a reaction network analysis of the wgsr microkinetic model

23
A Reaction Network Analysis of the WGSR Microkinetic Model Caitlin Callaghan, Ilie Fishtik and Ravindra Datta Fuel Cell Center and Department of Chemical Engineering, Worcester Polytechnic Institute Worcester, MA 01609 11/17/2003

Upload: triveni-ishaan

Post on 30-Dec-2015

33 views

Category:

Documents


2 download

DESCRIPTION

A Reaction Network Analysis of the WGSR Microkinetic Model. Caitlin Callaghan , Ilie Fishtik and Ravindra Datta Fuel Cell Center and Department of Chemical Engineering, Worcester Polytechnic Institute Worcester, MA 01609. 11/17/2003. Research Objectives. - PowerPoint PPT Presentation

TRANSCRIPT

A Reaction Network Analysis of the WGSR Microkinetic Model

Caitlin Callaghan, Ilie Fishtik and Ravindra Datta

Fuel Cell Center and Department of Chemical Engineering,Worcester Polytechnic InstituteWorcester, MA 01609

11/17/2003

Research Objectives

Develop a predictive microkinetic model for LTS and HTS water gas shift catalysts Identify the rate determining steps Develop reduced kinetic model

Simulate the reaction for copper catalysts

Eventual goal is a priori design of catalysts for the water-gas-shift-reaction in fuel reformers for fuel cells

Developing the Model

Identify (q) surface intermediates: H2OS, COS, CO2S, H2S, HS, OHS, OS, HCOOS

UBI-QEP methodUBI-QEP method used to generate ERs and calculate the energetic characteristics (H, Ea) of each ER based on three types of reactions:

1. AB(g) + S ABS2. AB(g) +S AS + BS3. AS + BCS ABS + CS

Pre-exponential factors from transition state theory 101 Pa-1s-1 – adsorption/desorption

reactions 1013 s-1 – surface reactions

UBI-QEP Ref. Shustorovich, E.; Sellers, H. Surf. Sci. Reports 1998, 31, 1.

jE

jA Elementary Reaction Steps

:jE

:jA

s1: 0 106 CO + S COS 12.0 1014

s2: 0 106 H2O + S H2OS 13.6 1014

s3: 5.3 4 1012 CO2S CO2 + S 0 106

s4: 15.3 1013 HS + HS H2S + S 12.8 1013

s5: 5.5 6 1012 H2S H2 + S 0 106

s6: 25.4 1013 H2OS + S OHS + HS 1.6 1013

s7: 10.7 1013 COS + OS CO2S + S 28.0 1013

s8: 0 1013 COS + OHS HCOOS + S 20.4 1013

s9: 15.5 1013 OHS + S OS + HS 20.7 1013

s10: 0 1013 COS + OHS CO2S + HS 22.5 1013

s11: 1.4 1013 HCOOS + S CO2S + HS 3.5 1013

s12: 4.0 1013 HCOOS + OS CO2S + OHS 0.9 1013

s13: 29.0 1013 H2OS + OS 2OHS 0 1013

s14: 26.3 1013 H2OS + HS OHS + H2S 0 1013

s15: 1.3 1013 OHS + HS OS + H2S 4.0 1013

s16: 0.9 1013 HCOOS + OHS CO2S + H2OS 26.8 1013

s17: 14.6 1013 HCOOS + HS CO2S + H2S 14.2 1013

Adsorptionand

DesorptionSteps

Ref. Callaghan, C. A.; Fishtik, I.; Datta, R.; Carpenter, M.; Chmielewski, M.; Lugo, A. Surf. Sci. 2003, 541, 21

Surface Energetics for Cu(111) Catalyst:

Activation energies: kcal/mol

Pre-exponential factors:Pa-1s-1 (ads/des) s-1 (surface)

Reaction Rate & Affinity

Thermodynamic transition state theory (TTST)

Degree of reversibility and the direction of the reaction flux For A > 0, the reaction proceeds in the forward (positive net flux) For A < 0, the reaction proceeds in the reverse direction (negative net

flux)

Conventional DeDonder Relation:

r

k ai

i

i1

r

expo

BGk T

kh RT

:r

:k ai

i

ir 1

n

expo

BGk T

kh RT

::

1 1 expr

r r rr

A

:

1 1 1

ln ln ln lnqn n

i i o o k k i ii k i

AK P

RT

A

Exchange Rate & Resistance

As the affinity approaches zero, the forward and reverse rates approach a common value, the exchange rate, r,0.

Reaction Resistance:

At equilibrium, the resistance is equal to the inverse of the exchange rate.

,0

0( )

rr

AA

ln1

rr

Rv r r

:

G:

,0

1R

r

Reaction Route Network

Mountain Trek Reaction Network

Reaction Routes

A reaction route (RR) is defined as a linear combination of p elementary reaction steps s ( = 1,2,…,p)

If an elementary reaction step is involved in more than one RR, its rate is equal to the sum of its stoichiometric number for the RR times the flux of the each RR.

1

p

RR s

1

p

TA A

Tr σ J

Network Analysis (1)

Kirchhoff’s Current Law (KCL) At the nodes, under QSS conditions, the

algebraic sum of the rates (currents) of the elementary reactions are equal to zero

Kirchhoff’s Voltage Law (KVL) The algebraic sum of the affinities along each

empty route (ER) is equal to zero

Mf r = 0

f A = 0

Network Analysis (2)

Tellegen’s Theorem The power dissipated by the OR euqals the

power dissipated by the elementary reactions in a RR.

Ohm’s Law: the NEW DeDonder Relation The algebraic sum of the affinities along each

ER is equal to zero

AT r = 0

rR

A

Water Gas Shift Reaction Full Reaction Routes

RR1 = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s9 RR2 = s1 + s2 + s3 + s4 + s5 + s6 + s10 RR3 = s1 + s2 + s3 + s4 + s5 + s6 + s8 + s11 RR4 = s1 + s2 + s3 + s4 + s5 + s6 + s8 + s9 + s12 RR5 = s1 + s2 + s3 + s4 + s5 + s6 + s7 + s11 - s12 RR6 = s1 + s2 + s3 + s5 + s6 + s7 + s15 RR7 = s1 + s2 + s3 + s5 + s6 + s8 + s12 + s15 RR8 = s1 + s2 + s3 + s5 + s7 + s9 + s14 RR9 = s1 + s2 + s3 + s5 + s10 + s14 RR10 = s1 + s2 + s3 + s5 + s8 + s11 + s14 RR11 = s1 + s2 + s3 - s4 + s5 + s7 + s14 + s15 RR12 = s1 + s2 + s3 + s5 + s7 + s11 - s12 + s14 RR13 = s1 + s2 + s3 + s5 + s8 + s9 + s12 + s14 RR14 = s1 + s2 + s3 - s4 + s5 + s8 + s12 + s14 + s15

RR15 = s1 + s2 + s3 - s4 + s5 + s7 - s12 + s14 + s17 RR16 = s1 + s2 + s3 - s4 + s5 + s8 + s14 + s17 RR17 = s1 + s2 + s3 + s5 + s6 + s8 + s17 RR18 = s1 + s2 + s3 + s5 + s6 + s10 - s11 + s12 + s15 RR19 = s1 + s2 + s3 + s5 + s6 + s10 - s11 + s17 RR20 = s1 + s2 + s3 + s5 + s6 + s7 - s12 + s17 RR21 = s1 + s2 + s3 + s5 + s6 + s7 + s9 - s11 + s17 RR22 = s1 + s2 + s3 + s5 + s6 + s8 - s9 + s11 + s15 RR23 = s1 + s2 + s3 + s5 + s6 - s9 + s10 - s12 + s17 RR24 = s1 + s2 + s3 + s5 + s6 - s9 + s10 + s15 RR25 = s1 + s2 + s3 + s5 + s7 + s11 + s14 + s15 - s17 RR26 = s1 + s2 + s3 + s5 + s8 + s9 + s14 - s15 + s17

(neglect s13 & s16)

Water Gas Shift Reaction Empty Reaction Routes

ER1 = -s12 - s15 + s17 ER2 = -s4 - s11 + s12 + s15 ER3 = -s4 - s11 + s17 ER4 = -s4 - s6 + s14 ER5 = -s4 + s7 - s10 - s12 + s17 ER6 = s4 - s7 + s10 - s15 ER7 = -s4 + s7 - s8 - s11 + s15 ER8 = -s4 - s7 + s8 - s9 + s17 ER9 = -s4 + s8 - s10 + s12 + s15 ER10 = -s4 + s8 - s10 + s17 ER11 = -s4 - s9 - s12 + s17

ER12 = -s4 - s9 + s15 ER13 = -s6 + s11 - s12 + s14 - s15 ER14 = -s6 + s11 + s14 - s17 ER15 = -s6 - s7 + s10 + s12 + s14 - s17 ER16 = -s6 - s7 + s10 + s14 - s15 ER17 = -s6 - s7 + s8 + s11 + s14 - s15 ER18 = -s6 + s7 - s8 + s9 + s14 - s17 ER19 = -s6 - s8 + s10 - s12 + s14 - s15 ER20 = -s6 - s8 + s10 + s14 - s17 ER21 = -s6 + s9 + s12 + s14 - s17 ER22 = -s6 + s9 + s14 - s15

(neglect s13 & s16)

Aoverall

R1 R2

R14 R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8

The complete electric circuit analog to the WGSR

15-step Water Gas Shift Reaction

Reaction Route Network

n0 n9

Network Reduction (1)

Aoverall

R1 R2

R14 R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R14 R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R14 R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n91.E-02

1.E+01

1.E+04

1.E+07

1.E+10

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 14

R 4 + R 6

Experimental ConditionsSpace time = 1.80 s

FEED: CO inlet = 0.10H2Oinlet = 0.10

CO2 inlet = 0.00

H2 inlet = 0.00

1.E-02

1.E+01

1.E+04

1.E+07

1.E+10

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 14

R 4 + R 6

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

1.E-05

1.E-01

1.E+03

1.E+07

1.E+11

1.E+15

1.E+19

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 11

R 9 + R 12

Network Reduction (2)

Experimental ConditionsSpace time = 1.80 s

FEED: CO inlet = 0.10

H2Oinlet = 0.10

CO2 inlet = 0.00

H2 inlet = 0.00

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R12R7

R9n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R12R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

1.E-05

1.E-01

1.E+03

1.E+07

1.E+11

1.E+15

1.E+19

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 11

R 9 + R 12

Network Reduction (3)

Experimental ConditionsSpace time = 1.80 s

FEED: CO inlet = 0.10H2Oinlet = 0.10

CO2 inlet = 0.00

H2 inlet = 0.00

1.E-04

1.E-01

1.E+02

1.E+05

1.E+08

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

) R 17

R 4 + R 11

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R10

R5R3R8

R11

R6 R17

R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

Aoverall

R1 R2

R10

R5R3R8

R11

R6

R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

1.E-04

1.E-01

1.E+02

1.E+05

1.E+08

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

) R 17

R 4 + R 11

Water Gas Shift ReactionEnergy Diagram

node 1

Pot

enti

al E

ner

gy (

kca

l/mol

)

0

10

20

30

40

50

-10

-20

-30

-40

-50

Reaction Coordinate

node 2

node 3

node 4node 7

node 5

node 8node 9

node 10

node 6s5

s3

s15

s4

s7

s6s1

s2

s8

s11

s10

from the RR network

Quasi Equilibrium & RDS

1.E-06

1.E-03

1.E+00

1.E+03

1.E+06

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 6

R 2R 3,R 5

R 1

1.E-04

1.E+00

1.E+04

1.E+08

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

R 4

-11

rate

(s) (R 8+R 11)R 10

R 8+R 10+R 11

Aoverall

R10

R8R11R6

R7

n2

n4

n3 n5

n6

n7

R15

1.E-06

1.E-03

1.E+00

1.E+03

1.E+06

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

-1

1ra

te(s

)

R 6

R 2R 3,R 5

R 1

Aoverall

R1 R2

R10

R5R3R8

R11

R6

R7

n2

n4

n3 n5

n6

n7

R15

R4

n1 n8n0 n9

1.E-04

1.E+00

1.E+04

1.E+08

0 0.005 0.01 0.015 0.02 0.025

1/T (1/oC)

Res

ista

nce

R 4

-11

rate

(s) (R 8+R 11)R 10

R 8+R 10+R 11

Linearly Independent RRs for WGSR on Cu(111)

RRI RRII RRIII RRIV RRV RRVI RRVII

s1: CO + S COS 1 1 1 0 0 1 1 s2: H2O + S H2OS 1 1 1 0 0 1 1 s3: CO2S CO2 + S 1 1 1 0 0 1 1 s4: HS + HS H2S + S 1 1 1 0 -1 0 0 s5: H2S H2 + S 1 1 1 0 0 1 1 s6: H2OS + S OHS + HS 1 1 1 0 -1 1 1 s7: COS + OS CO2S + S 1 0 0 -1 0 1 0 s8: COS + OHS HCOOS + S 0 0 1 1 0 0 1 s9: OHS + S OS + HS 1 0 0 0 0 0 0 s10: COS + OHS CO2S + HS 0 1 0 0 0 0 0 s11: HCOOS + S CO2S + HS 0 0 1 0 0 0 0

s12: HCOOS + OS CO2S + OHS 0 0 0 1 0 0 0

s14: H2OS + HS OHS + H2S 0 0 0 0 1 0 0 s15: OHS + HS OS + H2S 0 0 0 0 0 1 0 s17: HCOOS + HS CO2S + H2S 0 0 0 0 0 0 1 Net: RRI: H2O + CO CO2 + H2 JI

RRII: H2O + CO CO2 + H2 JII RRIII: H2O + CO CO2 + H2 JIII RRIV: 0 = 0 JIV RRV: 0 = 0 JV RRVI: H2O + CO CO2 + H2 JVI

RRVII: H2O + CO CO2 + H2 JVII

Rate Expressions

The net flux of a reaction is the sum of the fluxes of the RRs in which it is involved:

Reduced Network: RR2, RR3, and RR6

r1 = JII + JIII + JVI r6 = JII + JIII + JVI r11 = JIII r2 = JII + JIII + JVI r7 = JVI r12 = 0 r3 = JII + JIII + JVI r8 = JIII r14 = 0 r4 = JII + JIII r9 = 0 r15 = JVI r5 = JII + JIII + JVI r10 = JII r17 = 0

rOR = JII + JIII + JVI = r8 + r10 + r15

Reduced Rate Expression

rOR = r8 + r10 + r15

2 22 2

22

1/ 22 1/ 26 1 H O 0 8 10 2 15 H 4 5 CO H

OR 1/ 2H O CO6 6 15 H

8 10 2 CO1/ 24 5

1COk K P θ k k K P k P K K P P

rKP Pk K k P

k k K PK K

where

2

2

0 1/ 2H

1 H O 2 1/ 24 5

1

1 CO

PK P K P

K K

Assume that OHS is the QSS species.

Simulation of Microkinetic Model

for Copper, 17-step

Experimental Conditions

Space time = 1.80 s

FEED: COinlet = 0.10

H2Oinlet = 0.10

CO2 inlet = 0.00

H2 inlet = 0.00

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Temperature (oC)

Co

nv

ers

ion

of

CO

Experiment

Equilibrium

Simplified Model

Conclusions Predicted kinetics can provide for reliable microkinetic

models. Reaction network analysis is a useful tool for reduction,

simplification and rationalization of the microkinetic model.

Analogy between a reaction network and electrical network exists.

The analogy between reaction routes and electrical circuits provides a useful interpretation of kinetics and mechanism

Application of the proposed formalism to the analysis of the WGS reaction mechanism validated the reduced model developed earlier based solely on a numerical RR analysis.