a performance comparison using hpc benchmarks: windows hpc

27
A PERFORMANCE COMPARISON USING HPC BENCHMARKS: WINDOWS HPC SERVER 2008 AND RED HAT ENTERPRISE LINUX 5 R. Henschel, S. Teige, H. Li, J. Doleschal , M. S. Mueller October 2010

Upload: others

Post on 12-Feb-2022

20 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A Performance Comparison using HPC Benchmarks: Windows HPC

A PERFORMANCE COMPARISON USINGHPC BENCHMARKS: WINDOWS HPC

SERVER 2008 AND RED HAT ENTERPRISE LINUX 5

R. Henschel, S. Teige, H. Li, J. Doleschal , M. S. Mueller

October 2010

Page 2: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Contents• HPC at Indiana University• FutureGrid• Benchmarking Setup

• Hardware• Results

• SPEC MPI2007 medium• NSF Acceptance Test Suite• HPCC

• Conclusion

Page 3: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPC at Indiana University

• Indiana University• Founded in 1820• 8 campuses

• Bloomington and Indianapolis• 80,000 students, 7,000 faculty

• HPC systems are operated by Research Technologies of University Information Technology Services

• Open access to graduate students, faculty and staff

Page 4: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPC at Indiana University• IU is one of 11 TeraGrid resource providers

Page 5: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPC at Indiana University• IU hosts the Open Science Grid (OSG) operations center

Page 6: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

FutureGrid• $15 Mio. NSF Track 2 D award (2009)• Support the research on the future of distributed, grid,

and cloud computing. • Build a robustly managed simulation environment and

testbed to support the development and early use in science of new technologies at all levels of the software stack: from networking to middleware to scientific applications.

• Mimic TeraGrid and/or general parallel and distributed systems.

• FutureGrid is a (small 5600 core) Science Cloud but it is more accurately a virtual machine based simulation environment.

Page 7: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

FutureGrid

Page 8: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Benchmarking Setup

• SPEC MPI2007 medium• NSF Acceptance Test Suite• HPCC

• Windows HPC Server 2008• RedHat Enterprise Linux 5.4

• IBM System x iDataPlex dx340 cluster

• Intel Compiler Version 11.1 (incl. MKL)• OpenMPI 1.3.1 / MS MPI 2008

Page 9: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Hardware• IBM System x iDataPlex dx340

– 84 nodes– 64 used for benchmarking

• Intel Xeon L5420 at 2.5 GHz• 32 GByte of memory per node• Mellanox MT26418 DDR Infiniband• Cisco SFS 7024D switch

Page 10: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Benchmarks• SPEC MPI2007 (medium)• NSF Acceptance Test Suite• HPCC

Page 11: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• Developed by the SPEC High Performance Group• Includes 13 MPI parallel applications

• Computational fluid dynamics, molecular dynamics Electromagnetism, geophysics, ray tracing, and hydrodynamics

• Version 1.1, released October 2008• Results were published on the SPEC website, after

having been reviewed by the HPG• http://www.spec.org/mpi2007/results/res2010q1/

• First published results running SPEC MPIM2007 on Windows (HPC Server 2008)

Page 12: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• Overall performance

32 64 128 256 5120

5

10

15

20

25

30

SPEC MPIM2007 Score from 32 to 512 Cores

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 13: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• No Difference in performance, 6 applications

32 64 128 256 5120

10

20

30

40

50

60

SPEC MPIM2007 Score for TACHYON

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 14: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• RHEL5 outperforms WinHPC in 5 applications

32 64 128 256 5120

5

10

15

20

25

SPEC MPIM2007 Score for SOCORRO

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 15: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• RHEL5 outperforms WinHPC in 5 applications

32 64 128 256 5120

5

10

15

20

25

SPEC MPIM2007 Score for SOCORRO

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

32 64 128 256 5120

10

20

30

40

50

60

70

SPEC MPIM2007 Score for FDS4

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 16: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• RHEL5 outperforms WinHPC in 5 applications

32 64 128 256 5120

5

10

15

20

25

SPEC MPIM2007 Score for SOCORRO

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

32 64 128 256 5120

10

20

30

40

50

60

70

SPEC MPIM2007 Score for FDS4

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

32 64 128 256 5120

2

4

6

8

10

12

SPEC MPIM2007 Score for POP2

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 17: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• WinHPC outperforms RHEL5 in 2 applications

32 64 128 256 5120

10

20

30

40

50

60

SPEC MPIM2007 Score for WRF

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 18: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

SPEC MPIM2007• WinHPC outperforms RHEL5 in 2 applications

32 64 128 256 5120

10

20

30

40

50

60

SPEC MPIM2007 Score for WRF

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

32 64 128 256 5120

5

10

15

20

25

30

SPEC MPIM2007 Score for LESLIE3D

WinHPC RHEL5

Cores

SP

EC

MP

IM2

00

7 S

core

Page 19: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

NSF Acceptance Test Suite• NSF Track 2 program

• Sun constellation at TACC, Cray XT5 at University of Tennessee, FutureGrid

• Benchmarking Information Referenced in NSF 05-625 “High Performance Computing System Acquisition: Towards a Petascale Computing Environment for Science and Engineering” (2005)• http://www.nsf.gov/pubs/2006/nsf0605/nsf0605.jsp

• Initially comprised of HPCC, 6 applications, SPIOBENCH• Now, just HPCC and 4 applications

• PARATEC, HOMME, MILC, WRF

Page 20: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

NSF Acceptance Test Suite• MILC, PARATEC, HOMME• WRF not included

32 64 128 256 5120

0.2

0.4

0.6

0.8

1

1.2

Ratio of WinHPC to RHEL

RHEL MILC Medium WinHPC

MILC Large WinHPC

PARATEC WinHPC

HOMME WinHPC

Cores

Ra

tio

Page 21: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPCC• Innovative Computing Laboratory at the University of

Tennessee• Version 3.1.3• 3 categories:

– Floating Point– Memory– Interconnect

Page 22: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPCC• Floating point tests (HPL, G-FFT)

8 16 32 64 128 256 5120

0.2

0.4

0.6

0.8

1

1.2

Ratio of WinHPC to RHEL

RHEL HPL WinHPC GFFT WinHPC

Cores

Ra

tio

Page 23: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPCC• Memory performance tests (Random Access, Stream)

8 16 32 64 128 256 5120

0.5

1

1.5

2

2.5

3

Ratio of WinHPC to RHEL

RHEL G-Ran-domAccess WinHPC

EP-Stream WinHPC

Cores

Ra

tio

Page 24: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

HPCC• Interconnect performance tests (G-PTRANS, RR-

Bandwidth and Latency)

8 16 32 64 128 256 5120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ratio of WinHPC to RHEL

RHEL G-PTRANS WinHPC

RR-Bandwidth WinHPC

RR-Latency WinHPC

Cores

Ra

tio

Page 25: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Conclusion• Overall performance of WinHPC and RHEL5 is almost

identical• Certain applications scale better on RHEL5 than on

WinHPC for larger core counts, while they perform very similar on smaller core counts

• When applications scale better on WinHPC, they do so across all core counts

• Building and running the benchmarks is more challenging on WinHPC

Page 26: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

AcknowledgementsThis document was developed with support from the National Science Foundation (NSF) under Grant No. 0910812 to Indiana University for "FutureGrid: An Experimental, High-Performance Grid Test-bed." Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF.

This material is based upon work supported by the National Science Foundation under Grants No. ACI-0338618l, OCI-0451237, OCI-0535258, OCI-0504075, OCI-0910812 and CNS-0521433.

This research was supported in part by the Indiana METACyt Initiative. The Indiana METACyt Initiative of Indiana University is supported in part by Lilly Endowment, Inc.

Page 27: A Performance Comparison using HPC Benchmarks: Windows HPC

Robert Henschel

Thank You

Questions?