a2 - real number system

123
The Real Number System and Integer Exponents Mathematics 17 Institute of Mathematics, University of the Philippines-Diliman Lecture 2 Math 17 (UP-IMath) R and Integer Exponents Lec 2 1 / 33

Upload: khayzel-melano

Post on 20-Jul-2016

22 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: A2 - Real Number System

The Real Number System and Integer Exponents

Mathematics 17

Institute of Mathematics, University of the Philippines-Diliman

Lecture 2

Math 17 (UP-IMath) R and Integer Exponents Lec 2 1 / 33

Page 2: A2 - Real Number System

Outline

1 The Real Number SystemAxioms on ROrder in RThe Real Number LineInterval NotationThe Absolute Value

2 Integer ExponentsLaws of Exponents

Math 17 (UP-IMath) R and Integer Exponents Lec 2 2 / 33

Page 3: A2 - Real Number System

The Real Number System

Recall: R, the set of real numbers

The real number system consists of R and two operations on its elements:

addition and multiplication

Operation Symbol ResultAddition + Sum a + b

Multiplication · Product a · b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 3 / 33

Page 4: A2 - Real Number System

The Real Number System

Recall: R, the set of real numbers

The real number system consists of R and two operations on its elements:

addition and multiplication

Operation Symbol ResultAddition + Sum a + b

Multiplication · Product a · b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 3 / 33

Page 5: A2 - Real Number System

Axioms on Equality

Axioms: logical statements that are assumed to be true

For any real numbers a, b, c,

Reflexive : a = a

Symmetric : If a = b, then b = a.

Transitive : If a = b and b = c, then a = c.

Additive : If a = b, then a + c = b + c.

Multiplicative : If a = b, then ac = bc.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 4 / 33

Page 6: A2 - Real Number System

Axioms on Equality

Axioms: logical statements that are assumed to be true

For any real numbers a, b, c,

Reflexive : a = a

Symmetric : If a = b, then b = a.

Transitive : If a = b and b = c, then a = c.

Additive : If a = b, then a + c = b + c.

Multiplicative : If a = b, then ac = bc.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 4 / 33

Page 7: A2 - Real Number System

Axioms for Addition and Multiplication

For any real numbers a, b and c

Axiom Addition Multiplication

Closure a + b ∈ R a · b ∈ RAssociativity (a + b) + c = a + (b + c) (a · b) · c = a · (b · c)

Commutativity a + b = b + a a · b = b · a

Distributivity: c · (a + b) = c · a + c · b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 5 / 33

Page 8: A2 - Real Number System

Let a ∈ R.

Identity Axiom for Addition :There exists a real number, zero (0), such thata + 0 = 0 + a = a

0 is the identity element for addition.

Identity Axiom for Multiplication :There exists a real number, one (1), such thata · 1 = 1 · a = a

1 is the identity element for multiplication.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 6 / 33

Page 9: A2 - Real Number System

Let a ∈ R.

Inverse Axiom for Addition :There exists a real number, −a, such thata + (−a) = (−a) + a = 0−a is the additive inverse of a.

Inverse Axiom for Multiplication :

If a 6= 0, there exists a real number,1a

, such that

a · 1a

=1a· a = 1

1a

is the multiplicative inverse of a.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 7 / 33

Page 10: A2 - Real Number System

Cancellation Laws

For any a, b, c ∈ R,

Addition :If a + c = b + c, then a = b.If c + a = c + b, then a = b.

Multiplication :If ac = bc, c 6= 0, then a = b.If ca = cb, c 6= 0, then a = b.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 8 / 33

Page 11: A2 - Real Number System

For any real numbers a and b,

a · 0 = 0

If ab = 0, then a = 0 or b = 0

−(−a) = a

(−a)b = −ab

(−a)(−b) = ab

−(a + b) = (−a) + (−b)

(−1)a = −a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 9 / 33

Page 12: A2 - Real Number System

Subtraction

Definition

If a, b ∈ R, then subtraction is the operation that assigns to a and b a realnumber, a− b, the difference of a and b, where

a− b = a + (−b)

.

For any a, b, c ∈ R,

a− a = 0a− (−b) = a + b

a(b− c) = ab− ac

Math 17 (UP-IMath) R and Integer Exponents Lec 2 10 / 33

Page 13: A2 - Real Number System

Subtraction

Definition

If a, b ∈ R, then subtraction is the operation that assigns to a and b a realnumber, a− b, the difference of a and b, where

a− b = a + (−b)

.

For any a, b, c ∈ R,

a− a = 0a− (−b) = a + b

a(b− c) = ab− ac

Math 17 (UP-IMath) R and Integer Exponents Lec 2 10 / 33

Page 14: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0

a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 15: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0

a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 16: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 17: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 18: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 19: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 20: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 21: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 22: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 23: A2 - Real Number System

Division

Definition

If a, b ∈ R and b 6= 0, then division is the operation that assigns to a and b

a real number, a÷ b =a

b, the quotient of a and b, where

a

b= a · 1

b.

For any a, b, c, d ∈ R, with b, d 6= 0a

a= 1 if a 6= 0

a

1= a

1(1a

) = a for a 6= 0

1(ab

) =b

afor a 6= 0

a

b=

c

d⇔ ad = bc

a

b=

ac

bcif c 6= 0

−a

b=

a

−b= −a

b

−a

−b=

a

b

Math 17 (UP-IMath) R and Integer Exponents Lec 2 11 / 33

Page 24: A2 - Real Number System

Other properties of division: For a, b, c, d ∈ R, b, d 6= 0

Sum :a

b+

c

d=

ad + bc

bd

Difference :a

b− c

d=

ad− bc

bd

Product :a

b· cd

=ac

bd

Quotient :a

b÷ c

d=

a

b· dc

=ad

bcprovided c 6= 0

Math 17 (UP-IMath) R and Integer Exponents Lec 2 12 / 33

Page 25: A2 - Real Number System

Order Axioms of R

For any real number a,

a is positive if and only if a > 0.

a is negative if and only if a < 0.

For any real numbers a, b, c

Trichotomy One and only one of the following relations holds:

a = b, a > b or a < b

Transitive If a > b and b > c then a > c.

Addition If a > b, then a + c > b + c.

Multiplication If a > b and c > 0, then ac > bc.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 13 / 33

Page 26: A2 - Real Number System

Order Axioms of R

For any real number a,

a is positive if and only if a > 0.

a is negative if and only if a < 0.

For any real numbers a, b, c

Trichotomy One and only one of the following relations holds:

a = b, a > b or a < b

Transitive If a > b and b > c then a > c.

Addition If a > b, then a + c > b + c.

Multiplication If a > b and c > 0, then ac > bc.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 13 / 33

Page 27: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 28: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 29: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0

If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 30: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 31: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 32: A2 - Real Number System

For any a, b, c ∈ RThe set of positive real numbers is closed under addition andmultiplication.

If a > b, then −a < −b.

a2 ≥ 0If a > b and c < 0, then ac < bc.

If a > 0, then1a

> 0.

If a > b > 0, then1a

<1b

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 14 / 33

Page 33: A2 - Real Number System

The Real Number Line

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 34: A2 - Real Number System

The Real Number Line

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 35: A2 - Real Number System

The Real Number Line

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 36: A2 - Real Number System

The Real Number Line

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 37: A2 - Real Number System

The Real Number Line

There is a one-to-one correspondence between

the points on the line l and R.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 38: A2 - Real Number System

The Real Number Line

All real numbers can be put in sequence

on a line.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 15 / 33

Page 39: A2 - Real Number System

Interval Notation

Let a, b ∈ R such that a < b.

The open interval (a, b) is the set {x ∈ R | a < x < b}.

The closed interval [a, b], is the open interval (a, b) together with itstwo endpoints.

a is called the left endpoint

b is called the right endpoint

Math 17 (UP-IMath) R and Integer Exponents Lec 2 16 / 33

Page 40: A2 - Real Number System

Interval Notation

Let a, b ∈ R such that a < b.

The open interval (a, b) is the set {x ∈ R | a < x < b}.

The closed interval [a, b], is the open interval (a, b) together with itstwo endpoints.

a is called the left endpoint

b is called the right endpoint

Math 17 (UP-IMath) R and Integer Exponents Lec 2 16 / 33

Page 41: A2 - Real Number System

Interval Notation

Let a, b ∈ R such that a < b.

The open interval (a, b) is the set {x ∈ R | a < x < b}.

The closed interval [a, b], is the open interval (a, b) together with itstwo endpoints.

a is called the left endpoint

b is called the right endpoint

Math 17 (UP-IMath) R and Integer Exponents Lec 2 16 / 33

Page 42: A2 - Real Number System

Interval Notation

Let a, b ∈ R such that a < b.

The open interval (a, b) is the set {x ∈ R | a < x < b}.

The closed interval [a, b], is the open interval (a, b) together with itstwo endpoints.

a is called the left endpoint

b is called the right endpoint

Math 17 (UP-IMath) R and Integer Exponents Lec 2 16 / 33

Page 43: A2 - Real Number System

Interval Notation

Let a, b ∈ R such that a < b.

The open interval (a, b) is the set {x ∈ R | a < x < b}.

The closed interval [a, b], is the open interval (a, b) together with itstwo endpoints.

a is called the left endpoint

b is called the right endpoint

Math 17 (UP-IMath) R and Integer Exponents Lec 2 16 / 33

Page 44: A2 - Real Number System

Interval Notation Set Notation Number Line Graph

[a, b] {x | a ≤ x ≤ b}

(a, b) {x | a < x < b}

[a, b) {x | a ≤ x < b}

(a, b] {x | a < x ≤ b}

[a, +∞) {x | x ≥ a}

(a, +∞) {x | x > a}

(−∞, b] {x | x ≤ b}

(−∞, b) {x | x < b}

Math 17 (UP-IMath) R and Integer Exponents Lec 2 17 / 33

Page 45: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3]

= [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 46: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3]

= [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 47: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3]

= [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 48: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3]

= [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 49: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3]

= [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 50: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3] = [−4, 3]

2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 51: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3] = [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 52: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3] = [−4, 3]2 [−4, 1] ∩ (−2, 3]

= (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 53: A2 - Real Number System

Example.

1 [−4, 1] ∪ (−2, 3] = [−4, 3]2 [−4, 1] ∩ (−2, 3] = (−2, 1]

Math 17 (UP-IMath) R and Integer Exponents Lec 2 18 / 33

Page 54: A2 - Real Number System

The Absolute Value

If x is any real number, the absolute value of x, written as |x|, is definedas:

|x| =

−x if x < 00 if x = 0x if x > 0

Example. | − 7| = |7| = 7

Math 17 (UP-IMath) R and Integer Exponents Lec 2 19 / 33

Page 55: A2 - Real Number System

The Absolute Value

If x is any real number, the absolute value of x, written as |x|, is definedas:

|x| =

−x if x < 00 if x = 0x if x > 0

Example. | − 7| = |7| = 7

Math 17 (UP-IMath) R and Integer Exponents Lec 2 19 / 33

Page 56: A2 - Real Number System

Let x, y ∈ R. Then

|x| ≥ 0| − x| = |x||xy| = |x| · |y|∣∣∣∣xy∣∣∣∣ = |x||y| , y 6= 0

Example:

∣∣∣∣3− 95

∣∣∣∣ = ∣∣∣∣−65

∣∣∣∣ = | − 6||5|

=65

Math 17 (UP-IMath) R and Integer Exponents Lec 2 20 / 33

Page 57: A2 - Real Number System

Let x, y ∈ R. Then

|x| ≥ 0| − x| = |x||xy| = |x| · |y|∣∣∣∣xy∣∣∣∣ = |x||y| , y 6= 0

Example:

∣∣∣∣3− 95

∣∣∣∣ = ∣∣∣∣−65

∣∣∣∣ = | − 6||5|

=65

Math 17 (UP-IMath) R and Integer Exponents Lec 2 20 / 33

Page 58: A2 - Real Number System

Geometric Interpretation of Absolute Value

|x| represents the distance of the point corresponding to x from the pointcorresponding to 0.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 21 / 33

Page 59: A2 - Real Number System

Geometric Interpretation of Absolute Value

|x| represents the distance of the point corresponding to x from the pointcorresponding to 0.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 21 / 33

Page 60: A2 - Real Number System

Geometric Interpretation of Absolute Value

|x| represents the distance of the point corresponding to x from the pointcorresponding to 0.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 21 / 33

Page 61: A2 - Real Number System

Let a > 0|x| = a if and only if x = ±a

|x| < a if and only if − a < x < a

|x| > a if and only if x < −a or x > a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 22 / 33

Page 62: A2 - Real Number System

Let a > 0|x| = a if and only if x = ±a

|x| < a if and only if − a < x < a

|x| > a if and only if x < −a or x > a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 22 / 33

Page 63: A2 - Real Number System

Let a > 0|x| = a if and only if x = ±a

|x| < a if and only if − a < x < a

|x| > a if and only if x < −a or x > a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 22 / 33

Page 64: A2 - Real Number System

Let a > 0|x| = a if and only if x = ±a

|x| < a if and only if − a < x < a

|x| > a if and only if x < −a or x > a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 22 / 33

Page 65: A2 - Real Number System

Let a > 0|x| = a if and only if x = ±a

|x| < a if and only if − a < x < a

|x| > a if and only if x < −a or x > a

Math 17 (UP-IMath) R and Integer Exponents Lec 2 22 / 33

Page 66: A2 - Real Number System

Distance between Real Numbers

The distance between two real numbers x and y is

d = |x− y| = |y − x|

Example: The distance between −11 and 5 is

| − 11− 5| = | − 16| = 16

Math 17 (UP-IMath) R and Integer Exponents Lec 2 23 / 33

Page 67: A2 - Real Number System

Distance between Real Numbers

The distance between two real numbers x and y is

d = |x− y| = |y − x|

Example: The distance between −11 and 5 is

| − 11− 5| = | − 16| = 16

Math 17 (UP-IMath) R and Integer Exponents Lec 2 23 / 33

Page 68: A2 - Real Number System

Distance between Real Numbers

The distance between two real numbers x and y is

d = |x− y| = |y − x|

Example: The distance between −11 and 5 is

| − 11− 5| = | − 16| = 16

Math 17 (UP-IMath) R and Integer Exponents Lec 2 23 / 33

Page 69: A2 - Real Number System

For x, y ∈ R,

|x− y| ≥ 0|x− y| = 0 if and only if x = y

Triangle Inequality: |x + y| ≤ |x|+ |y|

Math 17 (UP-IMath) R and Integer Exponents Lec 2 24 / 33

Page 70: A2 - Real Number System

Integer Exponents

Let a ∈ R, n ∈ Z. The nth power of a is denoted by an.

If n > 0, then an = a · a · a · · · · · a︸ ︷︷ ︸n times

.

If a 6= 0, then a0 = 1 and a−1 =1a

.

If n > 0 and a 6= 0, then a−n =1an

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 25 / 33

Page 71: A2 - Real Number System

Integer Exponents

Let a ∈ R, n ∈ Z. The nth power of a is denoted by an.

If n > 0, then an = a · a · a · · · · · a︸ ︷︷ ︸n times

.

If a 6= 0, then a0 = 1 and a−1 =1a

.

If n > 0 and a 6= 0, then a−n =1an

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 25 / 33

Page 72: A2 - Real Number System

Integer Exponents

Let a ∈ R, n ∈ Z. The nth power of a is denoted by an.

If n > 0, then an = a · a · a · · · · · a︸ ︷︷ ︸n times

.

If a 6= 0, then a0 = 1

and a−1 =1a

.

If n > 0 and a 6= 0, then a−n =1an

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 25 / 33

Page 73: A2 - Real Number System

Integer Exponents

Let a ∈ R, n ∈ Z. The nth power of a is denoted by an.

If n > 0, then an = a · a · a · · · · · a︸ ︷︷ ︸n times

.

If a 6= 0, then a0 = 1 and a−1 =1a

.

If n > 0 and a 6= 0, then a−n =1an

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 25 / 33

Page 74: A2 - Real Number System

Integer Exponents

Let a ∈ R, n ∈ Z. The nth power of a is denoted by an.

If n > 0, then an = a · a · a · · · · · a︸ ︷︷ ︸n times

.

If a 6= 0, then a0 = 1 and a−1 =1a

.

If n > 0 and a 6= 0, then a−n =1an

.

Math 17 (UP-IMath) R and Integer Exponents Lec 2 25 / 33

Page 75: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 76: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 77: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 =

42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 78: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 79: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 80: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 81: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 =

x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 82: A2 - Real Number System

Laws of Exponents: Product Law

Let n, m ∈ Z, a ∈ R, then an · am = an+m.

Examples:

42 · 43 = 42+3

= 45

= 1024

x2 · x−5 = x−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 26 / 33

Page 83: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 84: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 85: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 =

23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 86: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 87: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 88: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 89: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 =

x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 90: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 91: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 =

y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 92: A2 - Real Number System

Laws of Exponents: Power raised to a Power Law

Let n, m ∈ Z, a ∈ R, then (an)m = anm.

Examples:

(23)4 = 23·4

= 212

= 4096

(x−1)3 = x−3

(y2)−3 = y−6

Math 17 (UP-IMath) R and Integer Exponents Lec 2 27 / 33

Page 93: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 94: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 95: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 =

(−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 96: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 97: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9

= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 98: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 99: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 =

(2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 100: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 101: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 102: A2 - Real Number System

Laws of Exponents: Power of a Product Law

Let n ∈ Z, a, b ∈ R. Then (ab)n = anbn.

Examples:

(−2 · 3)2 = (−2)2 · (3)2

= 4 · 9= 36

25 · 55 = (2 · 5)5

= 105

= 100000

Math 17 (UP-IMath) R and Integer Exponents Lec 2 28 / 33

Page 103: A2 - Real Number System

Laws of Exponents: Quotient Law

Let n, m ∈ Z, a ∈ R. If a 6= 0, thenan

am= an−m.

Examples:

x10

x6= x10−6 = x4

y2

y−7= y2−(−7) = y9

1110

1110= 110 = 1

Math 17 (UP-IMath) R and Integer Exponents Lec 2 29 / 33

Page 104: A2 - Real Number System

Laws of Exponents: Quotient Law

Let n, m ∈ Z, a ∈ R. If a 6= 0, thenan

am= an−m.

Examples:

x10

x6= x10−6 = x4

y2

y−7= y2−(−7) = y9

1110

1110= 110 = 1

Math 17 (UP-IMath) R and Integer Exponents Lec 2 29 / 33

Page 105: A2 - Real Number System

Laws of Exponents: Quotient Law

Let n, m ∈ Z, a ∈ R. If a 6= 0, thenan

am= an−m.

Examples:

x10

x6= x10−6 = x4

y2

y−7= y2−(−7) = y9

1110

1110= 110 = 1

Math 17 (UP-IMath) R and Integer Exponents Lec 2 29 / 33

Page 106: A2 - Real Number System

Laws of Exponents: Quotient Law

Let n, m ∈ Z, a ∈ R. If a 6= 0, thenan

am= an−m.

Examples:

x10

x6= x10−6 = x4

y2

y−7= y2−(−7) = y9

1110

1110= 110 = 1

Math 17 (UP-IMath) R and Integer Exponents Lec 2 29 / 33

Page 107: A2 - Real Number System

Laws of Exponents: Quotient Law

Let n, m ∈ Z, a ∈ R. If a 6= 0, thenan

am= an−m.

Examples:

x10

x6= x10−6 = x4

y2

y−7= y2−(−7) = y9

1110

1110= 110 = 1

Math 17 (UP-IMath) R and Integer Exponents Lec 2 29 / 33

Page 108: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 109: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 110: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 111: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 112: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 113: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 114: A2 - Real Number System

Laws of Exponents: Power of a Quotient Law

Let n ∈ Z, a, b ∈ R. If b 6= 0, then(a

b

)n=

an

bn.

Examples.

(x

y

)4

=x4

y4

63

183=

(618

)3

=(

13

)3

=127

Math 17 (UP-IMath) R and Integer Exponents Lec 2 30 / 33

Page 115: A2 - Real Number System

Laws of Exponents

Let n, m ∈ Z, a, b ∈ R, then

1 an · am = an+m

2 (an)m = anm

3 (ab)n = anbn

4 If a 6= 0, thenan

am= an−m

5 If b 6= 0, then(a

b

)n=

an

bn

Math 17 (UP-IMath) R and Integer Exponents Lec 2 31 / 33

Page 116: A2 - Real Number System

Example.

20x8y2z5

−5x2y7z5

=20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 117: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5

=20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 118: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5=

20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 119: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5=

20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 120: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5=

20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · z0

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 121: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5=

20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 122: A2 - Real Number System

Example.20x8y2z5

−5x2y7z5=

20−5· x

8

x2· y

2

y7· z

5

z5

= −4 · x8−2 · y2−7 · z5−5

= −4 · x6 · y−5 · 1

= −4x6

y5

Math 17 (UP-IMath) R and Integer Exponents Lec 2 32 / 33

Page 123: A2 - Real Number System

Exercises:

1 Let the universal set be R, X be the half-open interval[−3

2 , 5),

Y = {x | 4 ≤ |x|}, and Z be the interval (2, +∞). Find the followingsets and express them in interval notation:

1 Y ∩ Zc

2 (X ∪ Y )c

3 Xc ∩ (Z ∪X)4 X\(Y ∩ Z)

2 Simplify the following expressions:

1a−1 + b−1

(a + b)−1 2

(185 · 203x−1y2z4

159x−3y−2z−1

)−3

Math 17 (UP-IMath) R and Integer Exponents Lec 2 33 / 33