a review of phthalates and the associated reproductive and decelopmental toxicity towards fish msc...

48
A review of phthalates and the associated reproductive and developmental toxicity towards fish. Masters literature thesis 12 EC Emma Greenwell (10407995) Biological sciences: Limnology and oceanography Supervisor: Liana Bastos Sales Examiner: Michiel Kraak 20 th December 2013 – 27 th March 2014

Upload: emma-greenwell

Post on 07-Aug-2015

74 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

       A   review   of   phthalates   and   the  associated   reproductive   and  developmental   toxicity   towards  fish.    

Masters  literature  thesis  -­‐  12  EC  Emma  Greenwell  (10407995)  

Biological  sciences:  Limnology  and  oceanography  Supervisor:  Liana  Bastos  Sales  Examiner:  Michiel  Kraak  

 20th  December  2013  –  27th  March  2014  

     

Page 2: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  2  

Table  of  Contents  

I.  Abstract  ..............................................................................................................  4  

II.  Introduction  .......................................................................................................  5  2.1  What  are  phthalates?  ................................................................................................................................  5  2.1.1  Common  phthalates  ...............................................................................................................................  5  

2.2  Environmental  fate  of  phthalates  ........................................................................................................  6  2.2.1  Differences  in  seasons  ............................................................................................................................  8  

2.3  Levels  in  the  environment  ......................................................................................................................  8  2.4  Half-­‐lives  .........................................................................................................................................................  9  2.5  Inside  the  organism  ................................................................................................................................  11  2.6  Modes  of  action  once  inside  an  organism  .....................................................................................  11  2.7  Environmental  risk  limits  ....................................................................................................................  12  2.8  Objective  ......................................................................................................................................................  12  III.  Method  ...........................................................................................................  13  

IV.  Results  ............................................................................................................  13  4.1  Summary  of  literature  (1980-­‐1999)  ...............................................................................................  14  4.2  Literature  (1980-­‐1999)  ........................................................................................................................  16  4.3  Summary  of  literature  post  2000  .....................................................................................................  17  4.4  Literature  post  2000  ..............................................................................................................................  19  4.4.1  DEHP  ..........................................................................................................................................................  19  4.4.2  DBP  .............................................................................................................................................................  24  4.4.3  DEHP  and  DBP  .......................................................................................................................................  28  4.4.4  DINP  and  DIDP  ......................................................................................................................................  29  

V.  Discussion  ........................................................................................................  29  5.2  DEHP  .............................................................................................................................................................  30  5.3  DBP  ................................................................................................................................................................  30  5.4  Nominal  concentration  experiments  with  DEHP  and  DBP  ....................................................  31  5.5  DINP  and  DIDP  ..........................................................................................................................................  32  5.6  Exposure  routes  .......................................................................................................................................  33  5.7  Problematic  variables  and  environmental  risk  limits  .............................................................  33  

VI.  Conclusions  .....................................................................................................  34  6.1  Classification  of  phthalates  ..................................................................................................................  34  6.1.1  DEHP  ..........................................................................................................................................................  35  6.1.2  DBP  .............................................................................................................................................................  35  6.1.3  DINP  and  DIDNP  ...................................................................................................................................  35  

4.9  Recommendations  ...................................................................................................................................  35  VII.  Author’s  remarks  ...........................................................................................  36  

VIII.  References  ....................................................................................................  37    

Page 3: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  3  

GLOSSARY    Environmental  risk  limit  (ERL)  –  represent  the  potential  risk  of  the  substance  to  the  ecosystem  and  are  derived  using  data  from  ecotoxicology  and  environmental  chemistry.  Oocytes  –  a  cell  in  an  ovary,  which  might  undergo  meiotic  division  to  form  an  ovum.  Vitellogenin  –  a  protein  present  in  the  blood  from  which  the  substance  of  the  egg  yolk  is  derived.  Planktivores  –  An  organism  that  feeds  on  plankton.  Glucuronides  –  any  substance  produced  by  linking  a  glucuronic  acid  to  another  substance  (via  glycosidic  bonds).  This  method  (glucorinidation)  is  used  by  animals  to  help  excrete  toxic  substances  from  the  body.  Environmental  risk  assessmen  (ERA)  –  An  evaluation  of  the  interactions  of  agents,  human  and  ecological  resources.  No  observed  effect  concentration  (NOEC)  –  the  highest  treatment  (test  concentration)  of  a  substance  that  shows  no  statistical  effect  compared  to  a  control.  Predicted  no  effect  concentration  (PNEC)  –  the  concentration  below  which  a  specified  percentage  of  species  in  an  ecosystem  are  expected  to  be  protected.  Nominal  concentration  –  The  concentration  if  you  all  test  material  added  to  the  test  solution  dissolved.  Effective  concentrations  (EC50)  –  the  concentration  of  a  substance,  which  induces  a  response  halfway  between  the  baseline  and  maximum  after  a  specified  exposure  time.  The  number  refers  to  the  position  within  the  baseline-­‐maximum  scale.  Gonado-­‐somatic  index  –  calculation  of  the  gonad  mass  as  a  proportion  of  the  total  body  mass.  Spermatozoa  –  a  sperm  cell.  Spermatocyte  –  immature  male  germ  cell  which  undergoes  meiosis  developme  into  a  sperm  cell.  Spermatagonia  –  any  cell  of  the  male  gonad  that  mature  to  form  spermatocytes.  Hypertrophy  –  a  non-­‐tumorous  enlargement  of  an  organ  (or  part)  as  a  result  of  increased  cell  size  rather  than  cell  number.  Spiggin  –  a  glycoprotein  glue  used  by  three-­‐spined  sticklbacks  to  stick  their  nests  together.  Peroxidation  –  a  chemical  reaction  in  which  oxygen  atoms  are  formed  leading  to  production  of  peroxides.  Photodegradtion  /photodegradable  –  substances  capable  of  being  chemically  broken  down  by  prolonged  exposure  to  light.  Octanol-­‐water  partition  coefficient  (Kow)  –  a  coefficient  representing  the  ratio  of  the  solubility  of  a  compound  in  octanol  to  its  solubility  in  water.    Soil  organic  carbon-­‐water  partitioning  coefficient  (Koc)  –  the  ratio  of  the  mass  of  a  chemical  that  is  adsorbed  in  the  soil  per  unit  mass  of  organic  carbon  in  the  sol  per  the  equilibrium  chemical  concentration  in  solution.  Phytoremediation  –  the  use  of  plants  to  remove/neutralize  contaminants.  

Page 4: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  4  

I.  Abstract    Phthalates  are  endocrine  disrupting  compounds  produced  on  a  mass  scale   for   use   in   plastics.   They   are   not   chemically   bound   to   the  product  and  therefore  leach  into  the  environment  exposing  fish  to  a  range   of   endocrine   toxicities.   Environmental   risk   limits   (ERLs)   are  difficult   to   calculate   as   different   solubility,   exposure   method,   fish  species  and  even  age  all  combine  to  produce  different  toxicity  effects.  In   most   literature   environmental   phthalate   levels   were   above   the  ERL.   This   paper   focuses   on   what   are   associated   endocrine   toxicity  effects   (metabolic,   developmental   and   reproductive)   of   di-­‐2-­‐ethyl-­‐hexyl   phthalate   (DEHP),   di-­‐butyl   phthalate   (DBP),   di-­‐isononyl  phthalate  (DINP)  and  di-­‐isodecyl  phthalate  (DIDP).  Results  consist  of  18  studies  on  phthalate  toxicity  filtered  to  only   include  results   from  DEHP,  DBP,  DINP  and  DIDP  on   fish   species.  A  mixture  of   effects   on  growth   inhibition,   VTG   level   alteration,   inhibition   of   oocyte  maturation,   increased  mortality,   spinal   deformities   and  maturation  inducing  hormone  alterations  etc.  were  observed  with  all  both  DEHP  and   DBP.   Effects   were   seen   to   be   more   potent   in   pre/early   life  exposure  compared  to  adults  and  sometimes  even  irreversible.  Both  DEHP   and   DBP   phthalates   produces   developmental   toxicity   effects  such   as   increased   mortality,   retardation   in   ovary   development,  decreases   in   body   weight   and   length,   inhibition   of   5α-­‐adione,  decreases   in   fertility   and   many   more.   The   order   of   literature  available   went   DEHP>DBP>DINP/DIDP.   For   the   latter   two  (DINP/DIDP)   only   one   study   was   found   post   year   2000.   The  availability   of   DEHP   and   DBP   information   allows   to   derive  reasonable   ERLs   values.   However   due   to   the   lack   of   DINP/DIDP  information   DEHP   is   used   as   a   proxy   for   DINP/DIDP   ERLs.   In  conjunction,   there   is  no  uniform  exposure   route   to  which  ERL’s  are  based  on  and  as  seen   in  the  results  different  exposure  routes  of   the  same  compound  can  produce  different  effects.  More  solid  guidelines  of  phthalate  testing  are  needed  on  all  compounds  especially  those  of  DINP  and  DIDP.      

Page 5: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  5  

II.  Introduction  2.1  What  are  phthalates?    Phthalates   are   chemical   compounds   used   to   reduce   the   chemical  affinity  between  plastic  molecules  therewith  increasing  the  flexibility  of   the   product   sometimes   making   up   50%   of   the   finished   plastic  product  (Oehlmann  et  al.,  2009;  OEHHA,  2009).  They  are  also  known  to   be   endocrine   disrupting   compounds   (EDCs)   (Ikele,   2011).   EDCs  may  be  natural  or  synthetic  compounds  that  interfere  with  endocrine  regulated   processes   such   as   growth   and   reproduction   (Crain   et   al.,  2008).   The   international   program   for   chemical   safety   defines  endocrine  disrupters  as  “exogenous  substances  that  alter  function(s)  of   the   endocrine   system   and   consequently   cause   adverse   health  effects   in  an  intact  organism  or   its  progeny  secondary  to  changes  in  the  endocrine  function”  (ECPI,  2009).    Production  of  phthalates  consists  of  around  1  billion  tones  per  year  worldwide.  They  are  present  in  the  medical  environment,  cosmetics,  computers,   children   toys,   food   packaging,   car   products   and   paint  making   them   an   unavoidable   part   of   modern   life   (Mankidy   et   al.,  2013;   OEHHA,   2009;   Guven   and   Coban,   2013   and   Carnevali   et   al.  2010).  Phthalates  are  not  chemically  bound  to  the  plastic  molecules  within   the   product   meaning   they   are   able   to   leach   out   into   the  environment   rendering   these   compounds   unstable   within   their  plastic  counterpart  (Oehlmann,  et  al.,  2009  and  Mankidy  et  al.,  2013).  Consequently   phthalates   are   ubiquitous   the   environmental   and  ecological  concerns  surrounding  them  are  increasing.  

2.1.1  Common  phthalates    The  general   structure  of  phthalates  can  be  seen   in   figure   1   (to   the   right)   (R-­‐alkyl  chain).   The   most   common   phthalates   are  di-­‐n-­‐butyl   phthalate   (DBP)   and   di-­‐2-­‐ethyl-­‐hexyl  phthalate  (DEHP)  (Jarmolowicz  et  al.,  2013;  Huang  et  al.,  2008  and  Uren-­‐Webster  et  al.,  2010).  These   two  specific  phthalates  

Figure  1:  General  structure  of  phthalates  (Ogunfowokan  et  al.,  2006)  

Page 6: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  6  

occur   at  higher   concentrations   than  other  phthalates   (Van  Wezel  et  al.,   2000)   and   have   the   highest   toxicity   (out   8   common   phthalates  under   the  U.S.  environmental  protection  agency  (EPA)  management  plan)   to   terrestrial   and   aquatic   organisms   (EPA,   2012).   These   two  phthalates  produce   reproductive   and  developmental   toxicity   effects  (Jarmolowicz   et   al.,   2013;   Lee   and   Liang   2011   and   Zanotelli   et   al.,  2009).   Newer   phthalate   compounds   such   as   di-­‐isononyl   phthalate  (DINP)  and  di-­‐isodecyl  phthalate  (DIDP)  have  shown  to  have  no  (or  very  low)  toxic  effects  on  aquatic  organisms  (EPA,  2012;  Oehlmann  et  al.,  2009  and  Hallmark  2010)  despite  the  reproductive  development  effects  in  two  generations  of  rats  (OEHHA,  2010).  

2.2  Environmental  fate  of  phthalates    Once   in   the   environment  phthalates   are   transported   through  water  where  they  may  be  dissolved  (water  sink)  or  due  to  its  low  solubility  end  up  within  the  sediment  (Huang  et  al.,  2008).  Here  the  phthalate  compounds   are   transferred   to   fish   and   other   aquatic   organisms  through   their   diet   or   by   water   (Jarmolowicz   et   al.,   2009).   Benthic  feeders   contain   higher   levels   of   phthalate   compounds   within   their  system   compared   to   planktivores   due   to   the   low   solubility   of  most  phthalates  (Huang  et  al.,  2008;  Oehlmann  et  al.,  2009;  Mankidy  et  al.,  2013   and  OEHHA,   2009).   The   levels   of   phthalates  within  water   are  affected  by  water  quality  such  as  chemical  oxygen  demand,  dissolved  oxygen,  ammonia-­‐nitrate,  suspended  solids  etc.  (Haung  et  al.,  2008).      Each   phthalate   has   a   different   molecular   weight   that   also   gives   it  different  properties.  A  high  molecular  weight  (HMW)  means  that  the  compound   may   be   less   biologically   available   while   low   molecular  weight   (LMW)  compounds  are  more  biologically  available   (Berge  et  al.,   2013).   This   makes   sense   with   some   literature   as   DBP   (MW  278.4g/mol)  has  a  lower  molecular  weight  then  DEHP  (390.6g/mol)  so  therefore  is  more  available  for  uptake  (Teil  et  al.,  2012).  In  France  three  fish  species  were  analyzed  to  see  which  phthalates  were  more  abundant  (Teil  et  al.,  2012).  Contradictory  to  Huang  et  al.,  2008)  DBP  was   the  main  phthalate   found   in   roach   (Rutilus  rutilus)   followed  by  

Page 7: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  7  

DEHP.  This  would  confirm  the  theory  that  LMW  compounds  are  more  readily  biologically  available  than  HMW.    The   gradients   for   soil   was   however   opposite   with   DEHP   being   the  main  phthalate,  but   this   too  would   fit   theory   that  phthalates  with  a  low  log  Kow  (inverse  of  octanol-­‐water  partition  coefficient,  related  to  aqueous   solubility)   are   better   at   forming   solutes   (dissolving)   than  phthalates  with  a  high  log  Kow.  DBP  has  a  log  Kow  of  4.75  while  DEHP  has  a  higher  one  at  7.5.  Phthalates  with  a  high  log  Kow  are  more  likely  to   have   a   higher   %   in   the   sediment   as   the   particles   that   do   not  dissolve  sink  towards  the  sediment  within  a  water  column  (Berge  et  al.,   2013).   As   DEHP   has   a   higher   log   Kow   it   means   that   it   will   be  present  in  larger  quantities  compared  to  DBP  in  sediment  samples.    

 When   looking  at   the   log  Kow  of  DINP  and  DIDP  both  have  a  value  of  8.8.  This  value  may  be  derived  from  another  phthalate,  which  makes  it  unreliable  toward  the  specific  phthalate  (ECPI  2014  and  Megaloid1  2013).  All  in  all  more  attention  should  be  placed  upon  sediment  as  it  tends   to   have   the   highest   levels,   even   during   different   seasons  (Figure   5)   (Sibali   et   al.,   2013).   All   phthalates   however   have   a   low  solubility   meaning   that   once   saturated   in   the   water,   particles   of  phthalate  will   join  the  sediment  (Sibali  et  al.,  2013).  Figure  5  shows  

Figure  5:  Sediment  and  water  levels  of  phthalates  (DEHP,  DBP,  DEP  and  DMP  at  different  sample  sites  along  the  River  Jeksei  during  two  seasons  (Sibali  et  al.,  2013).  

Page 8: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  8  

the  differences  in  water  and  sediment  phthalate  levels  from  the  River  Jukskei,  South  Africa.  

2.2.1  Differences  in  seasons    It   is   still   unclear   why   these   differences   in   seasons   arise.   For  atmospheric  phthalates  for  example  seasonal  differences  can  be  due  to  influences  of  emission  sources  such  as  the  burning  of  coal  in  cold  season   that   would   then   produce   phthalate   particulates   in   the   air  (Kong   et   al.,   2013).   Another   reason   could   be   a   meteorological  parameter.  Intense  sunlight  during  the  summer,  when  photochemical  reactions   are   increased   and   degrade   phthalates   lowering   the  concentrations   within   the   atmosphere.   Rain   can   also   be   a   culprit  through  diluting  and  washing  away  phthalates  particulates  (Kong  et  al.,  2013).      When  comparing  the  water  and  sediment  levels  in  the  graph  above  it  is   possible   that   the   high   winter   levels   are   due   to   a   lack   of   rain  therefore  concentrating  the  phthalates.  African  summer  (rain  period)  could   perhaps  dilute   the   phthalate   concentrations  within   the  water  and   sediment   therefore   lowering   the   concentrations   (Sibali   et   al.,  2013).   Plants   have   also   very   recently   been   shown   to   significantly  enhance   the   dissipation   of   phthalates   in   soil   in   three   ways:  phytoremediation,  increased  sorption  of  phthalates  to  soil  and  plant  promoted   biodegradation   (Li   et   al.,   2004).   This   could   be   another  explanation   for   the   lower   summer   concentrations   of   phthalates   in  figure   5.   Half-­‐lives   of   phthalates   can   also   be   increased   through  increased  sorption  and  cooler  temperatures  (Staples  et  al.,  1997  and  Kickham  et  al.,  2012).  

2.3  Levels  in  the  environment    In   the  1990’s   the   levels  of  phthalates   in   river  water,   in  Manchester,  UK  for  example,  were  at  a  mean  of  21.5μg/L    ±12.5  and  1.3μg/L  ±0.9  for   DBP   and   DEHP   respectively   (Fatoki   and   Vernon,   1990).   High  standard  deviation  was  due  to  the  different  sample  station  along  the  river   Irwell.  However  surprisingly   levels  at   the  effluent  of  a   sewage  treatment   plant   were   the   lowest   at   6μg/L   for   DBP   while   all   other  

Page 9: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  9  

sample   sites   were   above   12.1μg/L.   For   DEHP   the   highest  concentration   was   found   at   the   sewage   treatment   plant   (1.9μg/L)  that  also  coincided  with  the  percentage  of  DEHP  found  in  the  samples  1.9%  for  DEHP  (79.4%  for  DBP).  This  contradicts  previous  research  claiming   that   DEHP   has   the   highest   environmental   levels.   However  this   could   be   due   to   the   higher   degradability   of   DEHP   under  anaerobic  conditions  (Huang  et  al.,  2008).  In  Germany  DEHP  surface  water   levels   ranged   between   0.33-­‐97.8μg/L   and   sediment   levels  varied   between   0.21-­‐8.44mg/kg   dry   weight   and   for   DBP   0.12-­‐8.80μg/L   and   0.06-­‐2.08mg/kg   dry  weight,   respectively   (Fromme   et  al.,   2002).   This   study   showed   both   phthalates   to   have   a   wide  variability  in  levels  throughout  Germany  although  DEHP  always  had  the  highest  levels.    In  the  Netherlands  environmental  measurements  were  taken  in  2005  and   it   was   found   that   DEHP   showed   the   highest   concentrations   in  both  mean  municipal   sewage   treatment   plant   and   industrial   waste  water  types  (Vethaak  et  al.,  2005).  Mean  municipal  sewage  treatment  plant  effluent  levels  were  around  1.5μg/L  and  industrial  wastewater  levels  were  150μg/L  compared  to  DBP  that  showed  levels  of  0.3  and  2.2μg/L.  70%  of   the  DEHP  and  DBP  samples  contained   levels  above  the   level  of  detection  (LOD)  although  only  30%  of   the  DBP  samples  were   above   the   LOD   in   the   sewage   treatment   plant   effluent  water.  Fish  muscle  concentrations  of  Bream  (Abramis  brama)  and  Flounder  (Platichthys   flesus)   showed  mean   concentrations   of   0.044μg  DBP/g,  0.153μg  DEHP/g  and  0.0078μg  DBP/g,  0.064μg  DEHP/g  in  each  fish  respectively   (Vethaak   et   al.,   2005).   It   seems   that   phthalate  concentration  varies  not  only  within  country  or  city  but  also  within  micro  environments  and  water  types.  

2.4  Half-­‐lives    Half-­‐lives  of  phthalates  are  the  time  for  a  substance  to  fall  to  half  its  original  concentration  (i.e.  degrading)  (Staples  et  al.,  21997)  through  hydrolysis  of  ester  bindings  (Liang  et  al.,  2008)  and  the  range  of  half-­‐lives  referring  to  phthalates  is  vast.    Staples  et  al.,  (1997)  reported  a  half-­‐life   of   28   day   on   average   for   phthalates  within   sewage   sludge,  

Page 10: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  10  

while   within   the   atmosphere   half-­‐lives   consist   of   around   one   day  (DBP-­‐<6  days,  DEHP-­‐<2  days,  DINP-­‐<2  days).  Within  sediment  half-­‐lives  of  approximately  <one  week  –  several  months  may  be  recorded  and   within   surface   waters   <one   day   –   two   weeks   (Staples   et   al.,  1997).  Staples  et  al.  also  reported  a  half-­‐life  of  years  through  aqueous  hydrolysis  (DBP–22  years,  DEHP-­‐2000  years).  In  contrast  Yuan  et  al.  (2010)   reported   that   DBP   and   DEHP   had   half-­‐lives   of   1.6-­‐2.9   days  and   5.0-­‐8.3   days   within   sediment,   respectively.   It   has   also   been  postulated   that   DEHP   degrades   fairly   rapidly   under   aerobic  conditions   (Brooke   et   al.,   1991).   Microbial   degradation   has   shown  DBP  to  be  completely  degraded  within  28  days  (Liang  et  al.,  2008).  In  Turner   and  Rawling   (2000)  eight  phthalates  were   found   in   a  water  sample  and  half-­‐lives  were  measured.  On  average  the  phthalate  half-­‐life  in  aerobic  conditions  was  between  2.4-­‐14.8  days  and  14-­‐34  days  under   anaerobic   conditions.   Other   studies   such   as   Yuwatini   et   al.,  (2006)   showed   that   DEHP   half   life   in   water   is   approximately   two  days   while   in   sediment   it   can   last   up   to   14   days.   Magdouli   et   al.,  (2013)   stated   that   half-­‐lives   of   DEHP   are   <one   month   in   aerobic  conditions   and  >one  month   in   anaerobic   conditions.   In  water   (with  sun)  under  acidic  conditions  half-­‐lives  can  be  around  390  days  while  in  neutral  conditions  may  be  up  to  1600  days.    From  above  it  is  clear  that  phthalate  half-­‐lives  may  have  wide  ranges.  This   is   due   to   the   different   environmental   compartments   in   which  the  phthalate  may  be  present  i.e.  atmosphere,  sediment,  water,  inside  the  organism  as  each  situation  will  affect  the  half-­‐life  as  well  as  what  process  of  degradation  is  measured.  This  makes  it  difficult  to  consent  on   fixed  half-­‐life   values.   In   general   it   is   thought   that   the   longer   the  phthalate  chain  (R  group  in  figure  1)  the  longer  the  half-­‐life  and  the  more   persistent   it   will   be   and   that   aerobic   conditions   will   almost  most   certainly   speed  up  degradation   compared   to   anaerobic   (Liang  et   al.,   2008).   The   organization   for   economic   co-­‐operation   and  development   (OECD)   has   guideline   tests   and   criteria   for   defining  ‘ready   biodegradability’.   Using   these   criteria,   >60%   removal   of  inorganic   carbon   within   a   10-­‐day   window   of   the   28-­‐day   test,   both  DBP  and  DEHP  are   readily  biodegradable   in   all   three   states   (water,  sediment   and   air).   Data   concerning   DINP   was   only   available   for  

Page 11: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  11  

atmospheric  half-­‐life  but  still   fits  within   the  criteria   for  bing  readily  biodegradable.  If  all  half-­‐life  tests  incorporated  these  test  guidelines  then  more  accurate  comparisons  could  be  made.  

2.5  Inside  the  organism    Phthalate   accumulation  within   organisms   is   also   low,   partly   due   to  their  biodegradability  but  also  due  to  the  compound  itself  not  being  highly   accumulative   in   tissue,   rendering   phthalates   non   bio-­‐accumulative  compounds  (Van  Den  Berg  et  al.,  2003;  Oehlmann  et  al.,  2009  and  Mankidy  et  al.,  2013).  Due  to  their  high  transformation  rate  phthalates   are   not   bio-­‐accumulative   (Mankidy   et   al.,   2013   and   Van  Den   Berg   et   al.   2003)   meaning   that   on   one   hand   the   phthalate  compound   is   transformed   into   a   metabolite   that   can   then   interact  with   receptors   and   enzymes   within   the   organism   (Euling   et   al.,  2013).  On   the  other  hand,   this  metabolism  also  produces   sulphates  and   other   glucuronides   that   assist   in   the   removal   of   the   parent  compound  (phthalate)   reducing   the  adverse  effects  of   the  phthalate  to  the  organism  and  also  through  the  food  chain  (Van  Den  Berg  et  al.,  2003  and  Van  Wezel  et  al.  2000).  

2.6  Modes  of  action  once  inside  an  organism    Phthalates   being   EDC’s   have   a   multiple   array   of   modes   of   action  (MOA)  making  it  important  to  understand  how  the  EDC  interacts  on  a  cellular   level   (Nelson   and   Habibi,   2013).   Endogenous   hormones  (specifically  estrogen  and  androgen)  are  most  commonly  the  concern  when   regarding   phthalates.   Estrogenic   receptors   (ERs)   and  androgenic   receptors   (ARs)   are   important   in   reproduction   (ER   and  AR),  sexual  differentiation  (AR)  and  even  adult  sexual  behavior  (AR)  (Harbott   et   al.,   2007   and   Thibaut   and   Porte,   2004).   Peroxisome  proliferator   activated   receptors   (PPARs)   act   as   regulators   for   lipid  and   carbohydrate   metabolism   as   well   as   cell   differentiation  (Maradonna  et  al.,  2013).  Another  MOA  is  through  oxidative  damage  (OxD)   that   can   cause   disturbances   to   the   cellular   metabolism  (Harbott   et  al.,  2007).   All   these   receptors   are   present   on   cell  walls.  EDC’s  show  similar  biological  effects  to  estrogens  and  androgens  and  interfere  (agonistically/antagonistically)  with  the  cell  receptors  (Van  

Page 12: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  12  

den   Berg   et   al.,   2003)   either   decreasing   or   increasing   gene  expression,   production   of   hormones,   enzymes   and   phase   II  metabolites  affecting  the  level  of  active  hormones  present  within  an  organisms  (Thibaut  and  Porte,  2004).  

2.7  Environmental  risk  limits    The  European  commission  previously  considered  the  four  phthalates  (DEHP,   DBP,   DINP   and   DIDP)   priority   substances   meaning   that  environmental   risk   assessments   (ERA)  must   have   been   carried   out  on   these   substances   (Oehlmann   et   al.,   2008).   ERA’s   compare  environmental   concentrations   or   predicted   environmental  concentrations   (PEC)   with   the   predicted   no-­‐effect   concentrations  (PNEC).  When  the  PEC/PNEC  ratio  is  <1  there  is  no  risk,  where  as  if  the  ratio  is  ≥1  there  is  a  potential  risk  meaning  strategies  must  be  put  in  place  to  reduce  the  concentrations.  For  the  EPA  to  recognize  acute  effects,   a   total   of   five   tests   must   be   completed   on   at   least   four  different   species   using   the   limit   of   solubility   concentration   (max.  3μg/L)   (Oelmann   et   al.,   2008).   By   2004   the   European   union   risk  assessment  reports  stated  that  for  DBP,  DINP  and  DIDP  there  was  no  need  for  testing  or  information.  DEHP  was  not  granted  similar  status  and   therefore   still   remained   on   the   priority   substance   list     in   2008  (EC,  2014  and  Oehlmann  et  al.,  2008).  

2.8  Objective    This   paper   will   focus   on   plastic   derived   EDC   known   as   phthalates.  Background   on   phthalates   and   why   they   are   the   focus   of   research  will   be   given.   It  will   highlight   the   associated   endocrine   disruptions  (developmental  and  reproductive)  and  will  speculate  to  future  work.  In   previous   reviews,   fish   have   never   been   the   sole   focus   neither  experiment   set   up   explained.   It   has   been   approximately   13   years  since  the  last  review  that  incorporated  over  12  studies  (Van  Wezel  et  al.,   2000).   The  paper  will   focus   on   four  phthalates   allowing   a  more  refined  and  in  depth  review.        

Page 13: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  13  

III.  Method    For   this   paper   focus   was   on   the   compounds   DEHP,   DBP   DINP   and  DIDP   due   to   their   high   abundance  within   the   environment   (former  two)  and  acclaimed  ‘no  effects’  of  the  latter  two  (Oehlman  et  al.,  2009  and   Hallmark,   2010).   Searches   were   be   carried   out   on   ’google’  ‘google  scholar’  and  ‘Web  of  science’  focusing  mainly  on  publications  within   the   years   2000-­‐2014.   Searches   for   DEHP,   DBP,   DINP,   DIDP,  effects   of   DEHP/DBP/DINP/DIDP   on   aquatic   organisms/fish,  reproductive/developmental/metabolic   effects   of   phthalates,  vitellogenin   effects   of   phthalates,   intersex   caused   by   endocrine  disrupters,   and   environmental   phthalates   are   a   few   of   the   search  terms   used.   The  main   duration   of   research   lasted   approximately   3  weeks-­‐1  month  and  only   full   text   articles  were   incorporated  within  the  paper.  

IV.  Results    A   total   of   46   papers   were   gathered   and   divided   into   sections   on  organism   toxicity   (≈18),   phthalate   levels   in   the   environment   (≈5),  general  information,  however  nearly  all  articles  had  multiple  section  uses.  Due   to   the  majority   of   organism   toxicity   publication   a   further  division   of   pre   2000   and   post   2000   research   as  well   as   compound  groups   were   added.   This   was   done   due   to   the   majority   of   papers  found  being  post  2000  and  to  separate   ‘recent  work’   from  ‘previous  work’.  All  publications  were  given  in  publication  date  order  (oldest-­‐newest).    Most   experiments   within   the   ecotoxicology   field   focus   on   either   in  vivo   or   in   vitro   set-­‐ups.   The   former   refers   to   the   whole   organism  being   studied   allowing   observation   of   the   overall   effect   of  compounds   on   the   organism.   The   latter   refers   to   using   cells   in  controlled  environments  (such  as  petri  dishes,  assays,  etc)  where  for  example  assays  can  provide  information  on  the  mechanism  of  action  (MOA)  of  certain  compounds;  unfortunately  this  does  not  mimic  the  whole  organism  (Sohoni  and  Sumpter,  1998).  

Page 14: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  14  

4.1  Summary  of  literature  (1980-­‐1999)    Table  1:  ED  effects  of  phthalates  in  in  vitro  receptor  binding  affinity  tests.    

Cell  type   Effect  (mM)   Remark   Original  references  (within  Van  Wezel  et  al.,  2000)  

DBP  Trout  hepatocyte   EC50  =  1   REP:  6.7x10-­‐6   Jobling  et  al.,  1995  

Trout  hepatic  cytosol   EC  10-­‐25  =  0.17   REP:  2x10-­‐5   Knudsen  and  Pottinger,  1999  DEHP  

Trout  hepatocyte   EC75  =  1   REP:  1x10-­‐5   Jobling  et  al.,  1995  

Trout  hepatic  cytosol   EC10-­‐25  =  0.17   REP:  2x10-­‐5   Knudsen  and  Pottinger,  1999  DINP  

Trout  hepatic  cytosol   No  effect  at  0.17   -­‐   Knudsen  and  Pottinger,  1999    

REP:  relative  potency  compared  with  17-­‐estradiol  (Based  of  appendices  by  Van  Wezel  et  al.,  2000).    Table  2:  Toxicity  data  for  DBP.  

 

1-­‐Y:  chemical  analyzed  in  test  solution  and  N:  chemical  not  analyzed  in  test  solution  or  no   data.   2-­‐S:   static,   R:   Static   with   renewal   and   F:   flow   through.   3-­‐S:   survival,   R:  reproductive   and   G:   Growth.   *-­‐Average   of   results   (mg/L)   when   all   parameters   and  authors  were  the  same  (Based  of  appendices  by  Van  Wezel  et  al.,  2000).  

Organism   Chemical  analysis1  

Test  type2  

Exp.  time  

End  point3  

Results  (mg/L)  

Original  references  (within  Van  Wezel  et  al.,  2000)  

Chronic  toxicity  to  freshwater  organisms:  NOEC  values  Oncorhynchus  mykiss   Y   P   60d   G   0.1   Rhodes  et  al.,  1995  

Pimephales  promelas   Y   F   20d   G   0.56   McCarthy  and  Whitmore,  1985  

Acute  toxicity  to  freshwater  organisms:  L(E)C50  values  Brachydanio  rerio   Y   S,  R   96h   S   2.2   Scholz,  1994  Lepomis  macrochirus*   N   S   96h   S   1.6   Mayer  and  Ellersieck,  1986  

Lepomis  macrochirus   N   F   96h   S   1.6   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss*   N   S   96h   S   4.4   Mayer  and  Ellersieck,  1986  

Oncorhynchus  mykiss   N   F   96h   S   1.5   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss   Y   -­‐   96h   S   1.2-­‐1.8   Hrudey  et  al.,  1976  Oncorhynchus  mykiss   Y   F   96h   S   1.6   Adams  et  al.,  1995  Perca  flavescens   N   F   96h   S   0.35   Mayer  and  Ellersieck,  1986  Pimephales  promelas   N   S   96h   S   1.3   Mayer  and  Ellersieck,  1986  Pimephales  promelas   N   F   96h   S   4   Mayer  and  Ellersieck,  1986  

Pimephales  promelas   N   -­‐   96h   S   2   McCarthy  and  Whitmore,  1985  

Pimephales  promelas   Y   S   96h   S   1.5   Adams  et  al.,  1995  Pimephales  promelas*   Y   F   96h   S   0.97   DeFoe  et  al.,1990  

Pimephales  promelas   Y   F   96h   S   0.92   Adams  et  al.,  1995  

Page 15: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  15  

Table  3:  Toxicity  data  for  DEHP.    

Organism   Chemical  analysis1  

Test  type2  

Exp.  time  

End  point3  

Results  (mg/L)  

Original  references  (within  Van  Wezel  et  al.,  2000)  

Chronic  toxicity  to  freshwater  organisms:  NOEC  values  Brachydanio  rerio   N   R   35d   S,  G   ≥0.32   Canton  et  al.,  1984  Gasterosteus  aculeatus   N   -­‐   28d   S,  G   ≥0.32   Van  den  Dikkenberg  et  al.,  1989  

Jordanella  floridae   N   S   28d   S,  G   ≥0.32   Adema  et  al.,  1981  Oncorhynchus  mykiss   Y   F   102d   S,  R   0.005   Mehrle  and  Mayer,  1976  Oncorhynchus  mykiss   Y   F   90d   S,  G,  R   >0.5   DeFoe  et  al.,  1990  

Oncorhynchus  mykiss   Y   F   70d   S,  G,  R   >0.0073   Cohle  and  Stratton,  1992  (EU  draft)  

Oryzias  latipes   Y   F   168d   G   0.55   DeFoe  et  al.,  1990    Oryzias  latipes   N   R   28d   S,  G   ≥0.32   Adema  et  al.,  1981  Pimephales  promelas   Y   F   56d   S,  G   0.062   Mehrle  and  Mayer,  1976  Poecilia  reticulata   N   -­‐   28d   S,  G   ≥0.32   Adema  et  al.,  1981  

Acute  toxicity  to  freshwater  organisms:  L(E)C50  values  Brachydanio  rerio   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989  Brachydanio  rerio   Y   R   96h   S   >100   Scholz,  1995  Gasterosteus  aculeatus   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989  

Ictalurus  punctatus   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973  Ictalurus  punctatus   Y   F   96h   S   >100   Johnson  and  Finley,  1980  Ictalurus  punctatus   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986  Ictalurus  punctatus   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986  Ictalurus  punctatus   N   F   96h   S   >0.2   Mayer  and  Ellersieck,  1986  Jordanella  floridae   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989  Lepomis  macrochirus   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973  Lepomis  macrochirus   N   S   96h   S   >250   Bionomics  Inc.,  1972  Lepomis  macrochirus   Y   F   96h   S   >100   Johnson  and  Finley,  1980  Lepomis  macrochirus   Y   S   96h   S   >0.2   Adams  et  al.,  1995  Lepomis  macrochirus   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986  Lepomis  macrochirus   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986  Lepomis  macrochirus   N   F   96h   S   >0.2   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973  Oncorhynchus  mykiss   -­‐   S   96h   S   >1000   Silvo,  1974  (EU  draft)  Oncorhynchus  mykiss   N   S   96h   S   >540   Hrudey  et  al.,  1976  Oncorhynchus  mykiss   Y   F   96h   S   >0.32   Adams  et  al.,  1995  Oncorhynchus  kisutch   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986  Oncorhynchus  kisutch   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss   N   S   24h   S   >100   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss   N   S   96h   S   >100   Mayer  and  Ellersieck,  1986  Oncorhynchus  mykiss   Y   F   96h   S   >20   DeFoe  et  al.,  1990  Oryzias  latipes   N   -­‐   96h   S   >0.32   Van  den  Dikkenberg  et  al.,  1989  Oryzias  latipes   Y   F   96h   S   >0.67   DeFoe  et  al.,  1990  Pimephales  promelas   -­‐   S   96h   S   >10   Mayer  and  Sanders,  1973  Pimephales  promelas   Y   F   96h   S   >0.67   DeFoe  et  al.,  1990  

Page 16: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  16  

Pimephales  promelas   N   F   96h   S   >1   Mayer  and  Ellersieck,  1986  Pimephales  promelas   Y   F   96h   S   >0.33   DeFoe  et  al.,  1990  Pimephales  promelas   Y   S   96h   S   >0.16   Adams  et  al.,  1995  

 

1-­‐Y:  chemical  analyzed  in  test  solution  and  N:  chemical  not  analyzed  in  test  solution  or  no   data.   2-­‐S:   static,   R:   Static   with   renewal   and   F:   flow   through.   3-­‐S:   survival,   R:  reproductive  and  G:  Growth.  EU  draft:  (DEHP)  (Based  of  appendices  by  Van  Wezel  et  al.,  2000).  

4.2  Literature  (1980-­‐1999)    A  meta-­‐analysis   using   journals   from  1980-­‐1999  was   carried   out   by  Van  Wezel  et  al.,  2000.  Above  in  table  1,  2  and  3  a  summary  of  these  results   (no   observed   effect   concentration-­‐NOEC,   X%   effective  concentrations-­‐ECx,  chronic  and  acute  exposure)  concerning  fish  can  be  found.  They  found  minimal  difference  between  nominal  and  actual  concentrations   used   in   studies   concerning   DBP.   The  most   sensitive  freshwater   organism   was   Oncorhynchus   mykiss   that   showed   the  lowest   chronic   NOEC   at   0.1mg/L   (table   2).   Acute   toxicity   data  was  more   available   (see   table   5)   and  Van  Wezel   et  al.  reported   that   ‘no  useful   test’   regarding   soil   or   sediment  was   found.  When   comparing  chronic   and   acute   DEHP   results   it   was   found   that   both   categories  showed  no  effects  in  the  majority  of  the  studies  (even  at  the  highest  concentration   tested   acute:   0.55mg/L   and   chronic:   1x106mg/L).  When  effects  were  recorded  and  NOEC  could  be  produced  the  NOEC  was  above  the  water  solubility  of  phthalates  (3μg/L).    With  all  the  data  available  the  authors  derived  an  ERL  for  the  aquatic  and   sediment   environments.   For   DBP   this   was   done   by   using   the  lowest  NOEC  (0.1mg/L)  and  applying  an  assessment  factor  of  10.  For  sediment  due  to  lack  of  data  the  ERL  was  derived  by  multiplying  the  lowest   Koc,   partition   coefficient   between   organic   carbon   in   the  soil/sediment   and  water,   value   (1.2x103L/kg:  12mg/kg).   For  DEHP,  due   to   no   effects   observed,   the   NOEC   for   the   only   soil   organisms  (Rana  arvalis  –  frog)  was  used  10mg/kg  fresh  weight  and  applying  a  factor   of   10.   The   ERL   for   soil   was   then   used   to   derive   an   ERL   for  water  by  combining  with  the  lowest  soil/sediment  Koc.  The  derived  ERLs   for  DBP:  10μg/L   and  0.7mg/Kg   fresh  weight   and  DEHP:   0.19μg/L   and   1.0mg/Kg   fresh   weight.   When   surface   water  

Page 17: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  17  

samples   were   taken   at   different   location   in   the   Netherlands   they  found   that   DBP   levels   were   rarely   above   the   ERL   (both   water   and  sediment)   derived   in   this   study.   For   DEHP   however   unexpected  levels   3-­‐20   times   higher   than   the   derived   ERL   for   water   were  observed   and   sediment   levels   were   also   much   higher   than   the  derived  sediment  ERL.    

4.3  Summary  of  literature  post  2000    Table  4:  DBP  summary.      

N-­‐Depicts  nominal   concentrations.  A-­‐depicts  acute  exposure   studies.  C-­‐depicts   chronic  exposure   studies.   []-­‐concentration   causing   significant   effects.   VTG-­‐vitellogenin.  D/hpf-­‐days/hours   post   fertilization.   Dep.-­‐depuration   (none   contaminated  water).  *-­‐<0.05,  **<0.01,  ***<0.001  significance  levels.  

Species  Age,  sex,  exp.  type  and  concentration  (μg/L)  (unless  indicated)  

Exposure  route  and  duration  

Effects   Authors  

Sander  lucioperca  

Juvenile  (61  dph)  (in  vivo)  0.125,  0.25,  0.5,  1,  2g/Kg  feed  

Food  5  weeks  

 

*No  effects  on  female  fish,  growth  rate  and  survival.  *Increases  in  [DBP]  shows  decreases  in  male  specimens.  

Jarmolowicz    et  al.,  (2003)  

Danio  rerio  Adult  male  (in  vivo  and  in  vitro)  500  

Water  15  days  

Day  7:  *increase  in  surface  density  of  peroxisomes.    

Day  15:  *increase  in  both  surface  density  and  numerical  density  of  peroxisomes.  Increase  in  activity  of  acyl-­‐CoA  oxidase.    

Ortiz-­‐Zarragoitia  and  Cajaraville  (2005)  

Danio  rerio  

1)  Embryos  (1-­‐2  hpf)  25,  100  2)  Adult  female  100,  500  (in  vivo)    

Water  1:  8  weeks  2:  15  days  

1)  [100]  Increase  in  number  and  volume  of  peroxisome  density  and  acyl-­‐CoA  oxidase  enzyme.  2)  Mortality  of  female  offspring  increased.  

Ortiz-­‐Zarragoitia    et  al.,  (2006)  

Gasterosteus  aculetaus  

Adult  male  (in  vivo)  N50,  N100  (Measured  levels  15,  35  respectively)  

Water  22  days  

[35*/**]  Increase  in  testosterone  and  oxidised  testosterone.  Decrease  in  spiggin  (protein  glue).    

Aoki    et  al.,  (2011)  

Cyprinus  carpio   (in  vitro)  100μM,  1mM  

Incubated  in  vitro  

[100]  Inhibited  formation  of  5α-­‐Adione  and  synthesis  of  5α-­‐DHT.  [1]  Increased  synthesis  of  17α,20α/βDP    

Thibaut  and  Porte  (2004)  

Pimephales  promelis  

1  hpf  (in  vivo  and  In  vitro)  1000  

Water  96  hpf   None  

Mankidy  et  al.,  (2013)    

Page 18: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  18  

 Table  5:  DEHP  summary.    

N-­‐Depicts   nominal   concentrations.   []-­‐concentration   causing   significant   effects.   Hpf-­‐hours   post   fertilization.   Dph-­‐days   post   hatch.   Dep.-­‐depuration   (none   contaminated  water).  *-­‐<0.05,  **<0.01  significance  levels.        

Species  Age,  sex,  exp.  type  and  concentration  (μg/L)  (unless  indicated)  

Exposure  route  and  duration  

Effects   Authors  

Oryzias  laptipes  

 

Adult  male  (in  vivo)  N0.1,  N0.3,  N1μmol    

Water  2  weeks   None  

Shioda  and  Wakabayashi  (2000)  

Oryzias  laptipes    

A)  a  few  days  old  10,  50,  100  C)  7  month  N1,  N10,  N50  (in  vivo  and  in  vitro)    

Water  A:  5  days  C:  3  months  

A)  [all]  VTG  protein  not  present  in  males.  C)  [N10*,  N50]*  GSI  lower  in  females  and  [Nall]  retardation  in  ovary  (oocyte)  development.  

Kim  et  al.,  (2002)  

Oryzias  laptipes  

1dpf  (in  vivo)  N0.01,  N0.1,  N1,  N10  

Water  Until  hatched  

[N0.1,  N1]  Decreased  hatch  time.  Post  5-­‐6  months  dep.:  [N0.01***,  N0.1*,  N1***]  increased  mortality,  [N0.01*]  altered  sex  ratio.  [N0.1*,  N1*,  N10**]  decrease  in  male  body  weight.    

Chikae  et  al.,  (2004)  

Poecilia  reticulate    

<1  week  (in  vivo)  0.1,  1,  10  

Water  3  months  

Day  14:  [10]  decrease  in  length  and  weight.  Day  49  and  91:  [1,  10]  decrease  in  length  and  weight  (more  significant  in  females  [all]**)    

Zantonelli  et  al.,  (2009)  

Danio  rerio    

6  month  female  (in  vivo  and  In  vitro)  0.02,  0.2,  2,  20,  40  

Water  3  weeks  

[2]  Increase  in  VTG  oocytes  and  decrease  in  pre-­‐VTG  oocytes*.  [all]  down  regulation  of  LHR  and  plasma  VTG.    

Carnevali  et  al.,  (2010)  

Danio  rerio    

Mature  males  (in  vivo)  0.5,  50,  5000  mg/kg  body  weight  

Injection  on  day  1  and  5    

[5000***]  Decrease  in  fertilization  success.  [50*,  5000**/***]  decrease  in  no.  of    spermatozoa  and  increase  in  no.  of  spermatocytes.  [5000*]  increase  in  VTG  levels  (males  should  not  have  VTG).  [5000**/*]  increase  expression  of  acox1  and  ehhadh.    

Uren-­‐Webster  et  al.,  (2010)  

Cyprinus  carpio  

(in  vitro)  100μM,  1mM  

Incubated  in  vitro  

[100]  Inhibited  formation  of  5α-­‐Adione.    

Thibaut  and  Porte  (2004)  

Pimephales  promelis  

1  hpf  (in  vivo  and  In  vitro)  1000  

Water  96  hpf  

[1000**/*]  increase  in  embryo  mortality  and  increased  lipid  peroxidation    

Mankidy  et  al.,  (2013)  

(Salmo  salar)  

4  weeks  post  hatch  (in  vivo)  N0,  N400,  N800,  N1500mg/kg  feed  

Food  4  weeks  

[DEHP]  3x  greater  then  MEHP  (metabolite).  1  week  after  dep.:  DEHP+MEHP  levels  returned  to  background  levels.  1  month  dep.:  [N1500*]  ovo-­‐testis  combo    

Norman  et  al.,  (2007)  

Page 19: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  19  

 Table  6:  DINP  and  DIDP  summary.    

Species  Age,  sex,  exp.  type  and  concentration  (μg/L)  (unless  indicated)  

Exposure  route  and  duration  

Effects   Authors  

Oryzias  laptipes    

2  week  old  larvae  (in  vivo)  20μg/g  (for  both  DINP  and  DIDP)  

Food  F0  till  gen.  F2-­‐42dph  

 

DINP:  F0  Embryo  development  showed  decreases  in  red  blood  cell  pigment*.  DINP:  F1  survival  decreased*    

Patyna  et  al.,  (2006)  

 

Dph-­‐days  post  hatch.  *-­‐<0.05  significance   levels.  Patyna  et  al.  2006  uses  two  bioassays  for  a  single  effect.  Therefore  only  effects  proving  significant  on  both  assays  are  used  in  this  table.  

4.4  Literature  post  2000  

4.4.1  DEHP    In  2000  Shioda  and  wakabayashi  studied  the  effects  of  DEHP  (in  vivo)  on   the  number  of   eggs  produced  by  mating   couples   and  number  of  successful   hatchings   in   medaka   fish   (Oryzias   latipes).   For   this  experiments   groups   (one   male   and   two   females)   with   the   highest  number   of   fertilized   eggs   were   used.   Males   were   exposed   for   two  weeks  to  low  nominal  DEHP  concentrations  of  0.1,  0.3  and  1μmol/L    (through   means   of   water)   along   side   a   positive   (17   β–estradiol,   a  natural  estrogen)  and  negative  control  (tap  water).  Once  exposed  the  males   were   placed   back   into   their   original   group.   The   DEHP  concentrations  showed  no  significant  effects  on  number  of  eggs  and  hatchings,  which   could   be   due   to   the   extremely   low   concentrations  used.    Both  chronic  and  acute  exposures  of  DEHP  (in  vivo  and  in  vitro)  were  studied  by  Kim  et  al.   in   2002.   Japanese  Medaka   fish   (seven  months  old)  were  exposed  via  water  to  concentration  of  10,  50  and  100μg/L  of  DEHP  (for  acute  testing).  For  chronic  testing  fish  a  couple  days  old  were   exposed   to   nominal   concentrations   of   1,   10   and   50μg/L.   In  acute  exposure  (5  days)  it  was  found  that  the  protein  (200-­‐kDa)  used  for   identification  of  vitellogenin  (VTG)  proteins  were  not  present   in  male  Medaka  in  all  four  exposures  (including  the  control).  In  females  however   VTG   was   found   in   all   the   control   and   the   exposed   fish,  although   two   out   of   the   five   fish   in   1μg/L   exposed   tank   showed  

Page 20: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  20  

extremely  low  levels.  Overall,  acute  effects  of  DEHP  on  VTG  were  not  significant.    The  chronic  exposure  (three  months)  to  DEHP  showed  the  200-­‐kDa  protein   not   to   be   present   in  male   fish.   In   females   fish   however   the  protein   occurred   less   frequently   as   DEHP   concentration   increased.  The  weight  and   length  of   fish  used   in   the  chronic  exposure  showed  no   statistical   difference   in   all   treatments   showing  DEHP   to  have  no  effect  on  growth.  The  Gonado-­‐somatic  index  (GSI)  of  females  in  both  10  and  50μg/L  DEHP  treatments  was  statistically  lower  than  that  of  the  control   females  while  no  effect  was   found  on  male   fish  showing  DEHP  to  inhibit  the  development  of  Medaka  fish  ovaries.    Histology   of   both   the   gonads   and  ovaries   from  the   chronically   exposed   fish   were   also   looked  at.   Here   gonads   of   the   male   fish   were   not  deformed   compared   to   the   control,   while   the  oocytes  within   the  ovaries  of   female   fish  were.  In  the  control   females,  oocytes  were  developed  to   either   stage   two   or   three   (stage   three  allowing   them  to  be   fertilized).   In  all  1,  10  and  50μg/L   DEHP   treatments   only   37%,   0%   and  22%,   respectively,   of   the   fish   had   matured  oocytes  at  stage   three  compared  to  54%  of   the  control   –   taking   note   that   10μg/L   showed   no  stage  three  development.  Along  side,  only  26%,  25%  and  12%  of  the  female  fish  (respectively  of  1,   10,   50μg/L   DEHP)   could   reach   stage   one  compared   to   the   control   where   oocytes  development  was  not  stopped  (figure  2).  This  shows  the  retardation  effects   in   ovary   growth   of   DEHP   using   environmentally   relevant  concentrations.    In  2004,  Chikae  et  al.  also  conducted  an  in  vivo  study  on  the  negative  (irreversible)  effects  that  DEHP  exposure  using  pre-­‐hatched  Medaka  would   have   on   adulthood   (5-­‐6   months   post   hatch).   Treatments   of  water   containing   nominal   DEHP   concentrations   of   0.01,   0.1,   1,   10  

Figure  2:  Ovaries  of  females  medaka  after  3  months.  A)  control,  developed  to  stage  3  B)  DEHP  (10μg/L)  stuck  in  stage  1  (Kim  et  al.,  2002)  

Page 21: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  21  

μg/L   and   a   control   were   used   to   expose   1-­‐day-­‐old   fertilized   eggs.  Once  hatched   the   fish  were   transferred   to  DEHP   free  water   for   5-­‐6  months.      At  the  beginning  (pre-­‐hatch)  over  90%  of  the  eggs  in  each  treatment  showed   signs   of   eye   development   (eyeing)   except   at   10μg/L   were  only   83%   were   found   eyeing.   Of   those   eggs   that   had   successful  eyeing,   over   90%   continued   to   hatch   in   each   treatment.   The   only  significant   difference   was   a   decrease   in   hatching   time   seen   at   the  0.1μg/L   (P<0.005)   and   1μg/L   DEHP   treatments   compared   to   the  control.   In   adulthood,   after   no   DEHP   exposure   for   5-­‐6   months,  irreversible   effects   were   significant   compared   to   the   control.   Post-­‐hatch  mortality  was  significantly  increased  in  the  0.01,  0.1  and  1μg/L  treatments   (P<0.001,   <0.05   and   <0.001,   respectively).   Sex   ratio  within   the   0.01μg/L   treatment   was   significantly   altered   (4m:16f),  which   may   have   been   due   to   increased   male   mortality   or  feminization.   Body   weight   was   significant   different   in   male   fish  within  the  treatment  0.1,  1μg/L  (P<0.05)  and  10μg/L  (P<0.01).  This  study   shows   the   irreversible   effects   of   phthalate   exposure   in  embryonic  states  of  medaka  fish.    Norman   et   al.,   (2007)   studied   DEHP   (in   vivo)   on   Atlantic   salmon  

(Salmo   salar)   with   nominal  concentrations   of   0,   400,   800   and  1500mg  DEHP/kg   feed.  Here   levels   of  DEHP   and   its   metabolite   mono-­‐ethylhexyl   phthalate   (MEHP)   within  fish   tissue   were   studied   after   acute  exposure  (four  weeks)  of  DEHP.  Along  side,   histological,   growth   and   liver  effects  were  analyzed  after  one  month  of   depuration   (no   exposure   to  DEHP).  The   DEHP   concentration   in   the   fish  tissue   post   acute   phase   was   three  times  higher  than  the  concentration  of  MEHP.   Control   fish   that   were   not  

Figure  3:  guppy  fish  at  day  49  with  treatments  above.  Grid  is  1mm  (Zanotelli  et  al.,  2009).  

Page 22: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  22  

exposed   to   dietary   DEHP   showed   low   background   levels   of   DEHP  (0.016  mg/kg   fish)  and  MEHP  (0.020  mg/kg   fish).  DEHP  and  MEHP  concentrations   increased   in   tissue   as   treatment   concentration  increased.  Both  were  eliminated  to  near  background  levels  one  week  after  the  depuration  phase.  Mortality  in  all  groups  was  low  (4%)  and  no   difference   in   weight   and   sex   ratio   was   recorded   between   the  different  exposure  concentrations.  Within  each   treatment  a   few  fish  (1%  of  400  and  1500mg  DEHP/kg  food)  were  observed  anatomically  to   be   slightly   different   (increased   testes   size).   The   only   statistically  difference  recorded  was  in  the  treatment  group  of  1500mg  DEHP/kg  feed  where  6  out  of  the  202  fish  had  ovo-­‐testis  (P<0.014).  This  study  showed  that  DEHP  had  no  short-­‐term  effects.    Zanotelli   et   al.,   (2009)   conducted   a   study   focusing   on   the   growth  (weight   and   length)   of   <1-­‐week-­‐old   (larval)   guppy   fish   (Poecilia  reticulata).  The  guppy  fish  were  subjected  to  continuous  exposure  (in  vivo)  to  DEHP  through  water  (0.1,  1,  10μg/L).  By  day  14  a  statistically  significant  growth  inhibition  at  the  highest  DEHP  concentration  was  observed  and  increased  with  time.  After  49  days  of  exposure,  DEHP  treated   fish  were   compared   to   control   fish.   Length   showed   a   dose-­‐dependent  decrease,  where  DEHP  exposed  fish  at  1  and  10μg/L  were  15-­‐30%   shorter   (respectively)   than   the   control   and   weight   was  decreased   by   as   much   as   40-­‐70%   respectively.   After   91   days   of  chronic   exposure   to   environmentally   relevant  DEHP   concentrations  the   fish   showed   a   significant   decrease   in   weight   and   length:   fish  exposed  to  1  and  10μg/L  decreased  10%  and  26%  in   length  and  32  and  61%  in  weight,  respectively  (figure  3  below).  There  was  a  higher  level  of  significance  within  females  at  day  49,  with  all  concentrations  showing   a   P<0.01,   where   as   with   male   fish   at   day   49   only   10μg  DEHP/L  differed  form  the  control  with  P<0.01.  This  study  shows  that  chronic   exposure   as   low   as   1μg   DEHP/L   show   a   time   and   dose  dependent   relationship   when   it   comes   to   growth.   The   fish   used   in  this   study  were   considerably   small  which   could   have   increased   the  effects  observed.    Carnevali   et   al.,   (2010)  experimented   on   the   effects   of   DEHP   using  six-­‐month-­‐old  female  zebrafish  (Danio  rerio)  in  an  in  vivo  and  in  vitro  

Page 23: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  23  

study.   Environmentally   relevant   concentrations   of   0.02,   0.2,   2,   20,  40μg/L  as  well  as  a  positive  control  were  used  to  study  the  impact  on  fecundity,   ovulation   and   oocytes   maturation.   Fish   were   exposed  through   water   to   DEHP   for   three   weeks   and   were   compared   to   a  solvent   control.   Results   showed   that   fish   exposed   to   2μg/L   had   a  significant   increase   in   the   number   of   vitellogenic   oocytes.   This  was  associated   with   the   significant   decrease   in   pre-­‐vitellogenic   oocytes  compared   to   the   control   (P<0.05).   Down   regulation   of   ovarian  luteinizing   hormone   receptor   (LHR)   and   plasma   VTG   were  significantly   different   compared   to   the   control   at   all   five   doses   of  DEHP.  These  two  factors  clearly  show  the  estrogenic  activity  of  DEHP  with   regards   to   the   inhibition   of   oocytes   maturation.   This   is   also  supported   by   the   dose   dependent   increase   of   BMP15,   a   protein  involved   in   oocytes   maturation.   After   the   three-­‐week   exposure  period   the   female   fish  were   placed   into   a  mating   tank  with   control  males,   showing   that   the   fecundity   of   embryos   was   severely  compromised   compared   to   the   control.   This   study   shows   the  concrete   risk  associated  with  aquatic  organisms   living   in  phthalate-­‐polluted  areas.    Another  in  vivo  and  in  vitro  experiment  on  DEHP  by  Uren-­‐Webster  et  al.,   (2010)   studied   the   reproductive   health   of   male   zebra   fish.   16  colonies  (male  and  female  pairs)  were  used  that  were  consistent  with  egg   production   and   spawning   were   over   a   10   day   period.   Here  instead  of  the  dietary  or  water  exposure  as  previous  studies  applied,  the  DEHP  solution  was   injected   into   the   intraperitoneal   cavity.  This  method  of  administration  allowed  all  fish  to  receive  the  same  dose  as  well   as   being   able   to   target   male   specimens.   Environmentally  relevant   concentrations   of   0.5mg   DEHP/kg   of   body   weight   (bw),  range  within  measured  concentration  of  wild   fish,  50mg/kg  bw  and  an   extremely   high   5000mg/kg   bw   was   used   to   assess   the  mechanisms   of   phthalate   toxicity.   All   three   treatments   were  compared  to  a  control.  The  fertilization  success  of  males  subjected  to  5000mg/kg   bw   were   significantly   lower   than   the   other   three  treatments  (P<0.001),  although  this  was  only  when  including  the  full  10  day  exposure  period  (the  first  5  day  period  showed  no  significant  difference).    No   abnormal   embryo  development  or   embryo   survival  

Page 24: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  24  

effects   were   seen   in   the   treatments.   Histological   analysis   of   the  gonads  showed  significantly   lower  numbers  of  spermatozoa  (sperm  cell)  in  the  testes  of  males  injected  with  50mg/kg  of  bw  (P<0.05)  and  5000mg/kg  bw  (P<0.01)  compared  to   the  control   fish.  On  the  other  hand  there  was  a  significant  increase  in  the  number  of  spermatocytes  (immature  male  germ  cell)  compared  to  the  control  in  both  50mg/kg  bw  (P<0.05)  and  5000mg/kg  bw  (P<0.001).    When   studying   at   the   liver,   a   statistically   significant   increase  (P<0.05)   in   VTG   levels   was   recorded   in   the   treatment   5000mg/kg,  which   showed  DEHP   to  have   estrogenic   activity,   as  VTG   should  not  be  found  in  male  zebra  fish.  In  the  male  fish  a  significant  increase  in  the  expression  of   the  genes  acox1   (acyl-­‐coenzyme  A  oxidase  1)  and  ehhadh   (enoyl-­‐coenzyme   A   hydratase/3-­‐hydroxyacyl   coenzyme   A  dehydrogenase)   that   are   both   involved   in   lipid   metabolism   was  found.   Males   showed   no   alterations   in   swimming   and   feeding  behavior   throughout   the   study   (compared   to   controls).   This   study  used  mature  fish  which  are  known  to  be  less  sensitive  than  juvenile  fish,   which   may   have   caused   the   conclusion   that   DEHP   at  environmentally  relevant  concentrations  (0.5mg  DEHP/kg  bd)  show  no  short  term  reproductive  effect.    Lee  and  Liang  (2011)  studied  zebra  fish  offspring  and  exposed  them  for   3   months   to   low   doses   of   DEHP   through   water   in   vivo.   2ml   of  DEHP  was  placed  into  tanks  containing  110  liters  of  water,  and  every  month  an  additional  0.1ml  of  DEHP  was  added.  They  observed   that  DEHP   altered   the   sex   ratio   from   1:1   to   3:7,   although   they   failed   to  specify   if   this   was   significant.   Decreases   in   growth   (length   and  weight)   were   observed,   but   were   however   not   significant.   They  concluded  that  DEHP  showed  no  effect.  

4.4.2  DBP    In  Jarmolowicz  et  al.,  (2003)  DBP  concentrations  of  0.125,  0.25,  0.5,  1  and   2g/Kg   feed   were   used   to   determine   the   impact   on   the  reproductive   system   in   juvenile   European   pikeperch   (Sander  lucioperca)  in  an  in  vivo  study.  A  total  of  40  fish  were  placed  into  each  concentration  tank  with  a  control  tank  with  no  addition  of  DBP.  The  

Page 25: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  25  

experiment  was   divided   over   two   five  week   periods   the   first   being  61-­‐96  days  post  hatch  and  the  second  97-­‐132  days  post  hatch.  In  the  first   period   fish   were   fed   the   DBP   contaminated   feed.   During   the  second  period  fish  were  fed  uncontaminated  feed.  15  fish  from  each  tank  were   taken   for   histological   analysis   at   the   beginning   (60   days  post  hatch),  after  the  1st  and  the  2nd  period.  There  were  no  negative  changes   within   female   fish,   nor   in   survival   and   growth   rates  (P<0.05).      After  96  days  post-­‐hatch  the  sex  ratio  in  treatment  groups  0.125  and  025g/Kg  feed  was  1:1.  50%  of  the  males  in  those  two  groups  showed  gonads   that   were   comparable   to   those   of   the   control   group.   The  remaining  50%  showed   smaller   testes   size,   reduced   spermatogonia  (any   cell   of   the   gonad   which   matured   form   a   spermatocytes)   and  seminal  vesicles.  Increasing  concentration  of  DBP  showed  a  positive  correlation  with   reduction   in  male   specimens   (P<0.05).   Fish  within  the   treatment   group   2g/Kg   of   feed   had   a   significantly   altered   sex  ratio   (P<0.05).   In   the   two   highest   DBP   concentration   tanks   (1   and  2g/Kg   of   feed)   intersex   specimens   (6.7%)   were   recorded   although  not  significant.  Jarmolowicz  et  al.  concluded  that  DBP  acts  as  an  anti-­‐androgen   (blocking   endogenous   androgen   action)   creating   an  ‘estrogenic   environment’.   This   study   is   the   first   to   report   DBP  disruption  in  sex  differentiation  in  fish.    Ortiz-­‐Zarragoitia   and   Cajaraville   (2005)   used   high   DBP  concentrations   of   500μg/L   to   observe   effects   on   the   liver  peroxisomes,  enzyme  activity  of  Acyl-­‐CoA  oxidase  and  on  VTG  levels  (In   vivo   and   in   vitro).   They   exposed   adult   male   zebra   fish   through  water  for  15  days.  They  found  that  at  day  seven  the  surface  density  of  liver  peroxisomes  had  significantly   increased   (P<0.05)   compared   to  the   control   while   at   day   15   both   surface   density   and   numerical  density   had   significantly   increased   from   the   control   (P<0.05).   Acyl-­‐CoA   oxidase   showed   a   significant   increase   in   activity   at   both   time  points  (days  7  and  15).  Surprisingly  DBP  showed  no  significant  effect  on  VTG  levels.  They  concluded  that  DBP  shows  no  estrogenic  effect  in  male  zebra  fish.    

Page 26: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  26  

The   next   year   (2006)   Ortiz-­‐Zarragoitia  et  al.,   conducted  another  study  (in  vivo)  on   DBP   and   the   Actyl-­‐CoA   oxidase  enzyme,  peroxisomes  and  VTG,  but  also  mortality.   This   study  was   conducted   in  two  parts,  the  first  focusing  on  early  life  exposure   and   the   second   focusing   on  adult   life   exposure   and   their   offspring.  For   the   first  experiment  zebra   fish  eggs  were   exposed   (via   water)   to  concentrations   of   25   and   100μg/L.   A  solvent   control   was   used   to   compare  results.   1-­‐2   hpf   eggs   were   exposed   for  three   weeks.   Once   hatched   they   were  transferred  to  a  larger  tank  and  exposed  for  a   further   five  weeks.  Measurements  were   taken  at  4,  6,  10  days  post   fertilization   (dpf)   and   3   and   5   weeks   post   fertilization   (wpf).  Results  showed  that  survival  of  exposed  fish  did  not  differ   from  the  controls.   However   anatomical   deformities   were   observed   in   both  DBP   exposed   groups   (figure   4).   Spinal   cord   malformations   and  hypertrophy   of   the   yolk   sack   were   noticed   in   infant   fish   and   in  juvenile   fish   spinal   cord   and   swim   bladder   malformations   were  apparent.   Although   Ortiz-­‐Zarragoitia   et   al.,   (2006)   fail   to   specify  numbers  of  malformed  fish,  however  those  in  the  control  showed  no  signs  of  malformation.      As  with  the  prior  study  in  2005,  here  too  they  found  that  the  number  and   volume   of   peroxisome   density   as  well   as   the   Acyl-­‐CoA   oxidase  enzyme   increased   significantly   in   the   100μg/L   treatment   at   five  weeks  compared  to  the  control,  while  no  significant  differences  were  recorded   in   the   25μg/L   treatment.   All   fish  within   the   25μg/L  were  male   (testes   all   containing   spermatozoa   and   spermatogenic   cells)  while   only   two   in   the   100μg/L   showed   both   pre-­‐vitellogenic   and  vitellogenic   oocytes   therefore   classified   as   female   compared   to   the  control   (6   female   and   4  male).   Only   the   100μg/L   treatment   caused  effects  to  the  fish.    

Figure  4:  zebra  fish  A)  control  at  7  dpf,  B)  DBP  (100μg/L)  7  dpf  (Ortiz  –Zarragoitia  et  al.,  2006)  

Page 27: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  27  

In   the   second   experiment   10   adult   female   zebra   fish  were   exposed  via  water   for  15  days   to  100  and  500μg/L  of  DBP.  After  15  days  of  exposure  each  female  was  paired  with  two  males  in  untreated  water  and   left   to   reproduce   for   two   to   three   days.   After   spawning   the  female   fish   were   sacrificed   and   liver,   brain   and   ovary   analysis.  Embryos  produced  during  spawning  were  gathered  and  placed   into  the   same   (treatment)   groups   as   their   female   parent   and   then  transferred   to   untreated   water   for   27   days.   The   number   of   eggs  produced  by  the  treated  females  did  not  differ   from  the  numbers  of  the  control.  However,  mortality  showed  a  significant  dose  dependent  relationship   such   as   in   the   highest   treatment  where   70%  mortality  was  recorded  after  25  days.  VTG  expression,  liver  VTG  protein  levels,  oocytes   and   ovary   development   showed   no   significant   difference  compared  to  the  control.  Both  experiments  incorporated  mortality  of  young   zerbra   fish,   however   exposure   to   phthalates   pre   fertilization  increased   the   mortality   where   as   exposure   post   hatch   showed   no  affect  on  mortality.    Aoki  et  al.,   (2011)   conducted   the  most   recent   in  vivo   study  on  DBP.  They   chose   adult   male   three-­‐spined   stickle   back   (Gasterosteus  aculetaus).  Fish  were  exposed  through  water  for  22  days  to  nominal  concentrations  of  50  and  100μg  DBP/L.  Throughout  the  experiment  the   concentrations  of  DBP  were  measured   every   three   to   four  days  (water   samples   ran   through   gas   chromatography   and   mass  spectroscopy)  where  it  was  found  that  the  actual  concentration  was  much  lower  than  their  original  calculated  input.  Mean  concentrations  of   15   and   35   μg/L   were   recorded   at   the   50   and   100μg/L   tanks,  respectively.  There  was  no  significant  difference  in  weight,  length  or  gonado-­‐somatic   index   for   either   treatment   group   compared   to   the  control.   They   did   find   that   testosterone   levels   and   oxidised  testosterone  levels  were  significantly  higher  in  the  35μg/L  treatment  group  (P<0.05)  compared   to   the  control.  Spiggin  (protein  glue)  was  also  measured  in  the  kidneys,  where  it  was  found  to  have  a  negative  correlation   with   DBP   concentration   with   only   the   highest   DBP  concentration  showing  a  significant  decrease  in  spiggin  (P<0.011).  A  slight   delay   in   nest   building   behavior   of   those   fish   in   the   35μg/L  

Page 28: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  28  

treatment   group   was   also   found,   although   this   was   not   significant  (three  out  of  eight  males  failed  to  build  a  nest  until  the  last  day,  22).  Here,   high   levels   of   DBP   showed   increases   in   testosterone   levels,  which   other   studies   failed   to   report,   and   also   a   decrease   in   protein  glue.  

4.4.3  DEHP  and  DBP    Thibaut   and   Porte   (2004)   conducted   an   in   vitro   study   on   steroid  synthesis   and   metabolism   using   carp   (Cyprinus   carpio).   Here   the  effects   of  DBP   and  DEHP  on   the   enzyme  5α-­‐Reductase   (5α-­‐Re),   the  maturation-­‐inducing   hormones   (MIH)   17α,20α/β-­‐dihydroxy-­‐4-­‐pregnen-­‐3-­‐one   (17α,20α/βDP),   steroid   5α-­‐Androstanedione   (5α-­‐Adione)   and   the   androgenic   hormone   5α-­‐Dihydrotestosterone   (5α-­‐DHT)  were  studied.   It  was   found  that  both  DBP  and  DEHP  (100μM)  significantly  inhibited  the  formation  of  5α-­‐Adione  by  45%  and  65%,  respectively.  DBP  also  significantly  inhibited  the  synthesis  of  5α-­‐DHT  by   41%,  while  DEHP   showed  no   significant   effect.  When   looking   at  MIH’s   DBP   (1mM)   significantly   increased   the   synthesis   of  17α,20α/βDP,   which   plays   an   important   role   in   the   oocyte  maturation   and   helps   indicate   spawning   readiness,   by   around   138-­‐220%.   Thibaut   and   Porte   concluded   that   phthalates   interfere   with  the  enzymes  used  to  make  17α,20α/βDP,  although  the  most  affected  pathway  was  that  of  5α-­‐Re,  therefore  decreasing  both  the  steroid  5α-­‐Adione     and   the   androgen   5α-­‐DHT.   This   causes   alterations   in   the  androgen   synthesis,   metabolism   and   male   sexual   maturation   and  development.  Along  side   the  above,   interactions  with  enzymes  used  in   the   formation   of   17α,20α/βDP   will   cause   alterations   in   gamete  quality   and   quantity   as   well   as   disrupt   the   synchronization   of  spawning   and   mating   behavior   (Thibaut   and   Porte,   2004).   DBP  shows  to  be  more  potent  than  DEHP  in  altering  sex  steroid  associated  with  the  reproductive  system.    Mankidy   et   al.,   (2013)   used   both   DBP   and   DEHP   to   study   embryo  mortality  and  cytotoxicity   in  1  hour  old   fertilized  Fathead  Minnows  embryos  (Pimephales  promelis)  using  water  concentrations  of  1mg/L  for   both   phthalates   in   this   in   vitro   and   vivo   study.   DEHP   at   1mg/L  showed   a   30%   increase   in   embryo  mortality   (P<0.01)   compared   to  

Page 29: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  29  

the   control   at   3%   (P<0.05).   DBP   did   not   produce   any   significant  mortality  compared  to  the  control.  1  mg/L  DEHP  also  caused  a  2-­‐fold  greater  lipid  peroxidation  than  the  control  (P<0.05),  while  DBP  levels  stayed  the  same  as  that  of  the  control.  DEHP  proved  to  be  moderately  toxic   to  Fathead  Minnow  embryos  while  DBP  showed  no  significant  effects  unlike  Ortiz-­‐Zarragoitia  et  al.,  (2006)  and  Aoki  et  al.,  (2011).  

4.4.4  DINP  and  DIDP    In   2006   Patyna   et   al.,   conduced   a  multigenerational   in   vivo   (F0,   F1  and   F2)   study   on   medaka   fish   using   nominal   concentration   of   20  μg/g   DIDP   and   DINP.   Many   parameters   were   measured   such   as  fecundity,   growth,   embryonic   stage   development   and   gonad   and  hepatic-­‐somatic  indices.  Due  to  the  low  water  solubility  of  DINP  and  DIDP  the  exposure  was  through  diet,  as  this  would  be  the  likely  route  in   the   environment.   Long-­‐term   survival  was   significantly   decreased  (P≤0.05)   in   the   F1   generation   (DINP).   A   significant   change  was   the  decrease   in   red   blood   cell   (RBC)   pigmentation.   The   F0   acetone  control   in   both   assays1+2   as   well   as   DINP   in   assay2   showed   a  significant   (P<0.05)   delay   in   RBC   pigmentation   compared   to   the  untreated   control.   Within   the   F1   generation   both   DINP   and   DIDP  treated  fish  showed  a  significant  delay  in  RBD  pigmentation  (P<0.05)  in  assay2  compared  to  the  control.  However  all  embryos  continued  to  develop   normally.   Post   hatch   larval   survival   was   only   significantly  affected   in   one   of   the   F0   DINP   treated   assays.   Body  weight,   gonad  weight,   gonadal-­‐somatic   index   and   egg   production   showed   no  significant  differences  among  the  different  treatment  groups.  Overall  DINP  and  DIDP  show  no  chronic  effects    

V.  Discussion    Comparing   the   above   studies   is   difficult,   as   studies   may   have  administered   the   phthalate   concentration   either   via   food,   water   or  injection  as  with  Uren-­‐Webster  et  al.,  (2010)  and   in   the  case  of  Van  Wezel   et  al.,   (2000)   exposure   routes  were   not   reported.   Phthalates  with  low  solubility  are  more  concentrated  in  the  sediment  (Berge  et  al.,   2013);   therefore   benthic   dwellers   are   at   a   higher   exposure   and  

Page 30: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  30  

may  be  subject   to   increased  toxicity.  Therefore  comparing  both  diet  and  water  would  not  be  the  most  effective  method  for  this  discussion.  Therefore  comparisons  of  each  method  of  exposure  (diet,  water  and  injection)  will  be  compared  against  its  own  type.  

5.2  DEHP    When   comparing   acute   DEHP   toxicity   through   water   exposure  varying  results  were  observed,  Kim  et  al.,  (2002)  concluded  no  effect  from   DEHP   levels   on   VTG   levels   in   Medaka   while   in   contrast  Carnevali   et   al.,   (2010)   concluded   that   there   was   a   significant  increase  in  the  number  of  VTG  oocytes  as  well  as  a  down  regulation  in  the  plasma  VTG  levels.   In  the  case  of  Uren-­‐Webster  et  al.,   (2010),  where  exposure  was  administered  through  injection,  only  the  highest  treatment  group  showed  significant  effects.      Zanotelli   et  al.,   (2009)   showed   that   unlike   the   conclusions   of  Uren-­‐Webster,   growth   was   significantly   inhibited,   showing   a   dose  dependent  decrease,  where   females  were  more  affected  than  males.  Van  Wezel   et  al.,   (2000)   concluded   that  DEHP  had   no   effect   during  both   chronic   and   acute   exposure.   However   all   studies   post   2000,  except   two   (Uren-­‐Webster   et   al.,   2010   and   Norman   et   al.,   2007)  regarding   DEHP   used   concentration   under   500μg/L.   Yet   those  studies   under   500μg/L   showed   numerous   effects.   DEHP   shows  varying   effects  with   similar   and   non-­‐similar   concentrations.   Future  studies   using   lower   concentrations   would   benefit   in   finding   the  lowest  concentration  to  which  certain  effects  are  seen.    

5.3  DBP    DBP  increased  liver  peroxisome  significantly  in  male  adult  zebra  fish  (Ortiz-­‐Zarragoitia  et  al.,  2005  and  2006,  respectively).  In  2006  Ortiz-­‐Zarragoitia  et  al.  also  stated  a  concentration  dependent  mortality   in  young   female   zebra   fish  when   exposure  was   aimed   at   the   pervious  female   generation.   However,   when   exposed   in   embryonic   state  (eggs)  there  was  no  difference  in  mortality.  This  could  be  due  to  the  different   concentrations   used   in   both   parts   of   the   study,   as   the   egg  exposure  treatments  were  lower  than  that  of  the  adults  exposure.  

Page 31: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  31  

 Unlike   DEHP,   DBP   did   not   affect   VTG   levels   according   to   Ortiz-­‐Zarragoitia   et   al.,  2005   and   2006.   In   the   case   of   Aoki   et   al.,   (2011)  nominal   concentrations   were   measured   and   found   to   be   actually  much  lower  than  originally  calculated.  These  concentrations  showed  no   effects   on   weight,   length   and   GSI   however   increased   levels   of  testosterone.   Dietary   exposure   showed   no   effect   on   female   fish,  however   there   were   increased   reductions   in   recognized   male  specimens   in   both   highest   concentration   treatments.   Three   of   the  post  2000  studies  (Uren-­‐Webster  et  al.,  2005  and  2006  and  Mankidy  et   al.,   2013)   used   concentrations   above   the   NOEC   stated   by   Van  Wezel  et  al.,  (2000).  Like  DEHP,  DBP  varies  in  its  effects  with  similar  and   non-­‐similar   concentrations   although   DBP   shows   no   effect  towards  VTG.  

5.4  Nominal  concentration  experiments  with  DEHP  and  DBP    Experiments  that  used  nominal  concentrations  not  easily  compared,  as  the  actual  concentration  remains  unknown.  In  the  case  of  Aoki  et  al.,   (2011)   their   calculated   nominal   concentrations   showed   to   be  35%   lower   than   organically   calculated.   This   shows   that   nominal  concentrations   may   not   be   accurate.   This   shows   the   important   of  measuring   actual   phthalate   concentrations   used   or   even   better   the  internal   phthalate   concentrations.   However   although   no   accurate  concentrations   are   given,   effects   were   still   observed   and   therefore  should  be  taken  into  account.    Effects   such   as   a   decrease   in   hatch-­‐time,   increase   in   mortality,  changes   in   sex   ratio,   and   changes   in   weight   were   all   part   of   the  irreversible   effects   of   DEHP   (Chikae   et   al.,  2004)   after   5-­‐6   months  depuration.   The   nominal   concentrations   in   this   experiment   were  very  low  and  if  inferring  percentage  changes  from  Aoki  et  al.,  (2011)  concentrations  would  be  even  lower.  In  contrast,  results  reported  by  Shioda  and  Wakabayashi  (2000)  showed  no  effect  in  hatching  time  at  the   same   nominal   concentrations.   Of   course   age   of   the   fish   was  different   in   both   studies   as   well   as   gender.   In   the   case   of   diet  exposure  (Norman  et  al.,  2007),  they  too  added  a  depuration  phase  to  

Page 32: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  32  

their   study   and   found   that   levels   of   DEHP   dropped   back   to  background   levels  within  one  week.    This  contradicts  Chikae  et  al.’s  conclusion   where   there   was   no   sign   of   increase   mortality.   Unlike  Chikae  et  al.  (2004)  and  Zanotelli  et  al.  (2009)  there  were  no  effects  on   the   growth   (length   and  weight)   in   the   study  by  Kim  et  al.   2002.  However  the  GSI  was  significantly  lower  in  females.    The  nominal  concentrations  of  DEHP  and  DBP  by  Thibaut  and  Prote  (2004)   affected   the   maturation–inducing   hormone   as   well   as   the  levels  of  enzymes  used  to  make  that  hormone.  These  alterations  lead  to  changes  in  metabolism,  development  and  male  sexual  maturation  (quality   and   quantity   reduction   in   gametes).   Both   phthalates   (DBP  and  DEHP)  inhibited  the  formation  of  the  steroid  (5α-­‐Adione),  while  only   DBP   affected   the   androgenic   hormone   5α-­‐DHT   and   increased  the   synthesis   of   maturation   inducing   hormone   (17α,20α/βDP).   In  Mankidy   et   al.   (2013)   DEHP   showed   a   significant   decrease   in  mortality   and   increase   in   lipid   peroxidation,  while   DBP   showed   no  effect.   Perhaps   the   effects   measured   were   only   targeted   by   DBP.  These  two  shows  study  shows  the  different  targets  of  each  phthalate.  Like  both  measured  DBP  and  DEHP  concentration  studies,  those  that  used  nominal  concentrations  found  varying  effects    

5.5  DINP  and  DIDP    In   the   case   of   DINP   and   DIDP   there   is   hardly   any   literature   to  compare.  Much  research   is  conducted   in   the  human  field  (Kruger  et  al.,  2012;  Kransler  et  al.,  2013  and  Silva  et  al.,  2013),  rats  (Clewell  et  al.,  2013)   and  even  bacteria   (Park  et  al.,   2009)  but  hardly   any  with  regards   to   aquatic   organisms.   The   only   study   found   was   that   of  Patyna   et   al.   (2006)   where   two   assays   were   used   per   treatment,  therefore  only   significant   results  on  both  assays  will  be  used   in   the  discussion.  The  F0  generation  showed  a  significant  RBC  pigmentation  delay   although   all   embryos   continued   to   develop   normally.   In   this  study   no   endocrine   mediated   effects   (testis-­‐ova,   intersex   or   sex  reversal   etc.)   were   observed,   similar   to   the   meta   analysis   by   Van  Wezel  et  al.  (2000)  showing  that  DINP  and  DIDP  are  not  expected  to  produce  chronic  effects.  Due  to  the   low  solubility  of  DINP  and  DIDP  

Page 33: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  33  

(Kow  8.8)  it  could  be  that  these  phthalates  are  more  available  within  sediment   rather   than   dissolved   in   water   which   would   explain   the  lack  of  effects  through  water  exposure  

5.6  Exposure  routes    Comparing  results  obtained  based  on  the  same  exposure  routes  still  showed   no   similarity   in   outcome   of   the   different   studies.   As  mentioned   in  Uren-­‐Webster  et  al.   (2010)   it  was   claimed   that  use  of  injections,   as   an   exposure   route   would   be   a   more   accurate  administration   method   to   assure   all   specimens   received   the   same  dose.   Diet   exposure   does   not   guarantee   equal   dosing,   therefore  affecting   the   observations   and   reproductive   or   developmental   or  metabolic  measurements  of  experiments.  Water  exposure  may  carry  similar   disadvantages   as   diet   exposure,   as   it   may   be   possible   that  different  species  of   fish  consume,   ingest  or  absorb   larger  amount  of  water   that   would   affect   the   level   of   phthalate   present   within   the  organism  (Aoki  et  al.,  2003).  

5.7  Problematic  variables  and  environmental  risk  limits    Along   side   nominal   concentrations   being   an   inaccurate  measure   of  phthalate   exposure   concentration,   there   are   also   other   ways  phthalate   concentrations   can   change   throughout   an   experiment.  Photodegradation   (ability   to   be   chemically   broken   down   by   light)  and   microbial   degradation   as   well   as   loss   of   phthalates   through  adsorption   to   glass   tanks   (Staples,   2003)   are   just   two   ways  contributing   to   phthalate   losses   can   be   ‘lost’   (Kim   et   al.,   2002).  Another   problem   arises   when   comparing   different   studies,   as  different   species   of   course   react   to   contaminants   in   different   ways  (Law  et  al.,  2006  and  Veltman  et  al.,  2005),  which  could  explain   the  differences   between   the   studies.   Reported   here   age   can   also   be   of  importance   in   determining   the   severity   of   toxicity.   Young   and  embryonic  exposure  seem  to  give  more  potent  results  than  exposure  in  adult   life   (Zanotelli  et  al.,   2009;  Ortiz-­‐Zarragoitia  et  al.,   2006  and  Chikae  et  al.,  2004).      

Page 34: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  34  

None   of   the   studies   reported   here  were   dealing  with   the   exposure  route  of  diet  by  food  chain  (smaller  organisms).  This  exposure  route  could  perhaps  produce  different  results,  where  the  smaller  organism  may   not   be   affected   as  much   as   the   predator   that   feeds   up   on   the  organism  and  subsequent  biomagnification  phthalate  concentrations  (Teil  et  al.,  2012).  Exposure  route  and  species  are  thus  important.  It  must   also   be   taken   into   consideration   that   the   parent   compounds  themselves  are  not  the  sole  cause  of  toxicity,  as  their  metabolites  are  quickly   transformed   within   the   organism   (Euling   et   al.,   2013).   All  these  variables  make  it  hard  to  produce  ERL  for  the  environment.  In  Van  Wezel  et  al.   (2000)   it  was  shown  that  concentrations  above  the  ERL   (3μg/L)   showed   no   effect,   however   it   is   not   known   whether  sediment   dwelling   species   were   chosen.   Concentrations   above   the  water   solubility   for   phthalates   would   increase   the   particulate  phthalate   concentration   therefore   increasing  phthalate   levels   in   the  sediment.  

VI.  Conclusions    Due  to  the  hard  separation  between  reproductive  and  developmental  effects,   definitions   will   be   used   to   categorize   each   effect.  Reproductive   effects   will   be   defined   as   any   effect   to   alter   sexual  function   and   fertility.   Developmental   effects   will   be   any   that   cause  structural   or   functional   alterations   that   may   affect   growth   and  differentiation.   These   definitions   are   interlinked,   which   should   be  taken  into  account  as  developmental  toxicity  may  cause  reproductive  toxicity.  From  the  summary  of  results  (table  1)  one  can  see  there  are  many  effects  associated  with  phthalates,  especially  DEHP.  

6.1  Classification  of  phthalates    When  it  comes  to  what  classification  the  studies  give  to  the  different  phthalates   it   obviously   varies.   Uber-­‐Wester   et   al.   (2010)   and  Carnevali   et   al.   (2010)   both   claim   DEHP   to   be   an   estrogenic  compound  while  DBP,  according  to  Jarmolowicz  et  al.,  2013  and  Gray  et   al.,   2000   is   considered   to   be   an   anti-­‐androgen.   Single  classifications   for   phthalates   are   nearly   impossible   as   they   nearly  always   have   multiple   pathways   (ER,   AR,   PARR,   oxidative   damage  

Page 35: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  35  

etc.)   making   it   extremely   hard   to   classify   them   into   androgenic,  estrogenic,   anti-­‐androgenic  etc.   compounds.  This   is  because   the  cell  receptors,   ERs   for   example   can   be   regulated   by   estrogenic   and  androgenic  compounds  (Nelson  and  Habibi  2013).  

6.1.1  DEHP    Using  the  definitions  above,  all  but  two  effects  are  placed  within  the  developmental  category.  Decrease  in  fertilization  success  remains  in  reproductive  toxicity.  Therefore  DEHP  causes  developmental  toxicity  effects.  

6.1.2  DBP    DBP,   like  DEHP,  also  shows  to  have  the  majority  of   its  effects   in  the  developmental   category   according   to   the   definition   used.   The   only  effect   within   the   reproductive   realm   is   the   increase   in   offspring  mortality.    

6.1.3  DINP  and  DIDNP    DIDP   showed   to   have   no   effects   to   fish.   DINP   showed   to   cause  delayed   in   the   red   blood   cell   pigment   and   an   increase   in  mortality  showing  both   reproductive   and  developmental   effects.  Whether   the  latter  is  caused  by  the  former  remains  to  be  tested.    

4.9  Recommendations    Through   this   research   a   lack   of   metabolic   studies   were   found,  perhaps  search  terms  used  were  not  specific  or  simply  the  research  regarding   the   metabolic   effects   has   not   been   studied   as   much   as  others.   This   paper   only   focused   on   four   phthalate   compounds  although  there  are  over  18  commercial  phthalates  (Peijnenburg  and  Struijs,   (2006)   which   could   all   have   differing   effects   such   as   DEP  which  causes  increased  liver  mass  along  with  destruction  of  kidneys  and   liver   tissue   (Iekel,   2011).   Most   research   found   was   on   DEHP  while  other   compounds   lacked   the   same  amount  of   attention.  More  research   should   be   conducted   on   DBP   and   especially   on   DIDP   and  DINP,   as   only   one   article   was   found   concerning   DINP   and   DIDP  effects.  From  this  paper  it  is  clear  that  perhaps  the  ERAs  need  to  have  a   clear   protocol   that   can   be   easily   replicated.   This   would   allow  studies   an   easier   comparability   and   would   also   allow   values  concerning  NOECs   ECs   and   ERL   can   be  more   accurately   calculated.  Research   for   this   paper  was   only   carried   out   for   one  month,   given  

Page 36: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  36  

more   time   an   increased   number   of   articles   would   have   provided  larger  consensus  view  on  the  topic.      The  organization  REACH  (registration,  evaluation,  authorization  and  restriction  of   chemicals)   came   into   force   in  2007  and  has  helped   to  improve   the   legislative   framework   of   chemicals   in   the   EU.   Since   its  initiative  DEHP   containing   toys   and   objects   have   been   restricted   in  many   countries   (REACH,   2011).   Restrictions   such   as   rejection   of  import  by  customs,  voluntary  stop  of  sales  and  voluntary  withdrawal  of  product  are  just  a  few  examples.  Countries  that  stand  out  as  having  more   products   restricted   are   Spain,   Germany   and   Finland.   The  majority  of  DEHP  products  have  been  within   a   restriction   list   since  2011   (Reach,   2011).   For   DBP   restrictions   have   even   gone   as   far   to  allow  voluntary  destruction  of  product  by  importer  to  a  set  of  plastic  animal   toys   since   2010   (Reach,   2011).   DINP   and   DIDP   containing  products  have  few  placements  on  the  list.    

VII.  Author’s  remarks    Overall  it  would  seem  that  DEHP  and  DBP  produce  acute  and  chronic  developmental  effects  such  as   increased  mortality   in  both  adult  and  offspring,   intersex,   increase   in  number   and   volume  of   peroxisomes,  GSI  decreases  in  females,  retardation  in  ovary  development,  decrease  in   growth   (weight   and   length)   and   decreases   in   spermatagonia   are  only   just  a   few.  However  age  of   fish,  species  of   fish,  exposure  route,  and  diet  all  play  an  important  role  as  to  how  intense  and  potent  the  phthalate  concentration  are.  More  studies  and  test  are  needed  in  the  future  to  fully  understand  the  complicated  mechanism  and  disruptive  effects   of   each   phthalate.   Standardized   tests   would   allow   all  phthalate-­‐orientated   experiments   and   measurement   to   be  comparable.   This   would   produce   more   accurate,   narrow   and   pin  pointed  results  to  half-­‐lives,  endocrine  effects  etc.  to  what  are  already  highly  endocrine  disruptive  compounds.        

Page 37: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  37  

VIII.  References      Aoki   K.   A.   A,   Harris   C.   A,   Katsiadaki   I   and   Sumpter   J.   P   (2011)  ‘Evidence   suggesting   that   di-­‐n-­‐butyl   phthalate   has   antiandrogenic  effects  in  fish’  Environmental  toxicology  and  chemistry.  30  (6)  :  1338-­‐1345    Aoki  M,  Kaneko  T,  Katoh  F,  Hasegawa  S,  Tsutsui  N  and  Aida  K  (2005)  ‘Intestinal   water   absorption   through   aquaporin   1   expressed   in   the  apical   membrane   of   mucosal   epithelial   cells   in   seawater-­‐adapted  Japanese   eel’  The   journal  of   experimental  biology.     206   (19)   :   3495-­‐3505    Berge  A,  Cladiere  M,  Gasperi  J,  Coursimault  A,  Tassin  B  and  Moilleron  R   (2013)   ‘Meta-­‐analysis   of   environmental   contamination   by  phthtalates’   Environmental   science   and   pollution   research.  20   (11)   :  8057-­‐8076    Brooke   D.   N,   Nielsen   I.   R,   Dobson   S   and   Howe   P.   D   (1991)  ‘Environmental   hazard   assessment:   Di-­‐(2-­‐ethylhexyl)   phthalate’  Toxic   substance   division,   Directorate   for   air,   climate   and   toxic  substances.   Department   of   the   environment   [online]   available   at:  http://dwi.defra.gov.uk/research/completed-­‐research/reports/dwi0633.pdf  [accessed  on  15/3/2014]    Carnevali   O,   Tosti   L,   Speciale   C,   Peng   C,   Zhu   Y   and   Maradonna   F  (2010)   ‘DEHP   impairs   zebrafish   reproduction   by   affecting   critival  factors  in  oogenesis’  Plos  one.  5  (4)    Chikae  M,  Hatano  Y,  Ikeda  R,  Morita  Y,  Hasan  Q  and  Tamiya  E  (2004)  ‘Effects   of   bis(2-­‐ethylhexyl)   phthalate   and   benzo[a]pyrene   on   the  embryos   of   Japanses   medaka   (Oryzias   latipes)’   Environmental  toxicology  and  pharmacology.  16  (13)  :  141-­‐145      

Page 38: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  38  

Clewell   R.   A,   Sochaski   M,   Edwards   K,   Creasy   D.   M,   Willson   G   and  Andersen   M.   E   (2013)   ‘Disposition   of   diisononyl   phthalate   and   its  effects   on   sexual   development   of   the  male   fetus   following   repeated  dosing  in  pregnant  rats’  Reproductive  toxicology.  35  :  56-­‐69    Corton   J.   C   and   Lapinskas   P.   J   (2005)   ‘Review:   Peroxisome  proliferator-­‐activated   receptors:   mediators   of   phthalate   ester-­‐induced  effects  in  the  male  reproductive  tract?’  Toxicological  sciences.    83  (1)  :  4-­‐17    Crain   A.   D,   Janssen   S.   J,   Edwards   T.   M,   Heindel   J,   Ho   S.   M,   Hunt   P,  Iguchi  T,  Juul  A,  McLachlan  A.  A,  Schwartz  J,  Skakkebaek  N,  Soto  A.  M,  Swan   S,   Walker   C,   Woodruff   T.   K,   Woodruff   T.   J   Giudice   L.   C   and  Guillette   L.   J   (2008)   ‘Female   reproductive   disorders:   the   role   of  endocrine  disrupting  compounds  and  developmental  timing’  Fertility  and  sterility.  90  (4)  :  911-­‐940    (EC)   european   commission   (2014)   ‘Priority   substnces   and   certain  other   pollutants   according   to   Annex   II   of   directive   2008/105/EC’  [online]   available   at:   http://ec.europa.eu/environment/water/  water-­‐framework/priority_substances.htm  [accessed  on  22/3/2014]    (ECPI)   European   council   for   plasticisers   and   intermediates   (2014)  ‘DINP   information   center’   [online]   available   at:   http://www.dinp-­‐facts.com/default.aspx?page=43  [accessed  on  20/2/2014[    (ECPI)   (2009)   ‘Review   of   scientific   data   on   di-­‐isononyl   phthalate  (DINP)  and  do-­‐siodecyl  phthalate  (DIDP)  demonstrating  that  neither  are   endocrine   disputers’   available   online   at:   http://www.dinp-­‐facts.com/upload/documents/webpage/2009-­‐11-­‐10%20-­‐%20DINP%20DIDP%20are%20not%20endocrine%20disrupters%20-­‐%20revised.pdf  [accessed  on  6/2/2014]    Euling   S.   Y,   Thompson   C.   M,   Chiu   W   and   Benson   R   (2013)   ‘An  approach  for  intergrating  toxicogenomic  data  in  risk  assessment:  The  dibutyl   phthalate   case   study’   Toxicology   and   applied   pharmacology.  271  (3)  :  324-­‐335  

Page 39: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  39  

Fatoki   O.   S   and   Vernon   F   (1990)   ‘Phthalate   esters   in   rivers   of   the  Greater   Manchester   area,   UK’   Science   total   environment.     95   :   227-­‐232s    Fromme  H  Kuchler  T,  Otto  T,   Pilz  K,  Muller   J   and  Wenzel  A   (2002)  ‘occurrences  of  phthalates  and  bisphenol  A  and  F  in  the  environment’  Water  research.  36    (6):  1429-­‐1438    Guven   K.   C   and   Coban   B   (2013)   ‘Phthalate   pollution   in   fish   Sarda  sarda,   Engraulis   encrasicolus,   Mullus   surmuletus,   merlangius  merlangus  and   shrimp  Parapenaeus   longirostris’   Journal  of  the  Black  Sea/Mediterranean  environment.  19  (2)  :  185-­‐189    Gray  Ljr.  E,  Ostby  J,  Furr  J,  Price  M,  Veeramachaneni  D.  N  and  Parks  L  (2000)   ‘Perinatal   exposure   to   the   phthalates   DEHP,   BBP   and   DINP  but  not  DEP,  DMP  or  DOTP  alters   sexual  differentiation  of   the  male  rat’  Toxicological  sciences.  58  (2)  :  350-­‐365    Harbott  L.  K,  Burmeister  S.  S,  White  R.  B,  Vagell  M  and  Fernald  R.  D  (2007)   ‘Androgen   receptors   in   a   cichlid   fish,   Astatoilapia   burtoni:  structure,   localization   and   expression   levels’   The   journal   of  comparative  nuerology.  504  (1)  :  57-­‐73    Huang   P.   C,   Tien   C.   J,   Sun   Y.   M,   Hsieh   C.   Y   and   Lee   C.   C   (2008)  ‘Occurrence   of   phthalates   in   sediment   and   biota:   relationship   to  aquatic   factors   and   the   biota-­‐sediment   accumulation   factor’  Chemosphere.    73  (4)  :  539-­‐544    Ikele,  Bright  C,  McBenka,  Obialo  B,  Oluah  S.  N  (2011)  ‘Histopathological  effects  of  diethyl  phthalates  on  Clarias  gariepinus  juveniles’  Animal  research  international.  8  (3)  :  1431-­‐1438    Jarmolowicz  S,  Demska-­‐Zakes  K  and  Zakes  Z  (2013)   ‘Impact  of  di-­‐n-­‐butyl   phthalate   on   reproductive   system   development   in   European  pikeperch  (Sander  lucioperca)’  Acta  veterinaria  Brno.  82  :  (197-­‐201)      

Page 40: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  40  

 Kickham  P,  Otton  S.  V,  Moore  M.  M,  Ikanomou  M.  G  and  Gobas  F.  A.  P.  C   (2012)   ‘Relationship   between   biodegradation   and   sorption   of  phthalate   esters   and   their   metabolites   in   natural   sediments’  Environmental  toxcicology  and  chemistry.  31  (8)  :  1730-­‐1737    Kim   E-­‐J,   Kim   J-­‐K   and   Lee   S-­‐K   (2002)   ‘Inhibitoin   of   oocyte  development   in   Japanese  medaka   (Oryzias   latipes)   exposed   to   di-­‐2-­‐ethylhexyl  phthalate’  Environment  international.  28  (5)  :  359-­‐365    Kong  S,   Ji   Y,   Liu  L,   Chen  L,   Zhao  X,  Wang   J,  Bai   Z   and  Sun  Z   (2013)  ‘Spatial   and   temporal   variation   of   phthalic   acid   esters   (PAEs)   in  atmospheric   PM10   and   PM2.5   and   the   influence   of   ambient  temperature  in  Tianjin,  China’  Atmospheric  environment.  74  (1)  :  199-­‐208    Kransler   K.  M,   Bachman  A.   N   and  McKee   R.   H   (2013)   ‘Estimates   of  daily   di-­‐isodecyl   (DIDP)   intake   calculated   form   urinary  biomonitoring  data’  Regulatory  toxicology  and  pharmacology.  65  (1)  :  29-­‐33    Kruger   T,   Cao   T,   Kjaergaard   S.   K,   Knudsen   L.   E   and   Nonefelf-­‐Jorgensen   E.   C   (2012)   ‘Effects   of   phthalateson   the   human   corneal  endothelial  ell  line  B4G12’  International  journal  of  toxicology.  31  (4)  :  364-­‐371    Law  K,  Halldorson  T,  Danell  R,  Stern  G,  Gewurts  S,  Alaee  M,  Marvin  C,  Whittle  M  and  Tomy  G  (2006)  ‘Bioaccumulation  and  trophic  transfer  of   some   brominated   flame   retardents   in   a   lake   Winnipig   (Canada)  food   web’   Environmental   toxicology   and   chemistry.     25   (8)   :   2177-­‐2186    Lee  J.  T  and  Liang  H.  H  (2011)  ‘Preliminary  study  on  zebra  fish’s  DNA  exposure   to   DI-­‐2-­‐ethylhexyl   phthalate   effects’   Jourmal   of   water  sustainability.  1  (3)  :  65-­‐73    

Page 41: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  41  

Li  Y.  W,  Cai  Q.  Y,  Mo  C.  H,  Zeng  Q.  Y,  Lu  H.  X,  Li  Q.  S  and  Xu  G.  S  (2014)  ‘Plant  uptake  and  enhanced  dissipation  of  di(e-­‐ethylhexyl)  phthalate  (DEHP)   in   spiked   soils   by   different   plant   species’   International  journal  of  phytoremediation.  16  (6)  :  609-­‐620    Liang   D.   W   Zhang   T,   Fang   H.   H.   P.   and   He   J   (2008)   ‘Phthalates  biodegrading   in   the   environment’   Applied   micriobiology   and  biotechnology.  80  (2)  :  183-­‐198    Magdouli  S,  Daghrir  R,  Brar  S.  K,  Drogui  P  and  Tyagi  R.  D  (2013)  ‘Di  2-­‐ethylhexyl   phthalate   in   the   aquatic   and   terrestrial   environment:   a  criticl   review’   The   journal   of   environmental  management.  127   (1)   :  46-­‐49    Mankidy  R,  Wiseman  S,  Ma  H  and  Giesy  J.  P  (2013)  ‘Biological  impacts  of  phthalates’  Toxicology  letters.  217  :  50-­‐58    Maradonna  F,  Eangelisti  M,  Gioacchini  G,  Migliarini  B,  Olivotto   I  and  Carnevali  O  (2013)  ‘Assay  of  vtg,  ERs  and  PPARs  as  endpoint  for  the  rapid   in   vitro   screening   of   harmful   effect   of   DI-­‐)20ethylhexyl)-­‐phthalate   (DEHP)   and   phthalic   acid   (PA)   in   zebrafish   primary  hepatocyte  cultures’  Toxicology  in  vitro.    27  (1)  :  84-­‐91    Megaloid1   (2013)   ‘Saftey   data   sheet:   Diisodecyl   phthalate’   [online]  available  at:  http://megaloid.ca/MSDS/Diisodecyl%20Phthalate.pdf  [accessed  on  20/2/2014]    Megaloid2   (2013)   ‘Saftey   data   sheet:   Dibutyl   phthalate’   [online]  available   at:   http://megaloid.ca/MSDS/Dibutyl%20Phthalate.pdf  [accessed  on  15/3/2014]    Megaloid3   (2013)   ‘Saftey   data   sheet:   Diisononyl   phthalate’   [online]  available   at:   http://megaloid.ca/MSDS/DINP.pdf   [accessed   on  15/3/2014]    

Page 42: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  42  

Nelson  E.  R  and  Habibi  H.  R  (2013)   ‘Estrogen  receptor   function  and  regulation   in   fish   and   other   vertebrates’   General   and   comparative  denocrinology’  192  (1)  :  12-­‐24    Norman  A,  Borjeson  H,  David  F,  Tienpont  B  and  Norrgren  L   (2007)  ‘Studies   of   uptake,   elimination   and   late   effects   in   Atlantic   salmon  (Salmo   salar)   dietary   exposed   to   Di-­‐2-­‐ethylhexyl   phthalate   (DEHP)  during   early   life’.   Archives   of   environmental   contamination   and  toxicology.  52  (2)  :  235-­‐242    OECD   (2006)   ‘Ready   biodegradability   –   CO2   in   sealed   vessels  (Headspace   test)’   OECD   guidelines   for   the   testing   of   chemicals.  [online]   available   at:   http://www.oecd-­‐ilibrary.org/docserver  /download/9731001e.pdf?expires=1395755631&id=id&accname=guest&checksum=8A709109F9DA47BBE2C36ACD2EF2284A  [accessed  on  25/3/2014]    Oehlmann   J,   Oetken   M   and   Schulte-­‐Oehlmann   U   (2008)   ‘A   critical  evaluation   of   the   environmental   risk   assessment   for   plasticisers   in  the   freshwater   environment   in   Europe,   with   special   emphasis   on  bisphenol   A   and   endocrine   disruption’  Environmental   research.  108  (2)  :  140-­‐149    Oehlmann  J,  Schulte-­‐Oehlmann  U,  Kloas  W,  Jagnytsch  O,  Lutz  I,  Kusk  K.  O,  Wollenberger   L,   Santos  E.  M,   Paull   G.   C,   Van   Look  K.   J.  W   and  Tyler   C.   R   (2009)   ‘A   critical   analysis   of   the   biological   impacts   of  plasticizers  on  wildlife’  Philosophical  transactions  of  the  royal  society  of  biological  sciences.    364  (1526)  :  2047-­‐2062    (OEHHA)   Office   of   environmental   health   hazard   assessment  (reproductive   and   cancer   hazard   assessment   branch)   (2010)  ‘Proposition   65   maximum   allowable   does   level   (MADL)   for  reproductive   toxicity   for   Di-­‐isodecyl   phthalate   (DIDP)’   available  online   at:   http://oehha.ca.gov/prop65/CRNR_notices/  not042310.html  [accessed  on  17/01/14]    

Page 43: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  43  

(OEHHA)  Office   of   environmental   health   hazard   assessment   (2009)  ‘Toxicological   profile   for   Di-­‐(2-­‐Ethylhexyl)   phthalate   (DEHP)’    available   online   at:   http://www.opc.ca.gov/webmaster/ftp/  project_pages/MarineDebris_OEHHA_ToxProfiles/DEHP%20Final.pdf  [accessed  on  11/1/14]    Ogunfowokan   A.   O,   Torto   N,   Adenuga   A.   A   and   Okoh   E.   K   (2006)  ‘Survey   of   levels   of   phthalate   ester   plasticizers   in   a   sewage   lagoon  effluent   and   receiving   stream’   Environmental   monitoring   and  assessment.  118  (1-­‐3)  :  475-­‐480    Ortiz-­‐Zarragoitia  M,  Trant  J.  M  and  Cajaraville  M.  P  (2006)  ‘Effects  of  dibutylphthalate   and   ethynylestradiol   on   liver   peroxisomes,  reproduction   and   development   of   zebra   fish   (Danio   rerio)’  Environmental  toxicology  and  chemistry.  25  (9)  :  2394-­‐2404    Ortis-­‐Zarragoitia   M   and   Cajaraville   M.   P   (2005)   ‘Effects   of   selected  xenoestrogens   on   liver   peroxisomes,   vitellogenin   levels   and  spermatogenic   cell   proliferation   in   male   zebrafish’   Compartive  biochemistry  and  physiology.  141  (2)  :  133-­‐144    Park  J.  M  Kim,  M,  Yoon  J,  Kobayashi  F,  Iwasaka  Y,  Hong  C.  S  Min  J  and  Kim   Y.   H   (2009)   ‘Biodegrdation   of   diisodecyl   phthalate   (DIDP)   by  bacillus  sp  SB-­‐007’  Journal  of  basic  microbiology.    49  (1)  :  S31-­‐S35    Parkerton   T.   F   and   Konkel  W.   J   (2000)   ‘application   of   quantitative  structure-­‐activity   relationships   for   assessing   the   aquatic   toxicity   of  phthalate   esters’  Ecotoxicolog  and  environmental  safety.  45   (1)   :   61-­‐78    Patyna  P.  J,  Brown  R.  P,  Davi  R.  A,  Letinski  D.  J,  Thomas  P.  E,  Cooper  K.  R   and   Parkerton   T.   F   (2006)   ‘Hazard   evaluation   of   diisononyl  phthalate   and   diisodecyl   phthalate   in   a   Japanese   Medaka  multigenerational  assay’  Ecotoxicology  and  environmental  safety.    65  (1)  :  36-­‐47      

Page 44: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  44  

 Peijnenburg  W.   J.  G.  M  and  Struijs   J   (2006)   ‘Occurrence  of  phthalate  esters   in   the   environment   of   the   Netherlands’   Ecotoicology   and  environmental  safety.  63  (2)  :  204-­‐215    REACH   (2011)   ‘Annex   VI-­‐RAPEX   notification   –   phthalates’   [online]  available   at:   http://ec.europa.eu/enterprise/sectors/chemicals/  files/reach/review2012/restr-­‐an6-­‐phth_en.pdf   [accessed   on  26/3/2014]    Shioda  T  and  Wakabayashi  M  (2000)   ‘Effect  of  certain  chemiclas  on  the   reproduction  of  medaka   (Oryzias   latipes)’  Chemosphere.   40   (3)   :  239-­‐243    Sibali  L.  L,  Okonkwo  J.  O  and  McCrindle  R.  I  (2013)  ‘Determination  of  selected   phthalate   esters   compounds   in   water   and   sediments   by  capillary  gas  chromatography  and  flame  ionization  detector’   Journal  of   environmental   science   and   health.   Part   A,   toxic/hazardous  substances  and  environmental  engineering.  48  (11)  :  1365-­‐1377    Silva   M.   J,   Jia   T,   Samandar   R,   Preau   J.   L   and   Calafat   A.   M   (2013)  ‘Environmental  exposure  to  plasticizers  1,2-­‐cyclohexane  dicarboxylic  acid,   diisononyl   ester   (DINCH)   in   US   adults   (2000-­‐2012)’  Environmental  research.  126  :159-­‐163    Sohoni  P  and  Supter  J.  P  (1998)  ‘Several  environmental  estrogen  are  also  anti-­‐androgens’  Journal  of  endocrinology.  158  (3)  :  327-­‐339    Staples   C.   A   (2003)   ‘Phthalate   esters   –   the   handbook   of  environmental  chemistry’  Berlin:  Springer    Staples   C.   A,   Peterson   D.   R,   Parkerton   T.   F   and   Adams  W.   J   (1997)  ‘The   environmental   fate   of   phthalate   esters:   a   literature   review’  Chemosphere.  35  (4)  :  667-­‐749        

Page 45: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  45  

 Teil   M.   J,   Tlili   K,   Blanchard  M,   Chevreuil   M,   Alliot   F   and   Labadie   P  (2012)   ‘Occurrence   of   polbrominated   diphenyl   ethers,  polychlorinated   bisphenyls   and   phthtaltaes   in   freshwater   fish   from  the   Orge   river   (Ile-­‐de   France)’   Archives   of   environmental  contamination  and  toxicology.  63  (1)  :  101-­‐113    Thibaut  R  and  Porte  C  (2004)  ‘Effects  of  endocrine  disrupters  on  sex  steroid   synthesis   and   metabolism   pathways   in   fish’   Steroid  biochemistry  and  molecular  biology.  92  (5)  :  485-­‐494    Turner  A  and  Rawling  M.  C  (2000)  ‘The  behavior  of  di-­‐(2-­‐ethylhexyl)  phthalate  in  estuaries’  Marine  chemistry.  68  (3)  :  203-­‐217    Uren-­‐Webster   T.  M,   Lewis   C,   Filby   A.   L,   Paull   G.   C   and   Santos   E.  M  (2010)   ‘Mechanisms  of   toxicity   of   di(2-­‐ethylhexyl)   phthalate   on   the  reproductive   health   of   male   zebra   fish’   Aquatic   toxicology.   99   (3):  360-­‐369    Van  Den  Berg,  Sanderson  T,  Kurihara  N  and  Katayama  A  (2003)  ‘Role  of   metabolism   in   the   endocrine-­‐disrupting   effects   of   chemicals   in  aquatic  and   terrestrial   systems’  Pure  applied  chemistry.  75  (11-­‐12)   :  1917-­‐1932    Van  Wezel  A.  P,  Van  Vlaardingen  P,  Posthumus  R,  Crommentuijn  G.  H  and   Sijm   D.   T.   H.   M   (2000)   ‘Environemtnal   risk   limits   for   two  phthalates,   with   special   emphasis   on   endocrine   disruptive  properties’  Ecotoxicology  and  environmental  safety.  46  (3)  :  305-­‐321    Vetman   K,   Hendriks   J,   Huijbregts   M,   Leonards   P,   Van   den   Heuvel-­‐Greve   M,   Vethaak   D   (2005)   ‘Accumulation   f   organochlorines   and  brominated   flame   retardants   in   estuarine   and   marine   food   chains:  field  measuremnts  and  model  calculations’  Marine  pollution  bulletin.  50  (10)  :  1085-­‐1102      

Page 46: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  46  

Vethaak  A.  D,  Lahr  J,  Schrap  S.  M,  Belfroid  A.  C,  Rijs  G.  B.  J,  Gerritsen  A,  Boer  J,  Bulder  A.  S,  Grinwis  G.  C.  M,  Kuiper  R.  V,  Legler  J,  Murk  T.  A.  J,  Peijnenburg  W,   Verhaar   H.   J.   M   and   Voogt   P   (2005)   ‘An   integrated  assessment  of  estrogenic  contamination  and  biological  effects   in  the  squatic  environment  of   the  Netherlands’  Chemosphere.  59  (4)   :  511-­‐524    Yuan   S.   Y,   Huang   I.   C   and   Chang   B.   V   (2010)   ‘Biodegradation   of  dibutyl   phthalate   and   di-­‐(2-­‐ethylhexyl)   phthalate   and   microbial  community   changes   in   mangrove   sediment’   Journal   of   hazardous  materials.  184  (1-­‐3)  :  826-­‐831    Yuwatini   E,   Hata   N   and   Taguchi   S   (2006)   ‘Behavior   of   di-­‐(2-­‐ethylhexyl)   phthalate   discharged   form   domestic   waste   water   into  aquatic   environment’   Journal   of   environmental   monitoring.   8   (1)   :  191-­‐196    Zanotelli   V.   R.   T,   Neuhauss   S.   C.   F   and   Ehrengruber   M.   U   (2009)  ‘Long-­‐term   exposure   to   bis(2-­‐ethylhexyl)   phthalate   (DEHP)   inhibits  growth   of   guppy   fish   (Poecilia   reticulata)’   Journal   of   applied  toxicology.  30  (1)  :  29-­‐33        (References  within  Table  4,  5  and  6)    Adams  W.  J,  Biddinger  G.  R  Robillard  K.  A  and  Gorsuch  J.  W  (1995)  ‘A  summary   of   the   acute   toxicity   of   14   phthalate   esters   to  representative   organisms’   Environmental   toxicology   and   chemistry.  14  (9)  :  1569-­‐1574    Adema   D.   M.   M,   Canton   J.   H,   Slooff   W   and   Hanstveit   A.   O   (1981)  ‘Onderzoek   naar   een   geschikte   combinatie   toetsmethoden   ter  bepaling   van   de   aquatische   toxiciteit   van   milieugevaarlijke   stoffen’  National   institute   of   public   health   environmental   protection,  Bilthoven  (CL  81/100  RIVM  627905.001)    

Page 47: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  47  

Canton  J.  H,  Adema  D.  M  M  and  DeZwart  D  (1984)  ‘Onderzoek  naar  de  bruikbaarheid   van   een   drietal   eierleggende   vissoorten   in   routine  toxiciteitsonderzoek’   National   institute   of   public   health  environmental   protection,   Bilthoven   (CL   81/100   A,   RIVM  668114.002)    Defoe  D.  L,  Holcombe  G.  W,  Hammermeister  D.  E  and  Biesinger  K.  E  (1990)   ‘Solubility   and   toxicity   of   eight   phthalate   esters   to   four  aquatic   organisms’   Environmental   toxicology   and   chemistry.   9   (5)   :  623-­‐636    Hrudy   S  E,   Sergy  G.  A   and  Thackeray  T   (1976)   ‘Toxicity   of   oil   sand  plant   wastewaters   and   associated   organic   contaminant’   Water  pollution  research  journal  of  Canada.  11  :  34-­‐45    Jobling  S,  Reynolds  T,  White  R,  Parker  M.  G  and  Sumpter  J.  P  (1995)  ‘A  variety   of   environmentally   persistent   chemicals   including   some  phthalate   plasticizers   are   weakly   estrogenic’   Environmental   health  perspectives.  103  (6)  :  582-­‐587    Knudsen   F.   R   and   Pottinger   T.   G   (1999)   ‘Interaction   of   endocrine  disrupting   chemicals,   singly   and   in   combination   with   estrogen-­‐  androgen-­‐   and   corticosteroid-­‐binding   sites   in   rainbow   trout  (Oncorhynchus  mykiss)’  Aquatic  toxicology.  44  (3)  :  159-­‐170    Mayer   F.   L   and   Ellersieck   M.   R   (1986)   ‘Manual   of   acute   toxicity  interpretation   and   data   base   for   410   chemicals   and   66   species   of  fresh-­‐water  animals’  Resource  publication  160  U.S  department  of  the  interior,  fish  and  wildlife  service.  Washington  DC    Mayer   Jr.   F.   L   and   Sanders  H.  O   (1973)   ‘Toxicology   of   phthalic   acid  estersin  squatic  organims’  Environmental  health  perspectives.  3  :  153-­‐157    McCarthy   J.   F   and  Whitmore   D.   K   (1985)   ‘Chronic   toxicity   of   di-­‐n-­‐butyl   and   di-­‐n-­‐octyl   phthalate   to   Daphnia   magna   and   the   fathead  minnows’  Environmental  toxicology  and  chemistry.  4  (2)  :  167-­‐179    Mehrle  P.  M  and  Mater  F.  L  (1976)  ‘Di-­‐2-­‐ethylhexyl  ohthalate:  residue  dynamics   and   biological   effect   in   rainbow   trout   and   fathead  minnows’  Trace  substances  and  environmental  health.  10  :  519-­‐524    

Page 48: A review of phthalates and the associated reproductive and decelopmental toxicity towards fish MSc Literature thesis

  48  

Rhodes  J.  E,  Adams  W.  J,  Biddinger  G.  R,  Robillard  K.  A  and  Gorsuch  J.  W  (1995)   ‘Chronic  toxicity  of  14  phthalate  esters  to  Daphnia  magna  and   rainbow   trout   (Oncorhynchus  mykiss)’   environmental   toxicology  and  chemistry.  14  (11)  :  1967-­‐1976    Scholz  N   (1994)   ‘Determination  of   the  effect  of  vestinol  C   (DBP)  on  the  growth  of  fish’  as  specified  by  directive  92/69/C  1  EEC.  Huls  A.  G  final  report  FK-­‐1308  Marl.    Scholz  N   (1995)   ‘Determination  of   the  effect  of   vestinol  AH   (DEHP)  on  the  growth  of  fish’  as  specified  by  directive  92/69/C  1  EEC.  Huls  A.  G  final  report  FK-­‐1319  Marl.    Van  de  dikkenberg  R.  Ph,  Canton  H.  H,  Mathijssen-­‐Spiekman  L.  A.  M  and  Roghair  C.  J  (1989)  ‘The  usefulness  of  gasterosteus  aculeatus-­‐the  three   spined   stickleback-­‐as   a   test   organism   in   route   toxicity   tests’  National   intitute   of   public   health   environmental   protection,  Bilthoven.  (RIVM  718625.003)