  Hockfield  of  the  Massachusetts  Institute  of  Technology  moderated  this  event.  Speakers  included  Dennis  A.  Ausiello,  Massachusetts  General  Hospital;  Belinda  Seto,  National  Institute  of  Biomedical   Imaging  and  Bioengineering;   Joseph  M.  DeSimone,  University  of  North  Carolina  at  Chapel   Hill   and   NC   State   University;   and   Chad   Mirkin,  Northwestern   University.        Summary      Using  Convergence  to  Reorganize  Medicine  Towards  A  Gold  Standard  of  Wellness    Dennis   Ausiello   urges   us   to   develop   a  gold   standard   for   wellness   by  establishing   phenotypes   at   the  population   level,   taking   into   account  all   possible   information   and  measurements   (‘omics’,   wearable  sensors,   e-­‐medical   records,  biospecimens,   and   integrative  analytics   on   research   populations).  Milestone   goals   include   1)   uniting  clinical   care   with   discovery   and  individual  medical  information  that  the  patient   aggregates   and   controls;   and,  in   time,   2)   enhancing   predictability   and   wellness   outcomes   that   prevent   serious   illness.   Dr.  Ausiello  offers  the  CATCH  program  as  one  example  of  a  Convergence-­‐style  program  in  this  area.  More  online  here:  http://catch-­‐health.org/Home_Page.html    Framing  the  Research  Question  as  a  Critical  Convergence  Moment    

NIH   is   beginning   to   adopt  Convergence   approaches   to  maximize   funding  opportunities   and   extramural  research   capabilities  on   grand  challenges,   like   those  associated   with   brain  research.  In  order  to  distill  big  data   into   knowledge,  researchers  have  had  to  reach  beyond   their   comfort   zones  and   into   areas   with   a   history  of  working  with   big   data   (e.g.  weather   forecast   modeling,  

astrophysics,  etc).  Dr.  Seto  reviewed  past  and  present  examples  of  Convergence-­‐style  research  with   a   focus   on   projects   funded   through   the   Alzheimer’s   Disease   Neuroimaging   Initiative  

Page 3: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

(ADNI),  http://adni-­‐info.org,  and  the  NIH  Big  Data  to  Knowledge  (BD2K),  http://bd2k.nih.gov/,  effort.        New  Education  and  Entrepreneurship  Opportunities  Emerging  at  Convergence  Centers        Based   on   his   experience   developing   the   International   Institute   for   Nanotechnology,  http://www.iinano.org/,   Chad   Mirkin   outlined   the   many   responsibilities   incumbent   on   the  executive  director  of  a  new  Convergence-­‐style  center  on  a  university  campus.  From  inception  to  build-­‐out,   a  wide  variety  of  university  actors,  most  notably   faculty   from  disparate  disciplines,  have   to   agree   on  space,  tools,  and  other  resources.     They   must  see   the   benefit   of  pursuing   resources   as  a   team   as   opposed   to  individually.     Despite  significant   barriers,  Mirkin   argued   that  universities   across   the  country   are   building  these   centers   because  of   the   transformative  accomplishments   such  centers  can  achieve.      Convergence   Training   Requires   Celebrating   Diversity   in   Both   Discipline   and   Socioeconomic  Backgrounds      Starting  with   a   broader   perspective   on   Convergence   to   recognize   the   important   roles   of   the  humanities   disciplines   and   the   social   sciences   in   shaping   how   problem-­‐solving   is   viewed   and  approached,   Joseph  DeSimone  used   examples   like  Apple,   Inc.   and   Stanford’s   d.school   (Hasso  Plattner   Institute   of   Design)   to   explain   how   inclusion   of   disciplines   outside   of   the   traditional  Convergence   framework   can   augment   the   potential   for   innovation   using   a   Convergence  approach.    On   the  question  of   training,   Joseph  also  presented  a   view   in  which  diversity   is   critical   to   the  framework  since,  as  he  noted,  we  learn  the  most  from  the  people  with  whom  we  have  the  least  in   common.   Accordingly,   while   those  who   dive   deeply   into   and   focus   their   work  within   one  discipline   are   necessary   and   extremely   important   to   manifest   Convergence   success   (i.e.   “I”  shaped  individuals),  there  is  also  a  great  need  for  “T-­‐shaped”,  “Pi-­‐shaped”,  and  “Comb-­‐shaped”  thinkers   to   go   beyond   pursuing   a   common   language   and   enable   a   cultural   shift   toward   a  “multilingual”  approach.    To   solve   significant   21st   century   challenges,   we   will   make   the   greatest   progress   through  Convergence  efforts  that  involve  those  who  have  in-­‐depth  understanding  of  multiple  fields  and  

Page 4: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

the   unique   capability   to   foster  better   respect,   communication,  and  collaboration  among  them.    Critical  Conclusions      It  became  clear  during  this  session  that  we  have  to  answer  the  question:  “How  is  Convergence  different  from  the  decades-­‐long  exhortation  to  cross-­‐disciplinary  work?”        That  is,  how  are  today  and  tomorrow  different  from  yesterday?    While   the   Convergence   Approach,   which   celebrates   transdisciplinarity   in   organization   and  education,  may   not   be   new,   it   is   gaining   traction   because   it   offers   an   organizing   framework  (much   like   the   National   Nanotechnology   Initiative   did   in   practice)   to   overcome   traditional  obstacles   to   funding,   promotion,   and   appointment   that   have   slowed   transdisciplinary  approaches  and  stymied  access  to  knowledge  potential.        According   to   our   panelists:   Belinda   Seto   of  NIH   argues   that   Convergence   approaches   do   not  manifest  simply  by  bringing  people  of  different  disciplines  together;   instead,  the  Convergence  approach   depends   on   a   transdisciplinary   approach   at   the   outset   –   at   the   framing   of   the  research  questions.  Dennis  Ausiello  of  MGH  argued  that  the  Convergence  capability  is  fostered  early   on   with   multiple   disciplinary   deep-­‐dive   capabilities   residing   in   individual   researchers.  Joseph  DeSimone  of  UNC  built  on  this  arguing  that  the  18th  century-­‐style  peer  review  systems  are  inhibiting  reward  systems  for  these  kinds  of  “comb  shaped”  individuals,  and  that  we  need  a  system   that   honors   and   supports   the   diversity   of   individuals   (including   I,   T,   Pi   and   Comb-­‐shaped),   teams,   disciplines,   and   expertise.   In   application,   Chad   Mirkin   argued   that   the  Convergence  model,   the   tearing  down  of   siloes,   is  already  proving   itself  at  Convergence-­‐style  centers,  like  the  IIN,  where  students  who  are  educated  in  this  way  are  getting  superior  research  and   job   opportunities   as   compared   to   their   peers.   Susan   Hockfield   of   MIT   reminds   us   that  Convergence   is   not   necessarily   a   new   idea   but   that   it   is   becoming   a   rallying   call   to   finally  address   the   inhibitory   structures   and   challenges   that   hinder   transdisciplinary   research  movements.    Recommendations    Convergence  Approaches  to  Data  for  Predictive  Health    Given   the   significant   promise   of   precision   medicine   and   the   integration   of   digital   medical  records  with   real-­‐time  monitoring   to   revolutionize  health  care,  we  asked  attendees   to  give  us  recommendations  for  actionable  steps  towards  wellness.      

• Acknowledge   the   failure   of   disease   management   historically   and   identify   toolkits,  theories,   etc.   that   can   be   applied   towards   new   interrogation   models   that   manage  complexity  and  chaos  with  the  goals  of  greater  reproducibility  and  predictability.      

 

Page 5: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

• In   the   short-­‐term,   take   steps   towards   establishing   a   gold   standard   for   wellness   by  building  phenotypic  models  of  discrete  populations  wherever  possible.    

 • Take  advantage  of  an  emerging  interest  by  the  public  for  their  health  data  (via  wearable  

devices,   direct-­‐to-­‐consumer   testing,   apps   that   track   diet   and   activity,   etc.)   to   be  interrogated  by  a  medical  professional  on  a  continuous  basis.    

 Implementing  Convergence    We   asked   attendees   to   address   critical   barriers   to   Convergence   including   administrative   and  financial  barriers  and  potential  barriers  at  federal  agencies  and  the  peer  review  model.      

• For  the  individual  at  both  the  faculty  and  graduate  student  level,  celebrate  diversity  and  foster   effective   communication   and   extraordinary   problem-­‐solving   efforts   among  people   from  different   disciplines   by   ensuring   strong   leadership   and   fostering   healthy,  respectful   dialogue   that   values   disagreement   to   achieve   progress.   Allow   for   co-­‐ownership   of   research   output,   especially   among   young   professors   working   toward  tenure.   Clear   the  way   for   young   graduate   students   and   faculty   to   approach   research  under  the  Convergence  framework  by  clearing  bureaucratic  hurdles.  

 • For   the  organization,   such   as  universities   and   research   institutes,   address   the   culture,  

which   thrives   on   outdated   siloed   structures   that   inhibit   Convergence   approaches   by  realigning   incentives   for   appointment,   promotion,   and   tenure.   Customized   reward  structures   should   recognize   and   celebrate   diversity.   Also   consider   adjusting   physical  space  to  enable  transdisciplinary  education  and  interaction.    

 • For  the  ecosystem  level  (including  federal  funding,  publication,  and  prizes),  ensure  peer  

review   panels   represent   a   broad   spectrum   of   disciplinary   expertise   to   evaluate  Convergence-­‐style   proposals.   Further   review   of   incentives   in   publishing   and   prizes   to  align   with   the   Convergence   framework   is   needed.   The   structure   of   federal   agencies  informs  the  structures  of  the  university  research  enterprise,  so  universities  and  agencies  should  work  with  one  another  to  facilitate  Convergence  approaches.    

 Addressing  the  Breadth  &  Depth  of  Convergence    Convergence   as   we   know   it   entails   high-­‐impact   partnerships   at   the   intersection   of   the   life  sciences,  physical   sciences,   computational   sciences,  and  engineering  disciplines,  and  we  asked  our  participants  whether   there   is   scope   to   integrate  humanities  disciplines  and   the   social  and  behavioral  sciences  in  the  context  of  Convergence.        

• Participants   discussed   that   a   Convergence   approach   to   problem   solving   in,   among,   or  involving   fields   that   lie   outside   of   the   traditional   definition   of   Convergence  would   be  beneficial   for   achieving   improved   outcomes   in   health   and   other   areas.   Success   in  pursuing  Convergence,   going  beyond   its   traditional  definition  or  not,   rests  on  a   set  of  factors   discussed   by   participants.   These   factors   are   also   drivers   to   achieve   effective  

Page 6: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

bridge  building  to  fields  outside  of  the   life  sciences,  physical  sciences,  and  engineering  disciplines.    

o Necessity,  opportunity,  diversity,  strong  leadership,  incentive,  and  resources  are  key  to  driving  the  progress  of  teams  of  individuals  with  different  expertise  who  are  pursuing  a  common  goal  using  the  Convergence  framework.  

o Effective  communication  is  fundamental  to  success  in  a  Convergence  framework.  What   underlies   effective   communication   is   respect   for   other   individuals   and  disciplines   and   a  willingness   to   learn   the   language   and   approaches   of   another  discipline.  

o Recognizing   challenges   and   limitations   that   the   life   sciences,   physical   sciences,  and   engineering   disciplines   have   is   key   to   enabling   smart   and   broader  engagement  of  people  outside  of  those  areas  to  tackle  21st  century  challenges.  Respect   is   the   starting   point   to   enable   the   recognition   of   limitations   and   the  value  of  what  other  disciplines  may  be  able  to  bring  to  the  table.  

• Participants   discussed   examples   that   illustrate   how   research   and   problem-­‐solving   in  health   and   other   areas   would   benefit   from   the   expansion   of   how   we   pursue  Convergence  to  include  disciplines  in  the  humanities  and  social  sciences.  One  example  is  to  optimize  Convergence   in  the  health  care  context  through  design  focused  on  human  interface.   Incorporating   a   focus   on   design   principles   and   the   human   interface   could  improve,  for  example,  the  implementation  of  Convergence  research  results   in  order  to  inform   the   way   physicians,   physicians’   assistants,   and   nurses   function   in   a   hospital  setting.  Specific  focus  could  be  on  improving  the  way  medical  professionals  interact  with  equipment,  data  readouts,  and  medical  records,  to  enable  more  time  for  direct  patient  care.  

• Patient  compliance   is  a   large  hurdle   to   the  execution  of  many  medical   treatments.  By  tapping   into   the   knowledge   base   of   social   and   behavioral   scientists  medicine  may   be  better   informed   to   design,   develop,   and   validate   effective   mechanisms   for   increased  patient   compliance,   leading   to   better,   more   reliable   results   in   “big   data”   health  monitoring  systems.      

 Developing  Grand  Challenges  for  Convergence  The  Office  of  Science  and  Technology  Policy  has   identified  several  Grand  Challenges,   including  the  BRAIN   Initiative  to   identify  new  technologies   to  accelerate  neuroscience  research,  and  the  SunShot  Grand  Challenge   to   identify  alternative  energy   sources   capable  of   replacing   coal   fuel  and   gasoline-­‐powered   vehicles.  We   asked   participants   to   think   about   additional   examples   of  Grand  Challenges  in  Convergence.    

Traumatic  Brain  Injury  as  an  example  Grand  Challenge  for  Convergence  It  is  important  as  participants  to  reflect  on  example  Grand  Challenges  that  embody  the  need  for   a   Convergence   approach   in   research.   As   noted   earlier   in   this   report,   a   distinguishing  factor   of   modern   Convergence   is   that   it   demands   and   depends   on   a   transdisciplinary  approach  at  the  outset  –  at  the  framing  of  the  research  question.    Traumatic   brain   injury   (TBI)   and,   more   broadly,   the   question   of   how   to   better   manage  

Page 7: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

reperfusion   damage   (tissue   damage   caused   when   blood   supply   returns   to   tissue   after   a  period   of   ischemia   or   lack   of   oxygen),   is   an   example   Grand   Challenge   discussed   by  symposium  participants  that   is  uniquely  suited  to  a  Convergence  approach.  As  the  leading  cause   of   death   and   disability   for   patients   under   45   years   old   in   the   U.S.,   TBI   is   a   salient  Grand   Challenge   to   the   research   community   and   society   broadly.   Innovation   in   diagnosis  and   treatment   of   TBI   requires   a   combination   of   theoretical,   practical,   and   engineering  prowess.  With  TBI,  we  must   consider  how  diverse  disciplines   should  be   integrated  at   the  outset   in  order  to  design  high-­‐impact  studies.   In  addition  to  neuroscience  and  other  fields  related  to  the   life  sciences,  physical  sciences,  and  engineering  disciplines,  what  disciplines  should  be  integrated  when  examining  questions  about  TBI  using  a  Convergence  framework?    The  first  72  hours  after  a  patient  sustains  a  possible  TBI  are  crucial.  Participants  therefore  examined   the   idea   that   an   iPhone-­‐enabled   accelerometer   can   be   used   to   monitor   a  patient’s  pupils  and  body  movement  in  real  time  and  identify  whether  a  health  professional  needs   to   intervene.   With   the   idea   to   incorporate   this   technology,   data   validity   must   be  considered  with  respect   to  the  best  standards   in  psychology  and  other  behavioral  science  disciplines.   Research   designs   must   rely   on   these   fields   when   examining   TBI.   What   other  disciplines  might  be  important  to  consider  integrating  when  designing  a  TBI-­‐focused  study?    This  example  sheds  light  on  the  types  of  opportunities  a  Convergence  framework  provides  for  research,  and  forces  us  to  consider  what  we  mean  when  we  use  the  term.  TBI  illustrates  clearly   the   utility   of   the   Convergence   framework,   yet   it   also   points   to   the   need   for   that  framework   to   be   constantly   worked   and   re-­‐worked   in   a   way   that   always   focuses   on   the  problem  at  hand,  and  what  is  best  for  solving  it.    Other  ideas  for  Convergence  In   addition   to   TBI,   participants   underlined   the   importance   of   Convergence   approaches   to  tackle   intractable  problems   in   biomedicine   related   to   areas   such   as   cancer   detection   and  treatment;  vaccine  development;  neurologic  and  psychiatric  disease   (like   those  addressed  via  the  BRAIN  Initiative);  as  well  as  general  challenges  related  to  the  cost  of,  access  to,  and  accuracy  of  different  aspects  of  healthcare  provision.  Topics  well   suited   to  a  Convergence  approach   include:    Healthcare   at   Home;   Biomarkers   for   Behavior;   Immuno-­‐   and  Tissue/Organ-­‐engineering.    Finally,   participants   pointed   to   the   challenge   of   identify   novel   funding   mechanisms   for  Convergence-­‐style   research.   Examples   for   further   discussion  mentioned   during   the   event  included   the  cancer  “megafund”   idea  of  MIT’s  Andrew  Lo  as   recently  published   in  Nature  Biotechnology  (30,  964–975,  2012).  

           

Page 8: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

Background  and  Resources      Convergence  and  Related  Reports    The  National  Academies  Board  on  Life  Sciences  held  a  workshop  on  Convergence  (September  16-­‐17,   2013)   entitled:  Key  Challenges   in   the   Implementation   of   Convergence.   Susan  Hockfield  (MIT)   and   Joseph   DeSimone   (UNC)   co-­‐chaired   the   workshop   committee.   Speakers   included  Ralph  Cicerone  (NAS),  Harvey  Fineberg  (IOM),  C.D.  Mote  (NAE),  Phil  Sharp  (MIT),  Cherry  Murray  (Harvard),  Don  Ingber  (Wyss),  Arun  Majumdar  (Google),  Bruce  Walker  (Ragon),  and  Regis  Kelly  (QB3),  among  others.      Key  discussions  included  applications  of  convergence  in  the  real  world,  especially  as  related  to  suggested  infrastructure  needs,  faculty  promotion  and  tenure  schemes,  evolving  education  and  training   modules,   and   novel   inter-­‐institution   arrangements   and   partnerships.   A   workshop  report  is  expected  in  spring.          This   National   Academy   meeting   built   on   several   existing   National   Academies   reports,   most  notably,  The   New   Biology   for   the   21st   Century  (September   2009)   and  Toward   Precision  Medicine  (November  2011),  as  well  as  an  American  Academy  of  Arts  and  Sciences  report,  ARISE  II:  Unleashing  America’s  Research  &  Innovation  Enterprise  (May  2013).      The   effort   also   gained  momentum   from   several   additional   reports,   including,  Convergence   of  Knowledge,  Technology,  and  Society  (May  2013),  especially  chapter  five,  “Implications:  Human  health   and  physical   potential   focused  on  Convergence   for   health”.  An  MIT   faculty   developed  white   paper,  Third   Revolution:   Convergence   of   Life   Sciences,   Physical   Sciences,   and  Engineering  (December   2010),   first   introduced   the   concept   at   a  launch   event  at   AAAS   in  Washington  (January  2011).        Last  year,  during  the  2013  AAAS  Annual  Meeting  in  Boston,  AAAS  held  a  panel  on  Convergence,  entitled:  Convergence   of   Physical,   Engineering,   and   Life   Sciences:   Next   Innovation  Economy  (February  15,   2013).  Robbie  Barbero,  who  handles   the  Convergence  agenda   for   the  White  House  OSTP,  moderated  the  panel.  Speakers  included  Phil  Sharp  (MIT),  Tyler  Jacks  (MIT),  Chad   Mirkin   (Northwestern),   and   Andrew   Lo   (MIT)   who   outlined   the   Convergence   concept,  Convergence   in   action   at   university   centers,   and   the   application   of   Convergence   to   grand  challenges  such  as  cancer.    The  White  House  is  also  engaged  in  Convergence  as  a  Blueprint  for  Innovation.  OSTP  included  a  section   on   Convergence   in   the   White   House  Blueprint   for   Action  (January   10,   2013).   This  section,  entitled  “Fostering  Convergent  Science,”  identified  the  NIH/DARPA/FDA  Tissue  Chip  for  Drug  Screening  as  an  example  of  convergent  science  and  included  four  (4)  “Goals  for  Next  Year”  to  further  enhance  the  Convergence  discussion.      More   recently,   the   OSTP  White   House   priorities  memo  (August   2013)   framed   the   President’s  BRAIN  (Basic  Research  through  Advancing  Innovative  Neurotechnologies)  Initiative  as  a  priority  

Page 9: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

along  with  a  Convergence-­‐style  discussion  about  research  at  the  interfaces  of  biology,  physical  sciences,  and  engineering.      The  Academy  of  Science,  Academy  of  Engineering,  Institute  of  Medicine,  and  National  Research  Council  also  created  a  video  on  Convergence  for  the  2014  AAAS  Annual  Meeting.  The  video  is  online  here:  https://vimeo.com/86625038.    Symposium  Agenda      8:30  am   Susan  Hockfield  (MIT)           Introduction  and  Overview      8:45  am   Dennis  A.  Ausiello  (MGH)     The  Practical  Application  of  Convergence  for  Health       Current  and  future  challenges  in  health  care  delivery  will  center  on         integration  of  digital  medical  records  and  social  media  for  patients.         Convergence  is  a  key  component  of  what  is  now  commonly  referred  to  as       precision  medicine.  While  it  is  clear  that  the  need  is  there,  the  question  is       only  where  to  start.    9:05  am     Belinda  Seto  (NIH-­‐NIBIB)       Convergence  Technologies  on  the  Horizon           Despite  continuing  budget  cuts  at  NIH,  NIBIB  continues  to  be  a  leading         institute  in  the  funding  of  next  generation  Convergence  technologies  and         medical  devices.  Dr.  Seto  will  review  past  and  present  examples  of  this         research  and  identify  opportunities  both  new  and  existing  for           approaching  fund-­‐seeking  on  Convergence  style  projects  that  don’t         necessarily  fit  into  one  discipline.                                                                                                                      9:25  am   Chad  Mirkin  (Northwestern)       University  Convergence  Institutes       There  are  many  responsibilities  incumbent  on  the  executive  director  of  a         new  Convergence-­‐style  center  on  a  university  campus.  From  inception  to         build-­‐out,  a  wide  variety  of  university  actors,  most  notably  faculty  from         disparate  disciplines,  have  to  agree  on  space,  tools,  and  other           resources.    They  must  see  the  benefit  of  pursuing  resources  as  a  team  as         opposed  to  individually.    These  are  significant  barriers,  but             universities  across  the  country  are  building  these  centers  because  of  the         research  accomplishments  such  centers  can  achieve.  

Page 10: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

 9:45  am   Joseph  M.  DeSimone  (UNC-­‐NCSU)       Mega  Convergence:  Science,  Engineering,  and  Beyond       As  disruptive  technologies  continue  to  permeate  all  that  we  do  on  a  daily         basis  and  change  our  world,  traditional  disciplines  will  be  pulled  more         and  more  towards  Convergence.  This  will  entail  partnerships  at  the         intersection  of  not  only  the  life  sciences,  physical  sciences,  computational       sciences,  and  engineering  disciplines,  but  also  humanities  disciplines,  the         liberal  and  performing  arts,  and  more,  thereby  magnifying  the           potential  for  innovations  of  incredible  variety  and  magnitude.    10:05  am     Susan  Hockfield,  Transition  to  Break  Out  Session                                                                                                                                                                                                            10:20  am     Breakout  Group  Discussions      11:10  am   Moderators  Report  Findings    11:  20  am     Susan  Hockfield  and  Joseph  DeSimone,  Conclusions  and  Next  Steps      Participant  Biographies      Susan   Hockfield   is   President   Emerita   and   Professor   of   Neuroscience   at   the   Massachusetts  Institute   of   Technology,   having   served   as   the   sixteenth   president   from   2004   to   2012.   As  President  of  MIT,  Hockfield   shaped  emerging  national  policy  on  energy   technology  and  next-­‐generation  manufacturing.  She  advanced  the  convergence  of  the  life,  physical  and  engineering  sciences   to   accelerate   progress   in   biomedicine,   energy   and   beyond.   In   June   2011,   President  Obama   appointed   her   co-­‐chairperson   of   the   steering   committee   of   the   Advanced  Manufacturing  Partnership.  As  a   life   scientist,   she  pioneered   the  use  of  monoclonal  antibody  technology  in  brain  research  and  identified  a  set  of  proteins  whose  expression  is  regulated  by  neuronal  activity  early  in  an  animal’s  life.  Her  work  included  the  discovery  of  a  gene  implicated  in  the  spread  of  cancer  in  the  brain,  providing  a  link  between  her  research  and  human  health.  Prior   to   MIT,   she   was   the   William   Edward   Gilbert   Professor   of   Neurobiology,   Dean   of   the  Graduate  School  of  Arts  and  Sciences  (1998-­‐2002),  and  Provost  (2003-­‐2004)  at  Yale  University.  She   serves   as   a   board  member  of  General   Electric   and  Qualcomm,   a   trustee  of   the  Carnegie  Corporation   of   New   York,   a   life  member   of   the  MIT   Corporation,   an   overseer   of   the   Boston  Symphony  Orchestra,  and  a  board  member  of  the  Belfer  Center  at  the  Harvard  Kennedy  School.  She  also  serves  as  Science  Envoy  with  the  U.S.  Department  of  State.  She  is  the  recipient  of  the  Charles  Judson  Herrick  Award  from  the  American  Association  of  Anatomists,  the  Wilbur  Lucius  Cross  Award   from  Yale  University,   the  Meliora  Citation   from   the  University  of  Rochester,   the  Golden   Plate  Award   from   the  Academy  of   Achievement,   the  Amelia   Earhart   Award   from   the  Women’s   Union,   the   Edison   Achievement   Award,   and   the   Pinnacle   Award   for   Lifetime  

Page 11: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

Achievement   from   the   Greater   Boston   Chamber   of   Commerce.   She   has   received   honorary  degrees  from  national  and  international  universities,  and  is  an  elected  fellow  of  the  American  Academy  of  Arts  and  Sciences  and  the  American  Association  for  the  Advancement  of  Science.    Dennis   A.   Ausiello   is   the   Jackson  Distinguished  Professor   of   Clinical   Medicine  and  Director,  Emeritus  of  the  MD/PhD  Program  at  Harvard  Medical  School;  he  is  also  Chairman  of  Medicine,  Emeritus  and  Director  of  the   Center   for   Assessment   Technology   and   Continuous   Health  (CATCH)  at  the  Massachusetts  General  Hospital   (MGH).  He  received  his  undergraduate  degree  from  Harvard  College  and  his  medical  degree  from  the  University  of  Pennsylvania.    Dr.  Ausiello  has   made   substantial   contributions  to  the   knowledge   of   epithelial   biology   in   the   areas   of  membrane  protein  trafficking,  ion  channel  regulation  and  signal  transduction.    He  has  published  numerous  articles,  book  chapters,  and  textbooks  and  served  as  an  editor  of  Cecil's  Textbook  of  Medicine.    A  nationally  recognized  leader  in  academic  medicine,  Dr.  Ausiello  was  elected  to  the  Institute  of  Medicine  of  the  National  Academy  of  Science  in  1999  and  the  American  Academy  of  Arts  and  Sciences   in   2003.     His   writings   have   been   published   in   the  New   York   Times,   the  Wall   Street  Journal,   the   Boston   Globe  and   elsewhere   on   topics   concerning   medical   education   and  biomedical  research,  including  human  genetics,  clinical  trials,  the  inquisitive  physician,  and  the  relationship  between  academic  medicine  and  the  private  sector.        Understanding  the  need  for  partnerships  between  the  academy  and  industry,  Dr.  Ausiello  also  serves  in  a  variety  of  advisory  roles  beyond  his  academic  affiliations,  including  his  service  on  the  Board   of   Directors   of   pharmaceutical   company   Pfizer  Inc.,  drug-­‐delivery   company,   TARIS,  and  interference  RNA  company,  Alnylam.        Belinda   Seto   is   the   Deputy   Director   of   the   National   Institute   of   Biomedical   Imaging   and  Bioengineering  (NIBIB).    She  is  responsible  for  the  governance  and  management  of  all  facets  of  the  Institute,  including  strategic  planning  for  research  and  training  programs,  budget  planning,  financial   management,   communications,   and   staffing.     She   has   launched   major   initiatives   in  informatics   and   has   been   appointed   by   the  NIH  Director   to   serve   on   the  NIH   Scientific   Data  Council.    She  promotes  the  synergy  between  molecular  biology  and  imaging  science.    She  has  developed   policies   to   foster   strategic   partnerships   with   stakeholders   including   industries,  patient  advocacy  groups,   and   strongly  promotes   the  development  of   technologies   to  achieve  health  equity   in   the  under-­‐served  populations.     She  chairs   the  NIH  working  group  on  women  and   bioengineering   to   increase   the   number   of   women   and   enhance   their   careers   in  bioengineering.     As   such,   she   is   a   strong   advocate   for   the   next   generation   of   biomedical  researchers.        Prior  to  joining  the  NIBIB,  Dr.  Seto  was  the  Acting  Deputy  Director  for  Extramural  Research  in  the  Office  of   the  Director,  NIH.    She   led  the  Office  of  Extramural  Research,  which   is   the   focal  point   for   NIH   policies   and   guidelines   for   research   administration.     Dr.   Seto   has   a   wealth   of  experience   in   the   health   policy   arena,   particularly   AIDS   policies.     She   also   directed  minority  health  programs  in  the  areas  of  infant  mortality  and  behavioral  interventions  research.  

Page 12: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

 Dr.  Seto  earned  her  Ph.D.  in  biochemistry  at  Purdue  University.    Following  postdoctoral  training  at  the  National  Heart,  Lung  and  Blood  Institute,  she   joined  the  Food  and  Drug  Administration  where   she   conducted   research   in   virology   for   nearly   10   years.     She   has   received   numerous  awards   for   her   research,   including   the   Distinguished   Alumni   Award   for   Science   from   Purdue  University,   the  DHHS  Secretary's  Award   for   Exceptional  Achievement,   Inventor's  Awards,  NIH  Director’s  awards,  the  Ruth  Kirschstein  Mentoring  Award,  and  she  is  listed  in  the  American  Men  and  Women  of  Science.        Dr.   Seto   is   the   Editor-­‐in-­‐Chief   of   the   American   Journal   of   Nuclear   Medicine   and   Molecular  Imaging.    She  serves  on  numerous  Federal  and  professional  organizations  committees,  as  well  as  being  a  member  of  several  professional  societies.        Chad  A.  Mirkin  is  the  Director  of  the  International  Institute  for  Nanotechnology,  the  George  B.  Rathmann  Professor  of  Chemistry,  Professor  of  Chemical  and  Biological  Engineering,  Professor  of   Biomedical   Engineering,   Professor   of   Materials   Science   &   Engineering,   and   Professor   of  Medicine.    He  is  a  chemist  and  a  world-­‐renowned  nanoscience  expert,  who  has  authored  over  560  manuscripts.    He   is   listed  as  an   inventor  on  over  900  patent  applications  worldwide  (243  issued).     Dr.  Mirkin   has   been   recognized   for   his   accomplishments  with   over   90   national   and  international  awards.    These  include  the  Linus  Pauling  Medal,  the  $500,000  Lemelson-­‐MIT  Prize,  the   Raymond   and   Beverly   Sackler   Prize   in   the   Physical   Sciences,   the   Feynman   Prize   in  Nanotechnology,   an   Honorary   Degree   from   Nanyang   Technological   Univ.   Singapore,   the   Lee  Kuan  Yew  Distinguished  Visitor  to  Singapore,  and  the  ACS  Award  for  Creative  Invention.    He  is  a  Member   of   the   President’s   Council   of   Advisors   on   Science   &   Technology   (PCAST,   Obama  Administration),  and  one  of  only  15  scientists,  engineers,  and  medical  doctors  to  be  elected  to  all  three  US  National  Academies  (the  Institute  of  Medicine,  the  Natl.  Academy  of  Sciences,  and  the  Natl.  Academy  of  Engineering).    He   is  also  a  Fellow  of  the  American  Academy  of  Arts  and  Sciences.  He   is   the  Founding  Editor  of   the   journal  Small,  an  Associate  Editor  of   the   Journal  of  the  American  Chemical  Society,  and  the  founder  of  multiple  companies,  including  Nanosphere,  Inc.,   AuraSense,   LLC,   and   AuraSense   Therapeutics,   LLC.   Dr.   Mirkin   holds   a   B.S.   degree   from  Dickinson  College  and  a  Ph.D.  degree  from  Penn  State.  He  was  an  NSF  Postdoc  at  MIT  prior  to  becoming  a  Professor  at  Northwestern  in  1991.      Joseph  M.  DeSimone   is   the  Chancellor’s  Eminent  Professor  of  Chemistry  at   the  University  of  North  Carolina  at  Chapel  Hill,  and  the  William  R.  Kenan  Jr.  Professor  of  Chemical  Engineering  at  NC  State  University  and  of  Chemistry  at  UNC-­‐CH.  He   is  also  an  Adjunct  Member  at  Memorial  Sloan-­‐Kettering  Cancer  Center  in  New  York.  DeSimone  has  made  breakthrough  contributions  in  green  chemistry,  fluoropolymer  synthesis,  colloid  science,  and  nano-­‐biomaterials.  Currently  his  main   area   of   focus   is   nanomedicine.   Known   for   bridging   different   fields   to   innovate   in   new  areas,   DeSimone   fused   precision   manufacturing   processes   found   in   the   microelectronics  industry  with  continuous,  roll-­‐to-­‐roll  web  based  processes  from  the  photographic  film  industry  to   invent  the  Particle  Replication  In  Nonwetting  Templates  (PRINT)  technology   in  2004.  PRINT  enables   the   fabrication   of   precisely   defined   nanoparticles   with   control   over   chemical  

Page 13: AAAS#Symposium#Report# Convergence… · AAAS#Symposium#Report# # Convergence#Science:#ARevolution#for#Health#Solutions#AAAS#Symposium## February(15,(2014(atthe(2014(Annual(AAAS(Meeting(

composition,   size,   shape,  deformability,   and   surface   chemistry.  DeSimone  has  published  over  300  scientific  articles  and  holds  over  140  patents.  He  is  an  elected  member  of  the  US  National  Academy  of  Sciences,  the  US  National  Academy  of  Engineering,  and  the  American  Academy  of  Arts   and   Sciences.  He  has   received  over   50  major   awards   including   the   2014  ACS  Kathryn  C.  Hach   Award   for   Entrepreneurial   Success;   the   2012  Walston   Chubb   Award   for   Innovation   by  Sigma   Xi;   the   2010  AAAS  Mentor   Award   in   recognition   of   efforts   to   advance   diversity   in   the  chemistry  PhD  workforce;  the  NIH  Director's  Pioneer  Award;  the  $500,000  Lemelson-­‐MIT  Prize,  and   the   ACS   Award   for   Creative   Invention.   DeSimone   has   co-­‐founded   companies   including  Micell   Technologies,   Bioabsorbable   Vascular   Solutions,   and   Liquidia   Technologies.   DeSimone  received   his   BS   in   Chemistry   from   Ursinus   College   in   1986   and   his   PhD   in   Chemistry   from  Virginia  Tech  in  1990.    List  of  AAAS  Panel  Participants  available  upon  request.