a+ short primer

Upload: celestino-montiel-maldonado

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 A+ Short Primer

    1/16

    1

    A Short Primer for Using Aspen PlusProcessSimulation Software

    Courtesy of College of Engineering and Technology, Brigham Young University

    There are many subprograms within the Aspen Tech family of software tools. This short

    primer focuses on Aspen Plus

    , a process simulation tool. Many of the other toolsintegrate into Aspen Plus

    while others are stand-alone systems. This first primer outlines

    a simple flowsheet involving a distillation column. Hopefully it provides some useful

    introduction to Aspen without involving unessential details.

    I provide considerable editorial information in this primer that I hope is useful but that

    makes it longer than necessary. The essential steps to completing this problem can beexecuted by focusing on the numbered items only and ignoring the introductory

    explanations and figures in each section. The entire process should take less than 15minutes in this mode.

    Getting Started

    1. Navigate to the Aspen Plus User Interface program which will generally be foundunder the following sequence of program menus Aspen Tech -> Aspen

    Engineering Suite -> Aspen Plus 2004.1 -> Aspen Plus User Interface.The first dialog box you encounter asks you to select either a new simulation or choose among

    existing simulations saved to a disk, the latter choice including a listbox of past simulations. Here we

    assume you are starting a new simulation. You may choose either a blank simulation or a template.

    Here we assume you want to choose a template. Select Template and OK.2. Figure 1 illustrates this dialog box with some of the important selections

    discussed above highlighted with red ovals.

  • 8/14/2019 A+ Short Primer

    2/16

    2

    Figure 1 Opening dialog box in Aspen Plus

    The next dialog box has two tabs one for simulations and one for refineries. Choose the simulation

    tab for this primer. Also, the lower right corner has a drop-down list box labeled Run Type. Choose

    Flowsheet for this primer (see Appendix for other options). Finally, choose a process type and units

    in which you want to work from the list of options in dialog box. Here we suggest a Generic

    Simulation with English Units. All of these choices can be modified later in the program if desired.

    The essential difference among the process types is that Aspen preselects the thermodynamic models

    most appropriate for the given process. However, you are able to override these pre-selected choices

    if you choose to do so.

    3. Figure 2 illustrates this dialog box with some of the important selectionsdiscussed above highlighted with red ovals.

  • 8/14/2019 A+ Short Primer

    3/16

    3

    Figure 2 Second dialog box in Aspen Plus with selection of process type and run type.

    You should now have a blank process simulation window open. Also, there should be series of unit

    operations choices called the Model Library along the bottom of the dialog box. If the Model Library

    does not appear, select Model Library under the View menu at the top of the page. This page is

    illustrated in

    4. Figure 3.5. You are now ready to construct a simulation.

    From this point on, you can step through the minimally required input fields by selecting the Next

    button at the top of the page (an uppercase, blue N with a right-pointing arrow highlighted with a

    red oval near the top of

    6. Figure 3). The Next function can alternatively be accessed by pressing F4 or byselecting it from the Tools menu. This will lead you through the various stages ofsetting up a simulation.

    7. Help files are available at any point from the help menu or, for context-sensitivehelp, by pointing at the item with which you want help and pressing F1. However,Aspen includes several separate help files. They are each accessible from the

    same menu, but searches and lists of help topics in the help interface are limited tothe help file that is open. For example, the default help file for the flowsheet is theAspen Plus Help file. It contains few details beyond the name and typical

    application for the thermodynamic models used within Aspen. For detailed

    thermodynamic information (form of equations, temperature and pressure

    dependence, etc.), you must select the Aspen Physical Property System Help file.This (or any of several other help files) can be found by navigating to the Topics

    tab in any help file and selecting the topmost choice (a document, not a folder)

  • 8/14/2019 A+ Short Primer

    4/16

    4

    labeled Accessing Other Help in the tree-structured illustration of the help file

    found in the left panel. The right panel will then include links to all help filesloaded in your software.

    Figure 3 An example of a blank flowsheet, the starting point for process simulation, with several of

    the items discussed above highlighted with red ovals.

    Building the Flowsheet

    The flowsheet is a graphical representation of your process. Aspen works somewhat more

    elegantly if you first place equipment from the Model Library on the flow sheet and thenconnect these major components with streams rather than, for example, placing feedstreams on the flowsheet and connecting streams and equipment in the order they are

    encountered in the process. However, either approach as well as many other approaches

    will eventually work. Note that Aspen seems generally unaware of gravity (an important

    consideration in liquid-liquid extraction processes) and of flow direction, but mypreference is to represent flow from left to right where possible (recycle streams being an

    exception) and to try to place all initial (feed) and terminal (product) flow stream points

  • 8/14/2019 A+ Short Primer

    5/16

    5

    such that they do not need to cross other flow lines to reach the flowsheet border that is,

    to not leave them embedded in the diagram surrounded by flowlines and equipment.Note that the tabbed titles of the unit operations in the Model Library can be slightly

    misleading. For example, the tab Separators includes only simple separators such as flash

    drums or columns with specified output concentrations but not with model capabilities to

    predict such concentrations. Distillation columns and liquid-liquid separators are includedin the Columns tab. Also pumps, compressors, turbines, etc. are under the tab Pressure

    Changers. If your pointer hovers over any portion of the model library (or another hotspot

    in the open window), the status bar (bottom-most portion of the window) displays a shortdescription of the unit operation that is quite useful in making selections.

    Depressurization equipment such as turbines are modeled with the same tools as

    compressors and pumps although the labels do not make this obvious but the status bardescription does. Also note that alternative icons for many of the unit operations are

    available by clicking on the down arrow to the right of each existing icon. So far as I

    know, these are cosmetic only. They do not change functionality, although they

    sometimes appear to do so (distillation column with or without condenser specifically

    drawn still has the some choices for inlet and outlet streams, for example).

    1. Choose equipment from the Model Library and place it on the flowsheet bydragging it to the blank (white) area of the screen. Here we choose RadFrac from

    the columns tab, which is a rigorous, multicomponent, multiphase distillation

    column model. Note that nearly all equipment (indeed all equipment so far as Iknow) receives a default label of B*, consistent with flowsheet labeling practices

    generally not too informative. These labels can be changed by selecting (single

    clicking) the equipment and choosing cntrl-M or by right-clicking on it andchoosing Rename Block.

    2. Connect feed, intermediate, and product lines to the equipment. This is done byselecting the left-most icon from the Model Library which is labeled Material

    Streams. Doing so causes each piece of equipment on the flowsheet to indicate

    with red arrows the required inlet/outlet streams and to indicate with blue arrows

    optional inlet and outlet streams. Connect the equipment by clicking on a red orblue arrow and moving the pointer to either another arrow on another piece of

    equipment (in the case of intermediate streams) or to a convenient and

    aesthetically acceptable location on the flowsheet (in the case of feed and productstreams). Note that specifying a stream sometimes changes the status of remaining

    streams for a piece of equipment. In this example, specifying a condenser liquid

    stream changes the condenser vapor stream from red (required) to blue (optional)since at least one liquid or vapor stream is required, but not necessarily both.

    Stream labels default to numerically increasing numbers in the order in which you

    place them on the sheet. These can be changed, as with equipment, by selecting(single clicking) the equipment and choosing cntrl-M or by right-clicking on it

    and choosing Rename Stream. The flowsheet should now look like Figure 4,

    except possibly with more meaningful labels for the equipment and streams if you

    choose to rename them.

  • 8/14/2019 A+ Short Primer

    6/16

    6

    B2

    1

    2

    3

    Figure 4 Flowsheet illustration for a simple distillation column process.

    3. After connecting all streams select the Next button near the top of the screen (orchoose it by pressing F4 or by selecting it from the Tools menu). If all streams areproperly connected, a dialog box for the project title and default specifications

    will open. Otherwise, an indication of a problem will appear.

    Overall Specifications

    At this point you should be in the Data Browser. This is probably the first time you have

    encountered it, but it is central to the program. The insert prompt should be located in a

    text box labeled Title and is asking for you to enter a name for the process you aresimulating. Any title (or no title) is fine here. This is possibly the only non-essential

    portion of the series of entries the program will ask you to make using the Next button.

    However, take a moment to get a feel for the Data Browser as it will be a major interface

    to everything else that happens.

    Along the left side of the Data Browser dialog box is a tree structure that organizes theinput and output data. The portions that have blue check boxes have all the information

    they need but those with red half-full signs require additional input. The Next button willstep through these in a logical sequence, or you can go directly to them using the tree

    view. The logical sequence is essentially the same as the order in which red (incomplete)

    items appear in this tree view. That is, next you will be asked to specify the componentsin the system, then the thermodynamic models you want to use, then the components in

    individual streams, then you will skip the defaults for the flowsheet itself as these should

    already be specified, then you will specify the concentration and condition (pressure,temperature, phase, etc.) of components in feed streams, and the final required input will

    be specifications for the equipment (blocks) in the process in this case a single

    distillation column.There are a great number of additional options that involve optimization, design, costs,convergence, etc., but these are not discussed here. For now, the task at this stage is

    simple

    1. Enter a suitable name for this process2. Press the Next button

  • 8/14/2019 A+ Short Primer

    7/16

    7

    Component Specification

    You should now be in the Components Specification section of the Data Browser. In the

    tree diagram at the left you can tell where you are by locating the highlighted portion of

    the tree. Also, the title of the dialog box should indicate similar information.There are four specifications for each component (chemical species) that you wish to use

    in the calculation. The first is the ID, which is an arbitrary label of up to eight characters

    and numbers. An ID that closely resembles the species name is highly preferred as this ID

    is used in the output to indicate concentrations, etc. The type will, for now, always beconventional (other types allow for solids, pseudo species, etc., but conventional is

    suitable for any fluid liquid or gas material that is an actual chemical species likely to

    be available in the extensive Aspen database). The component name is the name Aspendatabases use for this component. If the ID is the name, such as ACETONE or

    ETHANOL, Aspen automatically fills in all remaining boxes for each component. If the

    eight-character limit of the ID is too short for the actual name or if there are severalcommon names for the component, such as BUTANOL, you must help Aspen identify

    what you mean. This can be done by typing in as much of the name as will fit in the ID

    and choosing the correct species from the list Aspen automatically presents or by usingthe Find button at the bottom of this dialog box, in which case Aspen offers several

    suggestions based on what you enter and you are to select one. Note that only the species

    entered in this dialog box are considered in any calculations specifically processes that

    involve chemical reactions or equilibrium reactions only select from the choices enteredhere.

    In this case, we specify acetone, ethanol, n-butanol, and phenol as the components.

    1. Enter IDs in the ID column2. Complete specifications for any species Aspen does not recognize according to

    instructions above.3. Click the Next button

    (Thermodynamic) Properties Specifications

    You should now have the dialog box used to specify thermodynamic models open. This

    dialog box is where most of the art of thermodynamics lies. The first box asks for thetype of process. The function of this box is to select the most appropriate subset of

    possible thermodynamics models for selection in subsequent boxes. You can select from

    the dropdown box by clicking on the arrow. As your curser passes entries, a few words ofexplanation appear in the bottom box. You may note that the prompts in the bottom panel

    of this box generally suggest you use the Property Method Selection Assistant. This is

    found on the tools menu. In this case, we will leave the process as ALL, indicating allthermodynamic options will be available to us.

  • 8/14/2019 A+ Short Primer

    8/16

    8

    The next dropdown box requests the default thermodynamic model for the process.

    Different models can be used within individual blocks of the process, but the base modelis specified here. Again, the Property Method Selection Assistant is useful in making

    these selections. For our simple system, there are many appropriate choices. We will try

    UNIQUAC with ideal gas and Henrys law for non-condensable components, which is

    specified as UNIQUAC.

    The remainder of the dialog box allows non-condensable gas components to be specified

    and a variety of specialty modifications to be made for electrolytes, changes in binaryinteraction parameters, etc., but none of these is essential for our problem.

    Clicking Next will bring you to the parameters dialog box. Generally, nothing needs to be

    specified here. It simply reviews the parameters, mostly the binary interactionparameters, available for the components in this system. These are pre-selected by Aspen

    for your problem but can be changed to better suit your purposes. This dialog box may

    represent the single greatest distinguishing characteristic of Aspen. It appears to have

    more sophisticated equilibrium models and much more extensive databases of interaction

    parameters than many of its competitors. Within the information it presents, some of theimportant information includes the temperature range over which the BIPs are valid

    (appears near the bottom of the table for each pair) and the values of the BIPs (all zerosindicate no information available but nearly all zeros is not an indication of bad

    information the various parameters are often for temperature dependencies, etc. and not

    all of them would be expected to be non-zero in general). The final importantconsideration is the database from which the data come. There are many databases within

    Aspen and while it tries to select the most appropriate for your problem, you may find a

    more suitable one within the choices. For example, butanol and acetone form immiscibleliquid solutions under some conditions and, if these are important to the process, the

    liquid-liquid equilibrium (LLE) database which is presumably optimized to predict phaseimmiscibilities rather than the vapor-liquid equilibrium (VLE) database may be more

    suited for the simulation. Both can potentially predict two phases, but the former would

    presumably be more accurate. The database-provided entries appear in grayed-out text.

    Highlighting any one of these parameters and selecting help (F1) pops up an informationbox that summarizes the temperature, pressure, and composition range on which the data

    are based, the number of data points, and the goodness of fit measured several ways. If

    you change a parameter, it becomes black rather than gray and Aspen assumes it is yourinformation, in which case this database information is not available from Help.

    For this case, the entries are relatively simple

    1. Specify ALL for the Process Type2. Specify UNIQUAC for the Base Method3. Press Next4. Review the temperature-dependent interaction parameter data but dont change

    anything

    5. Press Next

    This should bring you to the stream specification section.I provide a short list of the thermodynamic models and a logic diagram I tried to develop

    but with which I am not satisfied in the Appendix.

  • 8/14/2019 A+ Short Primer

    9/16

    9

    Streams

    This section allows you to specify stream conditions (composition, temperature, pressure,etc.). The stream for which data are being entered appears in the title of the dialog box

    which, although prominent, is easily overlooked. It will have the same ID as it has on the

    flowsheet. Generally, at least two of temperature, pressure, or fraction of vapor must bespecified, with the remaining parameter calculated from thermodynamics. The units for

    the specifications are based on the default units selected at the beginning of the run but

    can be changed locally if desired. The composition of the stream can be specified in avariety of ways (mole fraction, mass fraction, flow rates, etc.). If you select an intensive

    specification, then the total flow must also be specified.In this case

    1. Specify a saturated liquid (0 vapor fraction)2. Specify14.7 psi3. Specify an equimolar composition of 25 lb mols/hr flow rate for each of the four

    components.4. Press Next

    Since the remaining streams in this simple simulation are all products, there are no more

    specifications in the stream section and you should now be at the Block Setup dialog box.

    Block Setup

    Every type of unit operation has different specifiable parameters. In this case, we have adistillation column. In this dialog box we indicate whether we want to use an

    equilibrium-based model (by far the most common) or a rate-based model (in somecircles more respected and an increasingly important approach). We will use the

    equilibrium approach here.

    Next we specify the total number of stages. This should be distinguished from thenumber of trays as the number of stages potentially includes the condenser (rarely only

    if it is a partial condenser) and the reboiler (generally unless it is a total reboiler). We

    specify 9 in this case. The type of condenser is specified from among the several choices.We choose a simple total condenser. We accept the defaults for everything else in the

    setup.

    We next specify the operation. Generally two of the many potential specifications arerequired. We choose a total distillate rate of 50 lb mols/hr and a reflux ratio of 5.

    Pressing next takes us to the next tab in this specification where we indicate the feed

    stage location, which we take as above the 5th

    stage.

    Pressing next again takes us to the pressure specification where we specify the pressure atthe condenser. If no other pressure or pressure drop is specified, the entire column is

    assumed to operate at this pressure.

  • 8/14/2019 A+ Short Primer

    10/16

    10

    Aspen can be used for design (calculating, for example, the reflux ratio needed to achieve

    a target separation), optimization, cost accounting, etc. but its default use is as a simulatorand that is what is illustrated here. I will try to write another primer for design, etc. uses.

    In this case

    1. Accept the default equilibrium specification for the column

    2. Specify 9 total stages in the column3. Accept the defaults for the remaining flows setup parameters.4. Specify a total distillate flow of of the inlet flow (50 lb mols/hr) and a reflux

    ratio of 5.5. Press Next6. Specify that the feed is located above the 5thstage.7. Press Next8. Specify the column pressure is 1 atm (14.7 psi) at the condenser and no changes

    across the stages (no entries in remaining boxes).

    9. Press Next

    This completes all of the specifications. Pressing next should pop up a dialog box thattells you that Aspen knows enough to complete the simulation and ask you if you want to

    further specify anything. If you select Run, Aspen predicts the resulting compositions,temperatures, and pressures of the product streams, the stage-by-stage compositions of

    vapor and liquid in the column, and all other details of the process.

    Reviewing the Results

    During the simulation, Aspen displays convergence and other data in a new dialog box

    called the Control Panel (perhaps a misnomer as there is essentially nothing that can be

    controlled from this dialog box it is mainly informational). If the simulation converges,

    it will complete with a statement Simulation calculations completed. For this simpleproblem, this should not take long although it does take some time for the computation to

    set itself up.To view the results, close the Control Panel, in which case the Data Browser should be

    displayed. At the bottom of the tree structure on the left of the Data browser is the Results

    Summary section. Open this section of the structure and choose streams to obtain asummary of the stream compositions, flows, temperatures, and pressures. This should

    display a table of stream properties. In this case, the column performs a sharp separation

    of the two light components (acetone and ethanol) from the two heavy components

    (butanol and phenol) at temperatures near those of steam and hot water, as might beexpected. A copy of this summary information can be included on the flowsheet by

    pressing the Stream Table button. In my case, the results look like Figure 5.

  • 8/14/2019 A+ Short Primer

    11/16

    11

    B2

    1

    2

    3

    Simple Dist illation Colum n

    Stream ID 1 2 3T emperat ure F 188.2 143.8 272.3

    Pressure psi 14.70 14.70 14.70

    Vapor Frac 0.000 0.000 0.000

    Mole Flow lbmol/hr 100.000 50.000 50.000

    Mass Flow lb/hr 6809.623 2608.586 4201.037

    Volume Flow cuft/hr 132.753 55.931 80.871

    Enthalpy MMBt u/hr -10.335 -5.508 -4.678

    Mole Flow lbmol/hr

    ACET ONE 25.000 24.956 0.044

    ET HANOL 25.000 24.852 0.148

    BUT ANOL 25.000 0.192 24.808

    PHENOL 25.000 trace 25.000

    Figure 5 Summary of stream conditions and flow diagram for this simple Primer.

    To examine more details of column performance, return to the block specifications and

    click on the profiles button. Here the stage-by-stage compositions, temperatures, k-values, etc. are displayed. As indicated, there are significant compositional changes

    between every stage. These can be conveniently plotted within Aspen by running the Plot

    Wizard found under the Plot menu in the Data Browser. For example, the gas and liquid

    phase composition for the problem appear in Figure 6.

  • 8/14/2019 A+ Short Primer

    12/16

    12

    Block B2: Vapor Composition Profiles

    Stage

    Y

    (molefrac)

    1 2 3 4 5 6 7 8 9

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    ACETONE

    ETHANOL

    BUTANOL

    PHENOL

    Block B2: Liquid Composition Profiles

    Stage

    X

    (molefrac)

    1 2 3 4 5 6 7 8 9

    0.2

    0.4

    0.6

    0.8

    1

    ACETONE

    ETHANOL

    BUTANOL

    PHENOL

    Figure 6 Vapor (top) and liquid compositions on a stage-by-stage basis in the simple column used in

    this primer. Stage 1 is at the top of the column and Stage 9 is the reboiler.

  • 8/14/2019 A+ Short Primer

    13/16

    13

    Appendix

    Run Types

    The following descriptions of alternative run types indicate the range of choices withinAspen, including the Flowsheet (process simulator) choice.

    Run Type Description Use to

    Assay Data Analysis A standalone assay data

    analysis/pseudocomponents

    generation run

    Analyze assay data when you do

    not want to perform a flowsheet

    simulation in the same run.Data Regression A standalone data

    regression run. Can contain

    property constant estimation

    and property analysiscalculations.

    Fit physical property model

    parameters required by

    Aspen Plus to measured pure

    component, VLE, LLE and othermixture data. Aspen Plus cannot

    perform data regression in a

    Flowsheet run.Flowsheet A process simulation

    option, including sensitivitystudies and optimization.

    Simulate complete processes.

    Flowsheet simulations includeProperty Estimation, Assay Data

    Analysis, and Property Analysis

    capabilities but Data Regressioncannot be done within the

    Flowsheet option.

    Properties Plus A Properties Plus setup run Prepare a property package for

    use with Aspen Custom Modeleror Aspen Pinch, with third-party

    commercial engineering

    programs, or with your company'sin-house programs. You must be

    licensed to use Properties Plus.

    Property Analysis A standalone propertyanalysis run. Can contain

    property constant estimation

    and assay data analysiscalculations.

    Perform property analysis bygenerating tables of physical

    property values when you do not

    want to perform a flowsheetsimulation in the same run

    Property Estimation A standalone propertyconstant estimation run

    Estimate property parameterswhen you do not want to perform

    a flowsheet simulation in thesame run.

  • 8/14/2019 A+ Short Primer

    14/16

    14

    Summary of Aspen Property Methods

    Ideal Property Methods

    Ideal Property Method K-Value Method

    IDEAL Ideal Gas/Raoult's law/Henry's lawSYSOP0 Release 8 version of Ideal Gas/Raoult's law

    Equations of StateAbbreviation Equation of State

    Lee-based MethodsBWR-LS BWR Lee-Starling

    LK-PLOCK Lee-Kesler-PlckerPeng-Robinson-based Methods

    PENG-ROB Peng-Robinson

    PR-BM Peng-Robinson with Boston-Mathias alpha functionPRWS Peng-Robinson with Wong-Sandler mixing rules

    PRMHV2 Peng-Robinson with modified Huron-Vidal mixing rules

    Redlich-Kwong-based MethodsPSRK Predictive Redlich-Kwong-Soave

    RKSWS Redlich-Kwong-Soave with Wong-Sandler mixing rules

    RKSMHV2 Redlich-Kwong-Soave with modified Huron-Vidal mixing rules

    RK-ASPEN Redlich-Kwong-ASPENRK-SOAVE Redlich-Kwong-Soave

    RKS-BM Redlich-Kwong-Soave with Boston-Mathias alpha function

    Other MethodsSR-POLAR Schwartzentruber-Renon

  • 8/14/2019 A+ Short Primer

    15/16

    15

    Activi ty Coeff icient MethodsAbbreviation Liquid Activity Coefficient Vapor Fugacity Coefficient

    Pitzer-based MethodsPITZER Pitzer Redlich-Kwong-Soave

    PITZ-HG Pitzer Redlich-Kwong-SoaveB-PITZER Bromley-Pitzer Redlich-Kwong-Soave

    NRTL-based Methods

    ELECNRTL Electrolyte NRTL Redlich-Kwong

    ENRTL-HF Electrolyte NRTL HF Hexamerization modelENRTL-HG Electrolyte NRTL Redlich-Kwong

    NRTL NRTL Ideal gas

    NRTL-HOC NRTL Hayden-O'Connell

    NRTL-NTH NRTL NothnagelNRTL-RK NRTL Redlich-Kwong

    NRTL-2 NRTL (using dataset 2) Ideal gas

    UNIFAC-based MethodsUNIFAC UNIFAC Redlich-Kwong

    UNIF-DMD Dortmund-modified UNIFAC Redlich-Kwong-SoaveUNIF-HOC UNIFAC Hayden-O'Connell

    UNIF-LBY Lyngby-modified UNIFAC Ideal gas

    UNIF-LL UNIFAC for liquid-liquid systems Redlich-KwongUNIQUAC-based Methods

    UNIQUAC UNIQUAC Ideal gas

    UNIQ-HOC UNIQUAC Hayden-O'ConnellUNIQ-NTH UNIQUAC Nothnagel

    UNIQ-RK UNIQUAC Redlich-Kwong

    UNIQ-2 UNIQUAC (using dataset 2) Ideal gasVANLAAR-based Methods

    VANLAAR Van Laar Ideal gas

    VANL-HOC Van Laar Hayden-O'Connell

    VANL-NTH Van Laar NothnagelVANL-RK Van Laar Redlich-Kwong

    VANL-2 Van Laar (using dataset 2) Ideal gas

    WILSON-based MethodsWILSON Wilson Ideal gas

    WILS-HOC Wilson Hayden-O'Connell

    WILS-NTH Wilson Nothnagel

    WILS-RK Wilson Redlich-KwongWILS-2 Wilson (using dataset 2) Ideal gas

    WILS-HF Wilson HF Hexamerization model

    WILS-GLR Wilson (ideal gas and liquid enthalpyreference state)

    Ideal gas

    WILS-LR Wilson (liquid enthalpy reference

    state)

    Ideal gas

    WILS-VOL Wilson with volume term Redlich-Kwong

  • 8/14/2019 A+ Short Primer

    16/16

    16

    Specialty Methods Abbreviation K-value Method Application

    AMINES Kent-Eisenberg amines model H2S, CO2, in MEA,DEA, DIPA, DGA

    solutionAPISOUR API sour water model Sour water with NH3,

    H2S, CO2

    BK-10 Braun K-10 Petroleum

    SOLIDS Ideal Gas/Raoult's law/Henry's law/solid activitycoefficients

    Pyrometallurgical

    CHAO-SEA Chao-Seader corresponding states model Petroleum

    GRAYSON Grayson-Streed corresponding states model Petroleum

    STEAM-TA ASME steam table correlations Water/steamSTEAMNBS NBS/NRC steam table equation of state Water/steam