a to the process planning problem a particle swarm...

16
77 Advances in Production Engineering & Management ISSN 18546250 Volume 11 | Number 2 | June 2016 | pp 77–92 Journal home: apem‐journal.org http://dx.doi.org/10.14743/apem2016.2.211 Original scientific paper A simulation approach to the process planning problem using a modified particle swarm optimization Wang, J.F. a,* , Kang, W.L. a , Zhao, J.L. a , Chu, K.Y. a a Department of Mechanical Engineering, North China Electric Power University, Baoding, China ABSTRACT ARTICLE INFO Due to the complexity and variety of practical manufacturing conditions, computer‐aided process planning (CAPP) systems have become increasingly important in the modern production system. In CAPP, the process planning (PP) problem involves two tasks: operation determining and operation se‐ quencing. To optimize the process plans generated from complex parts, the traditional particle swarm optimization (PSO) algorithm is modified. Efficient encoding and decoding population initialization methods have been devel‐ oped to adapt the PP problem for the PSO approach. In addition, to avoid the proposed approach becoming trapped in local convergences and achieving local optimal solutions, parameters are set to control the iterations. Several extended operators for the different parts of the particles have been incorpo‐ rated into the traditional PSO. Simulation experiments have been run to eval‐ uate and verify the effectiveness of the modified PSO approach. The simula‐ tion results indicate that the PP problem can be more effectively solved by the proposed PSO approach than other approaches. © 2016 PEI, University of Maribor. All rights reserved. Keywords: Process planning Operation determining Operation sequencing Particle swarm optimization Extended operator *Corresponding author: [email protected] (Wang, J.F.) Article history: Received 29 January 2016 Revised 27 March 2016 Accepted 10 May 2016 1. Introduction In the modern computer‐integrated manufacturing system (CIMS), the CAPP system plays an important role [1]. Generally, process planning involves two activities: operation determining and operation sequencing. In CAPP systems, these two activities must be executed simultaneous‐ ly to achieve a good solution. Thus far, some effort has been made to address this problem, for instance, by designing a more feasible mathematical model or developing a more efficient ap‐ proach. The application of some artificial intelligence approaches in the PP problem has espe‐ cially promoted the development of CAPP technology. These approaches can be categorized as the genetic algorithm (GA) [1, 2], simulated annealing (SA) [2, 3], tabu search (TS) [4, 5], ant colony optimization (ACO) [6‐8], particle swarm optimization (PSO) [9‐13], honey bees mating optimization [14], and hybrid approaches [2, 15]. In 1995, Kennedy and Eberhart proposed the PSO algorithm [16]. The PSO is a new swarm op‐ timization approach that can optimize engineering problems in aspects such as turning process modelling [17], assembly sequence planning [18], and process parameter optimization (TSP) [19]. The search for applications of PSO in the PP problem was first introduced by Guo et al. [9]. The process plan particle encoded/decoded strategy and some modified operators were designed. Kafashi et al. [10] optimized the setup planning using cost indices based on constraints such as the TAD (tool approach direction), the tolerance relation between features, and the feature precedence relations. Wang et al. [11] proposed an innovative process plan representation in

Upload: others

Post on 15-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

77

AdvancesinProductionEngineering&Management ISSN1854‐6250

Volume11|Number2|June2016|pp77–92 Journalhome:apem‐journal.org

http://dx.doi.org/10.14743/apem2016.2.211 Originalscientificpaper

A simulation approach to the process planning problem using a modified particle swarm optimization

Wang, J.F.a,*, Kang, W.L.a, Zhao, J.L.a, Chu, K.Y.a

aDepartment of Mechanical Engineering, North China Electric Power University, Baoding, China

A B S T R A C T A R T I C L E I N F O

Due to the complexity and variety of practical manufacturing conditions,computer‐aidedprocessplanning (CAPP)systemshavebecome increasinglyimportant in themodern production system. In CAPP, the process planning(PP) problem involves two tasks: operation determining and operation se‐quencing. To optimize theprocess plans generated from complexparts, thetraditionalparticleswarmoptimization(PSO)algorithmismodified.Efficientencoding and decoding population initialization methods have been devel‐opedtoadaptthePPproblemforthePSOapproach.Inaddition,toavoidtheproposed approach becoming trapped in local convergences and achievinglocal optimal solutions, parameters are set to control the iterations. Severalextendedoperatorsforthedifferentpartsoftheparticleshavebeenincorpo‐ratedintothetraditionalPSO.Simulationexperimentshavebeenruntoeval‐uateandverify theeffectivenessof themodifiedPSOapproach.Thesimula‐tionresultsindicatethatthePPproblemcanbemoreeffectivelysolvedbytheproposedPSOapproachthanotherapproaches.

©2016PEI,UniversityofMaribor.Allrightsreserved.

Keywords:ProcessplanningOperationdeterminingOperationsequencingParticleswarmoptimizationExtendedoperator

*Correspondingauthor:[email protected](Wang,J.F.)

Articlehistory:Received29January2016Revised27March2016Accepted10May2016

1. Introduction

In themodern computer‐integratedmanufacturing system (CIMS), the CAPP system plays animportant role [1]. Generally, process planning involves two activities: operation determiningandoperationsequencing.InCAPPsystems,thesetwoactivitiesmustbeexecutedsimultaneous‐lytoachieveagoodsolution.Thusfar,someefforthasbeenmadetoaddressthisproblem,forinstance,bydesigningamore feasiblemathematicalmodelordevelopingamoreefficient ap‐proach.Theapplicationofsomeartificial intelligenceapproaches in thePPproblemhasespe‐ciallypromotedthedevelopmentofCAPPtechnology.Theseapproachescanbecategorizedasthe genetic algorithm (GA) [1, 2], simulated annealing (SA) [2, 3], tabu search (TS) [4, 5], antcolonyoptimization(ACO)[6‐8],particleswarmoptimization(PSO)[9‐13],honeybeesmatingoptimization[14],andhybridapproaches[2,15].In1995,KennedyandEberhartproposedthePSOalgorithm[16].ThePSOisanewswarmop‐

timizationapproachthatcanoptimizeengineeringproblemsinaspectssuchasturningprocessmodelling[17],assemblysequenceplanning[18],andprocessparameteroptimization(TSP)[19].ThesearchforapplicationsofPSOinthePPproblemwasfirstintroducedbyGuoetal.[9].The

processplanparticle encoded/decoded strategy and somemodifiedoperatorsweredesigned.Kafashietal.[10]optimizedthesetupplanningusingcostindicesbasedonconstraintssuchasthe TAD (tool approach direction), the tolerance relation between features, and the featureprecedence relations.Wang et al. [11] proposed an innovative process plan representation in

Page 2: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

78 Advances in Production Engineering & Management 11(2) 2016

whichoperationselectionandoperationsequencingwereintroducedsimultaneouslyinaparti‐cle.TwolocalsearchoperatorsareincorporatedintothetraditionalPSOtoachievetheoptimalsolution.Lietal.[12]modifiedthetraditionalPSOfortheprocessplanningproblem.Miljkovićetal.[13]adoptedtheAND/ORnetworkrepresentationtodescribetheflexibilityofthemachine,tool,TAD,processandsequenceandaperformedmulti‐objectiveoptimizationprocedurefortheminimizationoftheproductiontimeandproductioncostusingamodifiedPSOalgorithmonthisrepresentation.Zhangetal.[1]proposedaGAforanovelCAPPmodel.Lietal.[2]incorporatedanSAintoa

GAtoimproveitssearchingefficiency.Maetal.[3]modeledthePPproblemasacombinationaloptimizationproblemwithconstraints.Anentiresolutionspace is constructed in reference toprecedenceconstraintsamongoperations.AnSAalgorithmisthenproposedtoaddressthePPproblem.Lietal.[4]appliedaTS‐basedapproachtoaddressthePPproblem.Inthisapproach,amapping relationship is established between process constraints among features and prece‐dence constraints amongoperations. Lianet al. [5]proposedamulti‐dimensional tabu search(MDTS) approach to address the PP problem. Some local search strategies for different partshavebeenintegratedintothisTSapproach.Liuetal.[6]constructedamathematicalmodelforthe PP problem by considering the process constraints and optimization objectives. The ACOapproachhasbeendeveloped to optimize thePPproblembasedon thismathematicalmodel.Wangetal.[7]representedthePPproblembyanimproveddirected/undirectedgraph.Atwo‐stage approach based on ACO was developed to optimize the process plans on the di‐rected/undirectedgraph.Wenetal.[14]proposedanewmethodbasedonthehoneybeesmat‐ingoptimization(HBMO)approachtooptimizethePPproblem.Thesolutionencoding,crosso‐veroperator,andlocalsearchstrategiesweredevelopedaccordingtothecharacteristicsofthePPproblem.Huangetal.[15]designedahybridalgorithmcombiningagraphandtheGAtoop‐timizeprocessplans.TheprecedenceconstraintsaremappedtoanoperationprecedencegraphonwhichanimprovedGAwasappliedtosolvethePPproblem.

Although therehavebeen some significant improvements in solving thePPproblem, therestill remains thepotential for further improvement[20].Up tonow,someheuristicsorevolu‐tionary approaches have been applied to optimize the PP problem, but themajor difficulty isthatthesearchspaceistoolargeforpartswithcomplexfeaturestofindoptimalsolutionseffi‐ciently.Toaddressthisproblem,atraditionalPSOapproachismodifiedtosolvethePPprobleminthispaper.Themainworkincludesthefollowingtwoaspects:

Therepresentationofaprocessplanmappedtoaparticleismodifiedtofacilitatethedis‐crete PP problem. A new particle encoding/decoding strategy is adapted to make thesearchmoreefficient.

AdiversesearchingmechanismhasbeenadoptedtoimprovetheperformanceofthePSOapproach.Toavoidlocalconvergence,somemodificationstothetraditionalPSOapproachhavebeenadoptedtobetterexplorethesolutionspace.SeveraloperatorsforthedifferentpartsoftheparticleshavebeenincorporatedintothetraditionalPSO.

Section2describestheprocessplanningmodel.Section3introducestheparticleswarmop‐timizationapproach.Section4introducesanapplicationofthemodifiedPSOapproachtothePPproblem.Section5presentsthesimulationresultsoftheproposedPSOalgorithm.Finally,someconclusionsandoutlookaregiveninSection6.

2. Problem modelling

2.1 Problem description

InthePPproblem,twotaskshavetobeperformed,namely,operationdeterminingandopera‐tionsequencing.Foroperationdetermining,themethodofmappingfromfeaturestooperationsiswidelyusedinthePPproblem.Theattributesofeachfeaturedeterminesthecorrespondingmachiningmethods,whichcanbeexpressedbythealternativeoperations.Thecombinationofmachines,cuttingtools,andtoolapproachdirections(TAD)compriseallofthedifferentopera‐

Page 3: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 79

tiontypes(OPTs) fora featureofapart,whichwillbeselectedtodeterminethe finalprocessplans[1,11].

Foranoperation,thereareasetofOPTsunderwhichtheoperationcanbeexecuted.Accord‐ingly,anintegratedprocessplancanberepresentedasfollows.

, , … , , … , (1)

, , … , , … , (2)

, , (3)

isthei‐thoperation,and isthej‐thalternativeselectionoftheoperationOPi. ,and aretheIDoftheselectedmachine,toolandTADforoperation ,respectively.AnexamplepartinFig.1isusedtodemonstratetherepresentationofaprocessplan[7].The

candidateoperationsarelistedinTable1.Inadditiontooperationdetermining,operationsequencingisanothertaskinthePPproblem.

The operations should be sequenced under the conditions of satisfying the precedence con‐straintsamongoperations[4,6,12,15].TheconstraintsofPart1areshowninTable2.

According to the precedence constraints inTable 2, an available process plan for Part 1 isshowninTable3.

Fig.1Anexamplepart–Part1

Table1CandidateoperationsforPart1

Feathers Operations Operationtypes Machines Tools TADs Description

F1 Milling(OP1)OPT11,OPT12 M2 T1

+X,+Z

M1:DrillingpressM2:VerticalmillingmachineT1:MillingcutterT2:Drill1T3:TappingtoolT4:Drill2T5:Reamer1T6:SlotcutterT7:ChamfercutterT8:Drill3T9:Reamer2

F2Drilling(OP2) OPT21,OPT22

M1,M2T2

−ZTapping(OP3) OPT31,OPT32 T3

F3Drilling(OP4) OPT41,OPT42

M1,M2T4

−XReaming(OP5) OPT51,OPT52 T5

F4 Milling(OP6) OPT61 M2 T6 +Z

F5 Milling(OP7) OPT71,OPT72 M2 T7 +Y,−Z

F6 Drilling(OP8) OPT81,OPT82 M1,M2 T8 +X

Reaming(OP9) OPT91,OPT92 T9

Page 4: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

80 Advances in Production Engineering & Management 11(2) 2016

Table2ConstraintsforPart1[7]Operations Precedenceconstraintdescription Constrainttypes

OP1OP1ispriortoOP2andOP3. Hard

OP1ispriortoOP4andOP5. Soft

OP2 OP2ispriortoOP3. Hard

OP4 OP4ispriortoOP5. Hard

OP4,OP5 OP4andOP5arepriortoOP6. Hard

OP6 OP6ispriortoOP2andOP3. Hard

OP8 OP8ispriortoOP9. Hard

OP8,OP9 OP8andOP9arepriortoOP7. Hard

Table3AvailableprocessplanforPart1

Operation Machine Tool TADOP1 M2 T1 +XOP8 M1 T8 +XOP9 M1 T9 +XOP4 M1 T4 −XOP5 M1 T5 −XOP6 M2 T6 +ZOP7 M2 T7 −ZOP2 M1 T2 −ZOP3 M1 T3 −Z

2.2 Mathematical model

Thecriterionofminimizingproductioncosts(CP)isusuallyusedtoevaluatetheprocessplan.The CP includes themachine cost (CM), cutting tool cost (CT),machine‐changing cost (CMC),cuttingtoolchangingcost(CTC),andset‐upcost(CSC)[2,3,6,8,11,14,15].

Themachinecostis

, , … , , … , (4)

where isthenumberofmachines.Thecuttingtoolcostis

, , … , , … , (5)

where isthenumberofcuttingtools.AsshowninEq.2andEq.3,anoperationisselectedfromseveralalternativeOPTs.Thema‐

chinecostforanoperationvariesaccordingtothealternativeOPTs,sothemachinecost foranOPT canbegivenas

(6)

where isexplainedinEq.3.Thecuttingtoolcost foranOPT canbegivenas

(7)

where isexplainedinEq.3.Themachinechangingcost betweenOPT andOPT canbegivenas

Φ , (8)

Page 5: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 81

where isthecostofmachinechanging,whichisconsideredtobethesameforeachmachinechange.Φ , canbecalculatedasfollows:

Φ , 10

(9)

Thecuttingtoolchangingcost betweenOPT andOPT canbegivenas

Ω Φ , , Φ , (10)

where isthecuttingtoolchangingcost,whichisconsideredtobethesameforeachcuttingtoolchange.Ω , canbecalculatedasfollows.

Ω , 0 01

(11)

Theset‐upcost betweenOPT andOPT canbegivenas

Ω Φ , , Φ , (12)

where isexplainedinEq.3,and isthecostforaset‐up,whichisconsideredtobethesameforeachset‐up.

Thedefinitionsofmachinechanging,toolchanging,andset‐upchanginghavebeenexplainedinreference[2].Basedontheaboveanalysis,themathematicalmodelofthePPproblemisfor‐mulatedasfollows[6]:

Objectives:

(i)AcombinationofCM,CT,CMC,CTC,andCSwillbeconsideredasCP,andminimizingCPistheobjectiveofPP.

Min . . . ′ ′′

′ ′

. . ′ ′ . ′ ′ . ′ ′ (13)

Subjectto:

(ii)noperationshavetobeselectedwhilemachiningapart.

(14)

(iii)Foranoperation,oneandonlyoneOPTcanbeselectedfromitsmalternativeOPTs.

1 1, 2, … , (15)

(iv)Foraprocessplanconsistingofnoperations,thenumbersofoperationchangesisn–1,andthechangesofcombinationsofmachines,cuttingtools,andset‐upsareaccompaniedbyopera‐tionchanges.

′ ′′

′ ′

1 (16)

(v)ForeachOPT,onlyoneadjacentoperationislinedupbeforeit.

′ ′ 1 (17)

Page 6: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

82 Advances in Production Engineering & Management 11(2) 2016

(vi)ForeachOPT,onlyoneadjacentoperationislinedupafterit.

′ ′

′′

1 (18)

(vii) isanintegerenumerationvariable.

1ifOPT is selected for operation0 otherwise

(19)

(viii) ′ ′isanintegerenumerationvariable.

′ ′1ifOPT ′ ′is selected after OPT is executed0 otherwise

(20)

Eq.13means that theobjective functionof thePP is tominimize the totalproductioncost.TheconstraintsareinEq.14toEq.20.ConstraintsinEq.14andEq.15ensurethatalltheopera‐tionsare carriedout.The constraint inEq. 16 ensures thatn−1 changing costsofmachines,cuttingtools,andset‐upsareaddedintothePCamongnoperations.ConstraintsinEq.17andEq.18ensurethateveryoperationexceptthefirstandthelasthaveonlyoneadjacentoperationoneachside.

3. Introduction of the particle swarm optimization approach

PSO is a swarm optimization approach [16]. Every particle in the population representsanN‐dimensional solution that constructs a search space for every particle. The particles flyfreelytosearchfortheoptimalpositionatagivenvelocity.Hence,fortheparticlei,thevectors and at the t‐th iteration can be denoted as , , … , , … , and, , … , , … , ,respectively.Withtheemergenceoftheoptimalpositionatiterationt+

1,thevectors and canbeupdatedasfollows:

∗ ∗ ∗ ∗ ∗ (21)

(22)

InEq.21andEq.22, isthevelocityondimensionk,and isthepositionondimensionk. isthelocaloptimalpositionondimensionk,and istheglobaloptimalpositionondi‐mensionk.Theweightwisusedtocontroltheiteration.Theconstantsc1andc2controlthebal‐ancebetweenalocaloptimalpositionandtheglobaloptimalposition.Rand()islimitedin[0,1].ThetraditionalPSOapproachiscarriedoutinfoursteps:

Step1:Populationinitialization.Step2:Updatethevectors and accordingtoEq.21andEq.22.Step3:Update and accordingtotheperformanceofthepopulationStep4:LooptoStep2untilaterminationconditionismet.

4. The proposed PSO approach

4.1 Solution representation

ItisnecessarytomodifythetraditionalPSOforthePPproblemtoinclude,forexample,particlerepresentation and the particle movement strategy. In applying the PSO approach to the PPproblem, three tasks have to be performed, namely, particle encoding, particle validation andparticledecoding.Thefirsttaskistoencodeaprocessplantoanappropriateparticle.Becauseoperationdeterminingandoperationsequencinghavetobeperformedsimultaneously inpro‐

Page 7: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 83

cessplanning,theparticlestructureshouldbeconsideredtocomprisetheinformationofdeter‐miningandsequencingoperations.ThedetailsofaparticlearelistedinTable4.

Accordingtothedefinitionofaparticle,wemodifiedaparticleiofa2×nmatrixtorepresentaprocessplanatiterationt[11],i.e.

, , … ,, , … ,

(23)

Thefirstrow istheOperationDetermining(OD)partandrepresentstheoperationselec‐tionforeachfeature.Thesecondrow istheOperationSequencing(OS)partandrepresentsthepriorityamongoperations. isinitializedrandomlyintherangeof0and1accordingtothepriorityamongoperations,and canbecalculatedbyEq.24.

∗ _ ∗ _ _ / (24)

InEq.24,ix_m,ix_c,andix_taregeneratedrandomlyfromthecandidatemachineset,cuttingtoolset,andTADsetforexecutingtheoperation.acanbegivenbytheequation

, , 1 (25)

whereNSisthenumberofTADs.Toillustratetheparticleencoding,theprocessplaninTable3istakenasanexampleandthe

correspondingencodingof isshowninFig.2.Forinstance,thevaluesofix_m,ix_c,andix_taresetto1iftheOPTsofM2,T1and+X,respectively,areselectedtoprocessoperationOP1.IftheOPTsofM2,T1and+ZareselectedtoprocessoperationOP1,thevaluesofix_m,ix_c,andix_twillbe1,1,and3,respectively.

FortheprocessplaninTable3,afeasibleparticleislistedinTable5.InTable5,thefirstrowmeanstheoperations.ThesecondrowrepresentsthecalculatedvalueofitsassignedOPT,andthethirdrowrepresents thepriorityamongtheoperations.Thesecondtask is tovalidate theparticlestoaccordwiththeprecedenceconstraints.Aparticlerepresentsaprocessplan.Never‐theless,processplansgeneratedbyparticles flying freely in solution spaceareusually invalidagainsttheprecedenceconstraints.Tovalidateeachparticle,ann×nconstraintmatrixPispro‐posedtoincorporatetheprecedenceconstraintsamongtheoperationsintotheparticles.

Table4Detailofaparticle

Datatype Variable DescriptionInteger ix_o Idofanoperation,whichcorrespondstotheindexoftheoperationset.Integer ix_m Idofamachine,whichcorrespondstotheindexofthemachineset.Integer ix_c Idofacuttingtool,whichcorrespondstotheindexofthecuttingtoolset.Integer ix_t IdofaTAD,whichcorrespondstotheindexoftheTADset.

Fig.2Encodingof fortheprocessplaninTable3

Page 8: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

84 Advances in Production Engineering & Management 11(2) 2016

Table5AfeasibleparticlefortheprocessplaninTable3

Operation OP1 OP2 OP3 OP4 OP5 OP6 OP7 OP8 OP9

0.111 0.126 0.136 0.144 0.154 0.164 0.176 0.181 0.191

1 0.50 0.40 0.85 0.75 0.70 0.60 0.95 0.90

Thesecondtaskistovalidatetheparticlestoaccordwiththeprecedenceconstraints.Aparti‐

clerepresentsaprocessplan.Nevertheless,processplansgeneratedbyparticlesflyingfreelyinsolutionspaceareusuallyinvalidagainsttheprecedenceconstraints.Tovalidateeachparticle,ann×nconstraintmatrixP isproposedto incorporatetheprecedenceconstraintsamongtheoperationsintotheparticles.

(26)

1 is prior to or0 otherwise

(27)

TheprecedenceconstraintmatrixfortheprecedenceconstraintsinTable2isshownasfollows:

1 0 0 0 0 0 0 0 01 1 0 0 0 1 0 0 01110010001001000001001100000001110000 0 0 0 0 0 1 1 10 0 0 0 0 0 0 1 00 0 0 0 0 0 0 1 1

(28)

Thethirdtaskistodecodeaparticleintoasolution.Accordingtotheinputofencodedposi‐

tionmatrix,aparticlecanbedecodedtoobtainaprocessplan.Theparticledecoding includesthefollowingtwosteps.

First,determinethemachine,cuttingtoolandTADaccordingtothevalue .Thedecodingapproachfor is

∗ (29)

_ / (30)

_ _ ∗ / (31)

_ _ ∗ _ ∗ (32)

where isaninteger.Second,sequencethesedeterminedoperationsaccordingtotheprecedencevalue .Ifthe

sequenceofoperationsviolatestheprecedenceconstraints,theoperationsshouldbesequencedagainaccordingtotheprecedencevalue withthehelpoftheprecedencematrixPm.

(33)

Similarly,forparticlei,avelocitymatrixatiterationtcanberepresentedas

, , … , , … , (34)

where isinitializedrandomlyintherangeof–1to1.

Page 9: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 85

4.2 Population initialization

Theparticleswarmisinitializedinthreesteps:

(i) SetthepopulationsizePmaxandthemaximumiterationnumberNmax.(ii) Initializeeachparticle.Theinitialpositionandvelocityofeachoftheparticlesinthepopu‐

lationaregenerated.(iii)DecodeeveryparticletotheprocessplanaccordingtoEq.29toEq.33,andthencalculate

CP.Getthelocaloptimalposition andtheglobaloptimalposition .

4.3 Iteration and control

Foreveryselectedparticle,thepositionandvelocitycanbeupdatedaccordingtoEq.21andEq.22.Toensuretheprocessplanvalidity,decodingeverynewlygeneratedparticletotheprocessplanisnecessary.Ifthenewprocessplansviolatetheprecedenceconstraints,thecorrespondingparticleswillbenormalizedbyusingtheconstraintmatrixP.Foreachvalidparticle, theCPofthe correspondingprocessplanwill be calculated. If a lowerCP is achieved, the local optimalposition andtheglobaloptimalposition willbeupdated.

WhenthetraditionalPSOisappliedinthePPproblem,aquicklocalconvergenceatanearlystageofthePSOusuallyhastobefaced.Thequicklocalconvergencewillmakefurtherexplora‐tiondifficult and cangenerate anundesirable solution.To solve thisproblem, somemodifica‐tionsaresuggestedtoenhancetheperformanceofthetraditionalPSOalgorithm[9,10,13].FouroperatorsareincorporatedintothetraditionalPSOapproach.Becausethepositionofaparticleisexpressedasa2×nmatrix,inwhichthefirstrowistheODpartandthesecondrowistheOSpart,theoperatorsforthedifferentrowsvaryindependently.FortheODpart,twotypesofmutationoperatoraredesignedtogenerateanewsolution.

Mutationoperator1

Oneparticleintheswarmischosenforamutationoperationwithapredefinedprobability(pms).First,fortheODpartofthisparticle,onepositionpointL israndomlyselected.Second,decodetheparticletoaprocessplan,andobtainthemachine,cuttingtool,andTAD(M,T,TAD)oftheLthoperationinthisprocessplan.Third,fromthemachineset,cuttingtoolset,andTADsetoftheLth operation, an alternative selection ofmachine, cutting tool, andTAD is determined toreplacethecurrentmachine,cuttingtool,andTAD.

Mutationoperator2

Oneparticle ischosenforamutationoperationwithapredefinedprobability(pss).FortheODpartof thisparticle, twoadjacentpositionpointsL1andL2arerandomlyselected.Decode theparticletoaprocessplan,andobtainthemachines,cuttingtools,andTADs(Ms,Ts,TADs)oftheL1‐thandL2‐thoperationsinthisprocessplan.If ,let or ,orotherwisethepositionpointsL1,L2willbereselected.WithrespecttotheOSpart,twooperatorsareemployed,crossoverandshift.

Crossoveroperator

Twoparticles,AandB,areselectedtoexecuteacrossoveroperationwithapredefinedprobabil‐ity(pcq).FortheOSpartofthosetwoparticles,onepositionpointLisrandomlydetermined.TheOSpartisdividedintotwoparts.Subsequently,thevalueofthefrontpartofOSAistakenoutandinsertedbeforethecuttingpointofOSB,andthevalueoftheleftpartofOSBistakenoutandin‐sertedbeforethecuttingpointofOSA.

Shiftoperator

Oneparticleischosenforashiftoperationwithapredefinedprobability(psq).FortheOSpartofthisparticle, twopositionpointsL1,L2 are randomly selected, and their values , ex‐changed.

Page 10: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

86 Advances in Production Engineering & Management 11(2) 2016

4.4 Termination

IfthemaxnumberofiterationsNmaxisreached,theiterationwillbeterminated.Decodetheob‐tainedparticleposition toachievethefinalprocessplan.TheflowchartisdescribedinFig.3.

Fig.3FlowchartofthemodifiedPSOapproach

5. Experiments and results

Twocharacteristicpartsareusedforthesimulationexperiments.ThefirstpartisshowninFig.4[1](Part2),andthesecondpart isshowninFig.5[2](Part3).Thedetailed informationonPart2andPart3isintroducedintheresearchofLietal.[4].AllofthesimulationexperimentswillbeperformedonaPCwith2.8GHzandtheWindows7operatingsystem.

Iterate

YES

YES

Initialize parameters Pmax, Nmax, w, c1, c2, pms, pss, pcq, psq, Rmax

Select particles to do two types of mutation operati‐

ons for OS part with probabilities of pms and pss

If TPCi<TPC of Pl?

Update Pl with the position of Pi

N ++

N< Nmax

NO

YES

Output the optimal solution and TPC

Update position and velocity of partic‐

le i.

Update the Pg with the Pl

Each particle i

Starting

Initialize every particle i, decode particle i

and calculate CPi. Initialize Pl, Pg,

Select particles to do cross and shift operations for

OQ part with probabilities of pcq and psq

If TPC of Pl<TPC of Pg?

Page 11: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 87

Fig.4Anexamplepart–Part2

Fig.5Anexamplepart–Part3

5.1 Simulation experiments

WhileapplyingPSOtosolve theprocessplanningproblem, thekeyparametershavetobede‐terminedtofacilitatetheperformanceofthemodifiedPSO.Accordingly,manypreliminarysimu‐lationexperimentshavetobecarriedouttodeterminethoseparameters.TheprocessplanningproblemforPart2 isusedto illustratehowthekeyparametersaredetermined. It isassumedthat to inEq.13aresetas1.

Thekeyparametersmaybeanalysedfromtwoaspects,namely,theswarmcharacteristicpa‐rametersofPSO(Pmax,Nmax,w,c1,c2)andtheproblemdata(pms,pss,pcq,psq).TheswarmsizePmaxanditerationnumberNmaxwillbeincreasedwiththeincreasedcomplexityofthepart.ForPart2,aftermanytrials,PmaxandNmaxarefixedat2000and300,respectively.

Theconstantsc1andc2areusedtobalancethevelocitytendencytothelocaloptimalpositionandtheglobaloptimalposition .Ifc1andc2aretoolarge,thesearchspaceoftheparticles

willbeexpanded,whichmayevenleadtonoconvergenceofthePSO.Ifc1andc2aretoosmall,slowconvergencemaycausethecomputationtimetobeverylong.InthecaseofproblemswithPmax=2000,Nmax=300,w=0.75,pms=0.6,pss=0.6,pcq=0.2,psq=0.2,50trialswereseparatelyconductedbyvaryingthevaluesofc1=c2∈1,1.5,2.Theaverageresultsaresummarized inFig.6.

Z F6

F2 F10F11

F12

F13

F14

F1 F3

F4

F5

X Y

F7

F9

F8

a

Page 12: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

88 Advances in Production Engineering & Management 11(2) 2016

Fig.6CPoftheproposedPSOwithdifferentconstantsc1andc2

FromFig.6,whenc1andc2arebothsettobe1,thePSOalgorithmshowsfastconvergence

andgoodcomputationalefficiency.Theinertiaweightwissettocoordinatethelocalexplorationandtheglobalexploration.Ifw

istoolarge,theremaybeaquicklocalconvergenceatanearlystageofthePSO.Ifwistoosmall,thecomputationtimeforeachiterationwillbelong,andtheoptimizationratewillbecomeveryslow.InthecaseofproblemswithPmax=2000,Nmax=300,c1=c2=1,pms=0.6,pss=0.6,pcq=0.2,psq=0.2,50trialswereseparatelyconductedbyvaryingthevaluesofw∈0.75,1,1.25.TheaverageresultsaresummarizedinFig.7.

Fig.7CPoftheproposedPSOwithdifferentinertiaweightsw

FromFig.7,theoptimalefficiencyandstabilityareachievedundertheconditionofw=1.The

problemdata (pms,pss,pcq,psq) aredetermined tohelp theapproachescape from local conver‐gences.Fiftytrialsareconductedin8groupcombinationsofthefourparameterspms,pss,pcq,psqtoillustratetheselectionoftheseparameters.TheaverageCPsforthe50trialsarelistedinTa‐ble6.Itisshownthatthecombinationofpms=0.6,pss=0.6,pcq=0.2andpsq=0.2canyieldthebestperformance. In conclusion, theperformanceof themodifiedPSO forPart2 is good, andPmax=2000,Nmax=300,w=1,c1=c2=1,pms=0.6,pss=0.6,pcq=0.2,psq=0.2.ThebestsimulationresultandaveragesimulationresultareshowninTable7andTable8,respectively.

Table6DeterminationoffourprobabilitiesofthemodifiedPSO (Mutation1:pms,Mutation2:pss,Crossover:pcq,Shift:psq)

(0.6,0.4,0.2,0.4)

(0.4,0.6,0.4,0.2)

(0.6,0.6,0.4,0.4)

(0.6, 0.6,0.2,0.2)

(0.4, 0.4,0.2,0.2)

(0.4, 0.4,0.4,0.4)

(0.4,0.6,0.2,0.4)

(0.6, 0.4,0.4,0.2)

Mean 1198.5 1198.8 1308.4 1131.8 1136.6 1541.3 1206.1 1186.7Maximum 1263 1318 1713 1163 1188 1998 1318 1263Minimum 1143 1143 1148 1128 1128 1158 1143 1143

1100

1150

1200

1250

1300

1350

1 30 59 88 117 146 175 204 233 262 291

CP

Iterations

c1=c2=1 c1=c2=1.5 c1=c2=2

1100

1150

1200

1250

1300

1350

1 30 59 88 117 146 175 204 233 262 291

CP

Iterations

w=0.75 w=1 w=1.25

Page 13: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Advances in Production Engineering & Management 11(2) 2016 89

Table7BestsimulationresultforPart2Operation Machine Tool TAD Result

6 2 2 −Z CM=490CT=98CTC=60CS=480CP=1128

1 2 1 −Z7 2 1 −Z9 2 1 −Z12 2 1 −Z5 2 5 −Z3 2 5 +Y4 2 5 +Y8 2 5 +X10 2 5 −Y11 2 5 −Y13 2 5 −Y14 2 1 −Y2 2 8 −Y

Table8Averagesimulationresultof50trialsforPart2

Type Mean Maximum Minimum StandarddeviationCM 490 490 490 0CT 98.2 103 98 0.98CMC 0 0 0 0CTC 60.9 75 60 3.56CS 480 480 480 0CP 1128.9 1143.0 1128 3.56

The above method of determining the key parameters is based on Part 2. Themethod of

choosingparametersforPart3issameasforPart2.InthecaseofproblemswithPmax=2000,Nmax=500,w=1.25,c1=c2=1,pms=0.6,pss=0.6,pcq=0.3,psq=0.3,50trialswereseparatelycon‐ducted.ThebestprocessplansarelistedinTable9,andtheaverageresultsarelistedinTable10.

Table9BestsimulationresultforPart3Operation Machine Tool TAD Result

1 2 6 +Z CM=770CT=235CMC=320CTC=200CS=1000CP=2525

3 2 6 +X5 2 6 +X6 2 6 −Z2 2 6 −Z18 2 6 −Z11 2 7 −Z12 2 2 −Z13 2 9 −Z17 2 7 −X7 2 7 −a8 2 2 −a9 2 9 −a19 2 9 +Z14 4 10 −Z20 4 10 +Z10 4 10 −a4 1 2 −Z15 1 1 −Z16 1 5 −Z

Table10Averagesimulationresultof50trialsforPart3

Type Mean Maximum Minimum StandarddeviationCM 770 770 770 0CT 240 267 235 10.13CMC 320 320 320 0CTC 197.2 180 200 6.94CS 1000 1000 1000 0CP 2527.2 2535.0 2525.0 3.28

Page 14: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

90 Advances in Production Engineering & Management 11(2) 2016

5.2 Extensive comparative experiments

The following three conditions areused to verify themodifiedPSOapproach for the exampleparts[2,4,6]:

(a) Allmachinesandcuttingtoolsareavailable,and to inEq.13aresetas1.(b) Allmachinesandcuttingtoolsareavailable,and = =0, = = =1.(c) M2andT7aredown, = =0, = = =1.

ForPart2,50trialswereperformedunderconditions(a)and(b).Apenaltycostisincludedin theCP to facilitate the comparisonwithotherapproaches,which is200 forPart2 [4,7].Acomparisonwith the resultsobtainedusing theGAandSAapproaches [2],TS [4], andHBMO[14],aswellasthetwo‐stageACO[7],isprovidedinTable11.

Undercondition(a),thisapproachissameasSA,TS,HBMO,andtwo‐stageACOandisbetterthanGAusingtheminimummachinecosts.Usingthemaximummachinecosts,theCP(1328.0)isthesameasthatofHBMO,anditisbetterthantheotherfourapproaches.Thisapproachhasthebestperformanceinthemeanmachinecost(1328).ItisobviousthatthesameCP(1328.0)isachieved50timesandissuperiortoalloftheotherapproaches.

Undercondition(b),theperformanceofthisapproachisthesameasthoseofHBMOandthetwo‐stageACO.Usingtheminimummachinecosts,thisapproachisbetterthanGA,anditisthesameastheotherfourapproaches.Usingthemaximumandmeanmachinecosts,thisapproachisbetterthanGA,SA,andTS.

ForPart3,50trialswerecarriedoutunderconditions(a),(b),and(c).AcomparisonoftheresultswiththoseofTS[4],PSO[9],andHBMO[14],aswellasthetwo‐stageACO[7]isprovid‐edinTable12.

Table11Resultscomparedtootherapproaches

Condition Proposedapproach GA SA TS HBMO Two‐stageACO(a) Mean 1328 1611.0 1373.5 1342.6 1328 1329

Maximum 1328 1778 1518 1378 1328 1348Minimum 1328 1478 1328 1328 1328 1328

(b) Mean 1170 1482 1217 1194 1170 1170

Maximum 1170 1650 1345 1290 1170 1170Minimum 1170 1410 1170 1170 1170 1170

Table12Resultscomparedtootherapproaches

ConditionProposedapproach

TS PSO HBMO Two‐stageACO

(a) Mean 2527.2 2609.6 2680.5 2543.5 2552.4

Maximum 2535 2690 ‐ 2557 2557Minimum 2525 2527 2535 2525 2525

(b) Mean 2093.0 2208.0 ‐ 2098.0 2120.5

Maximum 2120 2390 ‐ 2120 2380Minimum 2090 2120 ‐ 2090 2090

(c) Mean 2593.2 2630.0 ‐ 2592.4 2600.8

Maximum 2600 2740 ‐ 2600 2740Minimum 2590 2580 ‐ 2590 2590

Page 15: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

A simulation approach to the process planning problem using a modified particle swarm optimization

Under condition (a), the minimum machine cost is the same as that of HBMO and the two-stage ACO, and it is better than TS and PSO. Among the 50 trial results, CP (2525) occurs 23 times, CP (2527) occurs 20 times, and CP (2535) occurs 7 times. Accordingly, this approach is superior to all of the other approaches on the mean machine cost. Under condition (b), the min-imum machine cost (2090) is the same as that of HBMO and the two-stage ACO. CP (2090) oc-curs 45 times, and CP (2120) occurs 5 times in 50 trials; the mean machine cost is the best among all of the approaches. Under condition (c), CP (2590) occurs 34 times, and CP (2600) oc-curs 16 times in 50 trials. Generally, the performance of this approach is similar to that of HBMO under condition (c) and is superior to those of the two-stage ACO and TS.

6. Conclusions A traditional PSO approach is modified to solve the PP problem. Efficient encoding and decoding, population initialization, and iteration and control methods have been designed. Meanwhile, to avoid local convergence, several new operators for the different parts of the particles have been designed and incorporated into the traditional PSO to improve the particles’ movements. Simu-lation experiments show that the modified PSO algorithm can perform the process plan optimi-zation competently and consistently and generate better solutions compared with other ap-proaches.

In the simulation experiment, a small change in the parameters induces computational result saltation. Hence, a deep discussion of selecting the modified PSO approach parameters will be conducted. Additionally, integrated process planning and scheduling that considers the better performance of manufacturing systems may be a direction for further study [21, 22].

References [1] Zhang, F., Zhang, Y.F., Nee, A.Y.C. (1997). Using genetic algorithms in process planning for job shop machining,

IEEE Transactions on Evolutionary Computation, Vol. 1, No. 4, 278-289, doi: 10.1109/4235.687888. [2] Li, W.D., Ong, S.K., Nee, A.Y.C. (2002). Hybrid genetic algorithm and simulated annealing approach for the optimi-

zation of process plans for prismatic parts, International Journal of Production Research, Vol. 40, No. 8, 1899-1922, doi: 10.1080/00207540110119991.

[3] Ma, G.H., Zhang, Y.F., Nee, A.Y.C. (2000). A simulated annealing-based optimization algorithm for process plan-ning, International Journal of Production Research, Vol. 38, No. 12, 2671-2687, doi: 10.1080/002075400411420.

[4] Li, W.D., Ong, S.K., Nee, A.Y.C. (2004). Optimization of process plans using a constraint-based tabu search ap-proach, International Journal of Production Research, Vol. 42, No. 10, 1955-1985, doi: 10.1080/00207540 310001652897.

[5] Lian, K.L., Zhang, C.Y., Shao, X.Y., Zeng, Y.H. (2011). A multi-dimensional tabu search algorithm for the optimiza-tion of process planning, Science China Technological Sciences, Vol. 54, No. 12, 3211-3219, doi: 10.1007/s11431-011-4594-7.

[6] Liu, X.-J., Yi, H., Ni, Z.-H. (2013). Application of ant colony optimization algorithm in process planning optimiza-tion, Journal of Intelligent Manufacturing, Vol. 24, No. 1, 1-13, doi: 10.1007/s10845-010-0407-2.

[7] Wang, J.F., Wu, X., Fan, X. (2015). A two-stage ant colony optimization approach based on a directed graph for process planning, The International Journal of Advanced Manufacturing Technology, Vol. 80, No. 5, 839-850, doi: 10.1007/s00170-015-7065-7.

[8] Hu, Q., Qiao, L., Peng, G. (2015). An ant colony approach to operation sequencing optimization in process plan-ning, (In press), Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufac-ture, doi: 10.1177/0954405415616786.

[9] Guo, Y.W., Mileham, A.R., Owen, G.W., Li, W.D. (2006). Operation sequencing optimization using a particle swarm optimization approach, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 220, No. 12, 1945-1958.

[10] Kafashi, S., Shakeri, M., Abedini, V. (2012). Automated setup planning in CAPP: a modified particle swarm opti-misation-based approach, International Journal of Production Research, Vol. 50, No. 15, 4127-4140, doi: 10.1080/00207543.2011.592157.

[11] Wang, Y.F., Zhang, Y.F., Fuh, J.Y.H. (2012). A hybrid particle swarm based method for process planning optimisa-tion, International Journal of Production Research, Vol. 50, No. 1, 277-292, doi: 10.1080/00207543.2011.571459.

[12] Li, X., Gao, L., Wen, X. (2013). Application of an efficient modified particle swarm optimization algorithm for process planning, The International Journal of Advanced Manufacturing Technology, Vol. 67, No. 5, 1355-1369, doi: 10.1007/s00170-012-4572-7.

Advances in Production Engineering & Management 11(2) 2016 91

Page 16: A to the process planning problem a particle swarm optimizationapem-journal.org/Archives/2016/APEM11-2_077-092.pdf · 2016-06-05 · In the modern computer‐integrated manufacturing

Wang, Kang, Zhao, Chu

[13] Miljković, Z., Petrović, M. (2016). Application of modified multi–objective particle swarm optimisation algorithm for flexible process planning problem, (In press), International Journal of Computer Integrated Manufacturing, doi: 10.1080/0951192X.2016.1145804.

[14] Wen, X.-Y., Li, X.-Y., Gao, L., Sang, H.-Y. (2014). Honey bees mating optimization algorithm for process planning problem, Journal of Intelligent Manufacturing, Vol. 25, No. 3, 459-472, doi: 10.1007/s10845-012-0696-8.

[15] Huang, W., Hu, Y., Cai, L. (2012). An effective hybrid graph and genetic algorithm approach to process planning optimization for prismatic parts, The International Journal of Advanced Manufacturing Technology, Vol. 62, No. 9, 1219-1232, doi: 10.1007/s00170-011-3870-9.

[16] Kennedy, J., Eberhart, R. (1995). Particle swarm optimization, In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, WA, IEEE Press, Vol. 4, 1942-1948, doi: 10.1109/icnn.1995.488968.

[17] Hrelja, M., Klancnik, S., Irgolic, T., Paulic, M., Jurkovic, Z., Balic, J., Brezocnik, M. (2014). Particle swarm optimiza-tion approach for modelling a turning process, Advances in Production Engineering & Management, Vol. 9, No. 1, 21-30, doi: 10.14743/apem2014.1.173.

[18] Wang, Y., Liu, J.H. (2010). Chaotic particle swarm optimization for assembly sequence planning, Robotics and Computer-Integrated Manufacturing, Vol. 26, No. 2, 212-222, doi: 10.1016/j.rcim.2009.05.003.

[19] Malik, J., Mishra, R., Singh, I. (2011). PSO-ANN approach for estimating drilling induced damage in CFRP lami-nates, Advances in Production Engineering & Management, Vol. 6, No. 2, 95-104.

[20] Xu, X., Wang, L., Newman, S.T. (2011). Computer-aided process planning – A critical review of recent develop-ments and future trends, International Journal of Computer Integrated Manufacturing, Vol. 24, No. 1, 1-31, doi: 10.1080/0951192X.2010.518632.

[21] Dai, M., Tang, D., Xu, Y., Li, W. (2015). Energy-aware integrated process planning and scheduling for job shops, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 229, No. 1, 13-26, doi: 10.1177/0954405414553069.

[22] Wang, J., Fan, X., Zhang, C., Wan, S. (2014). A graph-based ant colony optimization approach for integrated pro-cess planning and scheduling, Chinese Journal of Chemical Engineering, Vol. 22, No. 7, 748-753, doi: 10.1016/j.cjche.2014.05.011.

92 Advances in Production Engineering & Management 11(2) 2016