a integrable generalized super-nls-mkdv hierarchy, its ...hierarchy and its super-hamiltonian...

10
Research Article A Integrable Generalized Super-NLS-mKdV Hierarchy, Its Self-Consistent Sources, and Conservation Laws Hanyu Wei 1 and Tiecheng Xia 2 1 College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China 2 Department of Mathematics, Shanghai University, Shanghai 200444, China Correspondence should be addressed to Hanyu Wei; [email protected] Received 30 November 2017; Accepted 4 February 2018; Published 5 March 2018 Academic Editor: Zhijun Qiao Copyright © 2018 Hanyu Wei and Tiecheng Xia. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A generalized super-NLS-mKdV hierarchy is proposed related to Lie superalgebra (0, 1); the resulting supersoliton hierarchy is put into super bi-Hamiltonian form with the aid of supertrace identity. en, the super-NLS-mKdV hierarchy with self-consistent sources is set up. Finally, the infinitely many conservation laws of integrable super-NLS-mKdV hierarchy are presented. 1. Introduction e superintegrable systems have aroused strong interest in recent years; many experts and scholars do research on the field and obtain lots of results [1, 2]. In [3], the supertrace identity and the proof of its constant are given by Ma et al. As an application, super-Dirac hierarchy and super-AKNS hierarchy and its super-Hamiltonian structures have been furnished. en, like the super-C-KdV hierarchy, the super- Tu hierarchy, the multicomponent super-Yang hierarchy, and so on were proposed [4–9]. In [10], the binary nonlineariza- tion and Bargmann symmetry constraints of the super-Dirac hierarchy were given. Soliton equations with self-consistent sources have important applications in soliton theory. ey are oſten used to describe interactions between different solitary waves, and they can provide variety of dynamics of physical models; some important results have been got by some scholars [11– 18]. Conservation laws play an important role in mathemati- cal physics. Since Miura et al. discovery of conservation laws for KdV equation in 1968 [19], lots of methods have been presented to find them [20–23]. In this work, a generalized super-NLS-mKdV hierarchy is constructed. en, we present the super bi-Hamiltonian form for the generalized super-NLS-mKdV hierarchy with the help of the supertrace identity. In Section 3, we consider the generalized super-NLS-mKdV hierarchy with self-consistent sources based on the theory of self-consistent sources. Finally, the conservation laws of the generalized super-NLS-mKdV hierarchy are given. 2. The Generalized Superequation Hierarchy Based on the Lie superalgebra (0, 1) 1 =( 1 0 0 0 −1 0 0 0 0 ), 2 =( 0 10 −1 0 0 0 00 ), 3 =( 010 100 000 ), 4 =( 0 0 1 0 0 0 0 −1 0 ), 5 =( 000 001 100 ); (1) Hindawi Advances in Mathematical Physics Volume 2018, Article ID 1396794, 9 pages https://doi.org/10.1155/2018/1396794

Upload: others

Post on 18-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Research ArticleA Integrable Generalized Super-NLS-mKdV Hierarchy, ItsSelf-Consistent Sources, and Conservation Laws

    HanyuWei 1 and Tiecheng Xia 2

    1College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China2Department of Mathematics, Shanghai University, Shanghai 200444, China

    Correspondence should be addressed to Hanyu Wei; [email protected]

    Received 30 November 2017; Accepted 4 February 2018; Published 5 March 2018

    Academic Editor: Zhijun Qiao

    Copyright © 2018 HanyuWei and Tiecheng Xia.This is an open access article distributed under the Creative Commons AttributionLicense, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

    A generalized super-NLS-mKdV hierarchy is proposed related to Lie superalgebra 𝐵(0, 1); the resulting supersoliton hierarchy isput into super bi-Hamiltonian form with the aid of supertrace identity. Then, the super-NLS-mKdV hierarchy with self-consistentsources is set up. Finally, the infinitely many conservation laws of integrable super-NLS-mKdV hierarchy are presented.

    1. Introduction

    The superintegrable systems have aroused strong interest inrecent years; many experts and scholars do research on thefield and obtain lots of results [1, 2]. In [3], the supertraceidentity and the proof of its constant 𝛟 are given by Ma etal. As an application, super-Dirac hierarchy and super-AKNShierarchy and its super-Hamiltonian structures have beenfurnished. Then, like the super-C-KdV hierarchy, the super-Tu hierarchy, the multicomponent super-Yang hierarchy, andso on were proposed [4–9]. In [10], the binary nonlineariza-tion and Bargmann symmetry constraints of the super-Dirachierarchy were given.

    Soliton equations with self-consistent sources haveimportant applications in soliton theory. They are often usedto describe interactions between different solitary waves, andthey can provide variety of dynamics of physical models;some important results have been got by some scholars [11–18]. Conservation laws play an important role in mathemati-cal physics. Since Miura et al. discovery of conservation lawsfor KdV equation in 1968 [19], lots of methods have beenpresented to find them [20–23].

    In this work, a generalized super-NLS-mKdVhierarchy isconstructed.Then, we present the super bi-Hamiltonian formfor the generalized super-NLS-mKdVhierarchy with the helpof the supertrace identity. In Section 3, we consider thegeneralized super-NLS-mKdV hierarchy with self-consistentsources based on the theory of self-consistent sources. Finally,

    the conservation laws of the generalized super-NLS-mKdVhierarchy are given.

    2. The Generalized Superequation Hierarchy

    Based on the Lie superalgebra 𝐵(0, 1)𝑒1 = (1 0 00 −1 00 0 0) ,𝑒2 = ( 0 1 0−1 0 00 0 0) ,𝑒3 = (0 1 01 0 00 0 0) ,𝑒4 = (0 0 10 0 00 −1 0) ,𝑒5 = (0 0 00 0 11 0 0) ;

    (1)

    HindawiAdvances in Mathematical PhysicsVolume 2018, Article ID 1396794, 9 pageshttps://doi.org/10.1155/2018/1396794

    http://orcid.org/0000-0002-2668-9550http://orcid.org/0000-0001-8235-0319https://doi.org/10.1155/2018/1396794

  • 2 Advances in Mathematical Physics

    that is, along with the communicative operation[𝑒1, 𝑒2] = 2𝑒3,[𝑒1, 𝑒3] = 2𝑒2,[𝑒1, 𝑒4] = [𝑒2, 𝑒5] = [𝑒3, 𝑒5] = 𝑒4,[𝑒4, 𝑒2] = [𝑒5, 𝑒1] = [𝑒3, 𝑒4] = 𝑒5,[𝑒2, 𝑒3] = 2𝑒1,[𝑒4, 𝑒4]+ = −𝑒2 − 𝑒3,[𝑒4, 𝑒5]+ = 𝑒1,[𝑒5, 𝑒5]+ = 𝑒3 − 𝑒2.(2)

    To set up the generalized super-NLS-mKdV hierarchy,the spectral problem is given as follows:𝜑𝑥 = 𝑈𝜑,𝜑𝑡 = 𝑉𝜑, (3)with

    𝑈 = ( 𝜆 + 𝑀 𝑢1 + 𝑢2 𝑢3𝑢1 − 𝑢2 −𝜆 − 𝑀 𝑢4𝑢4 −𝑢3 0 ) ,𝑉 = ( 𝐎 𝐵 + 𝐶 𝜎𝐵 − 𝐶 −𝐎 𝜌𝜌 −𝜎 0) ,

    (4)

    where 𝑀 = 𝜀((1/2)𝑢21 − (1/2)𝑢22 + 𝑢3𝑢4) with 𝜀 being anarbitrary even constant, 𝜆 is the spectral parameter, 𝑢1 and𝑢2 are even potentials, and 𝑢3 and 𝑢4 are odd potentials. Notethat spectral problem (3) with 𝜀 = 0 is reduced to super-NLS-mKdV hierarchy case [24].

    Setting 𝐎 = ∑𝑚≥0

    𝑎𝑚𝜆−𝑚,𝐵 = ∑𝑚≥0

    𝑏𝑚𝜆−𝑚,𝐶 = ∑𝑚≥0

    𝑐𝑚𝜆−𝑚,𝜎 = ∑𝑚≥0

    𝜎𝑚𝜆−𝑚,𝜌 = ∑𝑚≥0

    𝜌𝑚𝜆−𝑚,(5)

    solving the equation 𝑉𝑥 = [𝑈,𝑉], we have𝑎𝑚𝑥 = 2𝑢2𝑏𝑚 − 2𝑢1𝑐𝑚 + 𝑢3𝜌𝑚 + 𝑢4𝜎𝑚,𝑏𝑚𝑥 = 2𝑐𝑚+1 − 2𝑢2𝑎𝑚 − 𝑢3𝜎𝑚 + 𝑢4𝜌𝑚 + 2𝑀𝑐𝑚,𝑐𝑚𝑥 = 2𝑏𝑚+1 − 2𝑢1𝑎𝑚 − 𝑢3𝜎𝑚 − 𝑢4𝜌𝑚 + 2𝑀𝑏𝑚,𝜎𝑚𝑥 = 𝜎𝑚+1 + 𝑀𝜎𝑚 + (𝑢1 + 𝑢2) 𝜌𝑚 − 𝑢3𝑎𝑚 − 𝑢4𝑏𝑚− 𝑢4𝑐𝑚,𝜌𝑚𝑥 = −𝜌𝑚+1 − 𝑀𝜌𝑚 + 𝑢1𝜎𝑚 − 𝑢2𝜎𝑚 − 𝑢3𝑏𝑚 + 𝑢3𝑐𝑚+ 𝑢4𝑎𝑚,(6)

    and, from the above recursion relationship, we can get therecursion operator 𝐿 which meets the following:

    ( 𝑏𝑚+1−𝑐𝑚+1𝜌𝑚+1−𝜎𝑚+1)= 𝐿(𝑏𝑚−𝑐𝑚𝜌𝑚−𝜎𝑚), 𝑚 â©Ÿ 0, (7)

    where the recursive operator 𝐿 is given as follows:𝐿 =((−𝑀 + 2𝑢1𝜕−1𝑢2 −12𝜕 + 2𝑢1𝜕−1𝑢1 12𝑢4 + 𝑢1𝜕−1𝑢3 −12𝑢3 − 𝑢1𝜕−1𝑢4−12𝜕 − 2𝑢2𝜕−1𝑢2 −𝑀 + 2𝑢2𝜕−1𝑢1 12𝑢4 − 𝑢2𝜕−1𝑢3 12𝑢3 + 𝑢2𝜕−1𝑢4−𝑢3 + 2𝑢4𝜕−1𝑢2 −𝑢3 + 2𝑢4𝜕−1𝑢1 −𝜕 − 𝑀 + 𝑢4𝜕−1𝑢3 −𝑢1 + 𝑢2 − 𝑢4𝜕−1𝑢4−𝑢4 − 2𝑢3𝜕−1𝑢2 𝑢4 − 2𝑢3𝜕−1𝑢1 𝑢1 + 𝑢2 − 𝑢3𝜕−1𝑢3 𝜕 − 𝑀 + 𝑢3𝜕−1𝑢4

    )). (8)

    Choosing the initial data𝑎0 = 1,𝑏0 = 𝑐0 = 𝜎0 = 𝜌0 = 0, (9)from the recursion relations in (6), we can obtain𝑎1 = 0,𝑏1 = 𝑢1,

    𝑐1 = 𝑢2,𝜎1 = 𝑢3,𝜌1 = 𝑢4,𝑎2 = −12𝑢21 + 12𝑢22 − 𝑢3𝑢4,𝑏2 = 12𝑢2𝑥 − 𝑀𝑢1,

  • Advances in Mathematical Physics 3

    𝑐2 = 12𝑢1𝑥 − 𝑀𝑢2,𝜎2 = 𝑢3𝑥 − 𝑀𝑢3,𝜌2 = −𝑢4𝑥 − 𝑀𝑢4,𝑎3 = 12 (𝑢2𝑢1𝑥 − 𝑢1𝑢2𝑥) + 𝑢3𝑢4𝑥 + 𝑢4𝑢3𝑥+ 𝑀 (𝑢21 − 𝑢22) + 2𝑢3𝑢4,𝑏3 = 14𝑢1𝑥𝑥 − 12𝑀𝑥𝑢2 + 12𝑢1𝑢22 − 12𝑢31 + 12𝑢3𝑢3𝑥− 12𝑢4𝑢4𝑥 − 𝑢1𝑢3𝑢4 − 𝑀𝑢2𝑥 + 𝑀2𝑢1,𝑐3 = 14𝑢2𝑥𝑥 − 12𝑀𝑥𝑢1 + 12𝑢32 − 12𝑢2𝑢21 + 12𝑢3𝑢3𝑥+ 12𝑢4𝑢4𝑥 − 𝑢2𝑢3𝑢4 − 𝑀𝑢1𝑥 + 𝑀2𝑢2,𝜎3 = 𝑢3𝑥𝑥 + 12𝑢3𝑢22 − 12𝑢3𝑢21 + 12𝑢4𝑢1𝑥 + 12𝑢4𝑢2𝑥+ 𝑢1𝑢4𝑥 + 𝑢2𝑢4𝑥 − 𝑀𝑥𝑢3 + 𝑀2𝑢3 − 2𝑀𝑢3𝑥,𝜌3 = 𝑢4𝑥𝑥 + 12𝑢4𝑢22 − 12𝑢4𝑢21 + 12𝑢3𝑢1𝑥 − 12𝑢3𝑢2𝑥+ 𝑢1𝑢3𝑥 − 𝑢2𝑢3𝑥 + 𝑀𝑥𝑢4 + 𝑀2𝑢4 + 2𝑀𝑢4𝑥.(10)

    Then we consider the auxiliary spectral problem𝜑𝑡𝑛 = 𝑉(𝑛)𝜑, (11)with

    𝑉(𝑛) = 𝑛∑𝑚=0

    ( 𝑎𝑚 𝑏𝑚 + 𝑐𝑚 𝜎𝑚𝑏𝑚 − 𝑐𝑚 −𝑎𝑚 𝜌𝑚𝜌𝑚 −𝜎𝑚 0 )𝜆𝑛−𝑚 + Δ 𝑛,𝑛 ≥ 0. (12)Suppose

    Δ 𝑛 = ( 𝑎 𝑏 + 𝑐 𝑒𝑏 − 𝑐 −𝑎 𝑓𝑓 −𝑒 0) , (13)substituting 𝑉(𝑛) into the zero curvature equation𝑈𝑡𝑛 − 𝑉(𝑛)𝑥 + [𝑈,𝑉(𝑛)] = 0, (14)

    where 𝑛 ≥ 0. Making use of (6), we have𝑀𝑡𝑛 = 𝑎𝑥,𝑏 = 𝑐 = 𝑒 = 𝑓 = 0,𝑢1𝑡𝑛 = 𝑏𝑛𝑥 − 2𝑀𝑐𝑛 + 2𝑢2𝑎𝑛 + 𝑢3𝜎𝑛 − 𝑢4𝜌𝑛 + 𝑏𝑥 − 2𝑀𝑐+ 𝑢3𝑒 − 𝑢4𝑓 + 2𝑢2𝑎 = 2𝑐𝑛+1 + 2𝑢2𝑎,𝑢2𝑡𝑛 = 𝑐𝑛𝑥 − 2𝑀𝑏𝑛 + 2𝑢1𝑎 + 𝑢3𝜎𝑛 + 𝑢4𝜌𝑛 + 𝑐𝑥 + 𝑢3𝑒+ 𝑢4𝑓 + 2𝑢1𝑎 − 2𝑀𝑏 = 2𝑏𝑛+1 + 2𝑢1𝑎,𝑢3𝑡𝑛 = 𝜎𝑛𝑥 − 𝑀𝜎𝑛 − 𝑢1𝜌𝑛 − 𝑢2𝜌𝑛 + 𝑢3𝑎𝑛 + 𝑢4𝑏𝑛 + 𝑢4𝑐𝑛+ 𝑒𝑥 − 𝑀𝑒 − 𝑢1𝑓 − 𝑢2𝑓 + 𝑢3𝑎 + 𝑢4𝑏 + 𝑢4𝑐= 𝜎𝑛+1 + 𝑢3𝑎,𝑢4𝑡𝑛 = 𝜌𝑛𝑥 + 𝑀𝜌𝑛 − 𝑢1𝜎𝑛 + 𝑢2𝜎𝑛 + 𝑢3𝑏𝑛 − 𝑢3𝑐𝑛 − 𝑢4𝑎𝑛− 𝑢4𝑎 + 𝑓𝑥 + 𝑀𝑓 − 𝑢1𝑒 + 𝑢2𝑒 + 𝑢3𝑏 − 𝑢3𝑐= −𝜌𝑛+1 − 𝑢4𝑎,

    (15)

    which guarantees that the following identity holds true:(12𝑢22 − 12𝑢21 + 𝑢4𝑢3)𝑡𝑛= 2𝑢2𝑏𝑛+1 − 2𝑢1𝑐𝑛+1 − 𝜌𝑛+1𝑢3 + 𝑢4𝜎𝑛+1 = 𝑎𝑛+1𝑥. (16)Choosing 𝑎 = −𝜀𝑎𝑛+1, we arrive at the following generalizedsuper-NLS-mKdV hierarchy:

    𝑢𝑡𝑛 = (𝑢1𝑢2𝑢3𝑢4)𝑡𝑛 =(2𝑐𝑛+1 − 2𝜀𝑢2𝑎𝑛+12𝑏𝑛+1 − 2𝜀𝑢1𝑎𝑛+1𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1−𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1), (17)

    where 𝑛 ≥ 0.The case of (17) with 𝜀 = 0 is exactly the standardsupersoliton hierarchy [24].

    When 𝑛 = 1 in (17), the flow is trivial. Taking 𝑛 = 2,we can obtain second-order generalized super-NLS-mKdVequations𝑢1𝑡2 = 12𝑢2𝑥𝑥 + 𝑢32 − 𝑢2𝑢21 + 𝑢3𝑢3𝑥 + 𝑢4𝑢4𝑥 − 2𝑢2𝑢3𝑢4+ 𝜀 (2𝑢1𝑢2𝑢2𝑥 − 2𝑢21𝑢1𝑥 + 𝑢4𝑥𝑢3𝑢1 − 𝑢3𝑥𝑢4𝑢1− 2𝑢3𝑢4𝑢1𝑥 − 2𝑢2𝑢3𝑢4𝑥 − 2𝑢2𝑢4𝑢3𝑥 − 2𝑢2𝑢21𝑢3𝑢4+ 2𝑢32𝑢3𝑢4) + 2𝜀2𝑢2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2+ 2𝜀2𝑢2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢22 − 𝑢21) ,𝑢2𝑡2 = 12𝑢1𝑥𝑥 − 𝑢31 + 𝑢1𝑢22 − 2𝑢1𝑢3𝑢4 + 𝑢3𝑢3𝑥 − 𝑢4𝑢4𝑥+ 𝜀 (2𝑢22𝑢2𝑥 − 2𝑢1𝑢2𝑢1𝑥 − 𝑢3𝑥𝑢4𝑢2 + 𝑢4𝑥𝑢3𝑢2

  • 4 Advances in Mathematical Physics− 2𝑢3𝑢4𝑢2𝑥 − 2𝑢1𝑢3𝑢4𝑥 − 2𝑢1𝑢4𝑢3𝑥)− 2𝜀2𝑢1 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22)+ 2𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢1 − 2𝜀2𝑢1𝑢3 (𝑢21− 𝑢22) 𝑢4,𝑢3𝑡2 = 𝑢3𝑥𝑥 + 12𝑢3𝑢22 − 12𝑢3𝑢21 + 12𝑢4𝑢1𝑥 + 12𝑢4𝑢2𝑥+ 𝑢1𝑢4𝑥 + 𝑢2𝑢4𝑥 + 𝜀 (12𝑢3𝑢1𝑢2𝑥 − 12𝑢3𝑢2𝑢1𝑥+ 𝑢22𝑢3𝑥 − 𝑢21𝑢3𝑥 + 𝑢2𝑢2𝑥𝑢3 − 𝑢1𝑢1𝑥𝑢3− 2𝑢3𝑢4𝑢3𝑥) + 𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢3− 𝜀2𝑢3 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22) ,𝑢4𝑡2 = −𝑢4𝑥𝑥 − 12𝑢4𝑢22 + 12𝑢4𝑢21 + 12𝑢3𝑢2𝑥 − 12𝑢3𝑢1𝑥− 𝑢1𝑢3𝑥 + 𝑢2𝑢3𝑥 + 𝜀 (12𝑢4𝑢2𝑢1𝑥 − 12𝑢4𝑢1𝑢2𝑥− 𝑢1𝑢1𝑥𝑢4 + 𝑢2𝑢2𝑥𝑢4 − 𝑢21𝑢4𝑥 + 𝑢22𝑢4𝑥− 2𝑢3𝑢4𝑢4𝑥) − 𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢4− 𝜀2𝑢4 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22) .(18)

    From (3) and (11), one infers the following:

    𝑉(2) = (𝑉(2)11 𝑉(2)12 𝑉(2)13𝑉(2)21 −𝑉(2)11 𝑉(2)23𝑉(2)23 −𝑉(2)13 0 ) , (19)with 𝑉(2)11 = 𝜆2 + 12𝑢22 − 12𝑢21 − 𝑢3𝑢4− 𝜀 (12𝑢2𝑢1𝑥 − 12𝑢1𝑢2𝑥 + 𝑢4𝑢3𝑥 + 𝑢3𝑢4𝑥)− 2𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 ,𝑉(2)12 = (𝑢1 + 𝑢2) 𝜆 + 12 (𝑢1 + 𝑢2)𝑥− 𝜀 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢1 + 𝑢2) ,

    𝑉(2)13 = 𝑢3𝜆 + 𝑢3𝑥 − 𝜀 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) 𝑢3,𝑉(2)21 = (𝑢1 − 𝑢2) 𝜆 + 12 (𝑢2 − 𝑢1)𝑥+ 𝜀 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢2 − 𝑢1) ,𝑉(2)23 = 𝑢4𝜆 − 𝑢4𝑥 − 𝜀 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) 𝑢4.(20)

    In what follows, we shall set up super-Hamiltonianstructures for the generalized super-NLS-mKdV hierarchy.

    Through calculations, we obtain

    Str(𝑉𝜕𝑈𝜕𝜆 ) = 2𝐎,Str( 𝜕𝑈𝜕𝑢1𝑉) = 2 (𝐵 + 𝜀𝑢1𝐎) ,Str( 𝜕𝑈𝜕𝑢2𝑉) = −2 (𝐶 + 𝜀𝑢2𝐎) ,Str( 𝜕𝑈𝜕𝑢3𝑉) = 2 (𝜌 + 𝜀𝑢4𝐎) ,Str( 𝜕𝑈𝜕𝑢4𝑉) = −2 (𝜎 + 𝜀𝑢3𝐎) .

    (21)

    Substituting the above results into the supertrace identity[3] and balancing the coefficients of 𝜆𝑛+2, we obtain𝛿𝛿𝑢 ∫ 𝑎𝑛+2𝑑𝑥 = (𝛟 − 𝑛 − 1)(

    𝑏𝑛+1 + 𝜀𝑢1𝑎𝑛+1−𝑐𝑛+1 − 𝜀𝑢2𝑎𝑛+1𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1−𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1),𝑛 ≥ 0.(22)

    Thus, we have𝐻𝑛+1 = ∫− 𝑎𝑛+2𝑛 + 1𝑑𝑥,𝛿𝐻𝑛+1𝛿𝑢 =(

    𝑏𝑛+1 + 𝜀𝑢1𝑎𝑛+1−𝑐𝑛+1 − 𝜀𝑢2𝑎𝑛+1𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1−𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1),𝑛 â©Ÿ 0.(23)

    Moreover, it is easy to find that

    ( 𝑏𝑛+1−𝑐𝑛+1𝜌𝑛+1−𝜎𝑛+1)= 𝑅1(𝑏𝑛+1 + 𝜀𝑢1𝑎𝑛+1−𝑐𝑛+1 − 𝜀𝑢2𝑎𝑛+1𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1−𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1), 𝑛 â©Ÿ 0, (24)

    where 𝑅1 is given by

  • Advances in Mathematical Physics 5

    𝑅1 =(1 − 2𝜀𝑢1𝜕−1𝑢2 −2𝜀𝑢1𝜕−1𝑢1 𝜀𝑢1𝜕−1𝑢3 𝜀𝑢1𝜕−1𝑢42𝜀𝑢2𝜕−1𝑢2 1 + 2𝜀𝑢2𝜕−1𝑢1 𝜀𝑢2𝜕−1𝑢3 −𝜀𝑢2𝜕−1𝑢4−2𝜀𝑢4𝜕−1𝑢2 −2𝜀𝑢4𝜕−1𝑢1 1 − 𝜀𝑢4𝜕−1𝑢3 𝜀𝑢4𝜕−1𝑢42𝜀𝑢3𝜕−1𝑢2 2𝜀𝑢3𝜕−1𝑢1 𝜀𝑢3𝜕−1𝑢3 1 − 𝜀𝑢3𝜕−1𝑢4). (25)

    Therefore, superintegrable hierarchy (17) possesses thefollowing form:

    𝑢𝑡𝑛 = 𝑅2( 𝑏𝑛+1−𝑐𝑛+1𝜌𝑛+1−𝜎𝑛+1)= 𝑅2𝑅1(𝑏𝑛+1 + 𝜀𝑢1𝑎𝑛+1−𝑐𝑛+1 − 𝜀𝑢2𝑎𝑛+1𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1−𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1)= 𝐜𝛿𝐻𝑛+1𝛿𝑢 , 𝑛 ≥ 0,

    (26)

    where

    𝑅2 =( −4𝜀𝑢2𝜕−1𝑢2 −2 − 4𝜀𝑢2𝜕−1𝑢1 −2𝜀𝑢2𝜕−1𝑢3 2𝜀𝑢2𝜕−1𝑢42 − 4𝜀𝑢1𝜕−1𝑢2 −4𝜀𝑢1𝜕−1𝑢1 −2𝜀𝑢1𝜕−1𝑢3 2𝜀𝑢1𝜕−1𝑢4−4𝜀𝑢3𝜕−1𝑢2 −4𝜀𝑢3𝜕−1𝑢1 −2𝜀𝑢3𝜕−1𝑢3 −1 + 2𝜀𝑢3𝜕−1𝑢42𝜀𝑢4𝜕−1𝑢2 2𝜀𝑢4𝜕−1𝑢1 −1 + 𝜀𝑢4𝜕−1𝑢3 −𝜀𝑢4𝜕−1𝑢4 ), (27)

    and super-Hamiltonian operator 𝐜 is given by𝐜 = 𝑅2𝑅1 =( −8𝜀𝑢2𝜕

    −1𝑢2 −2 − 8𝜀𝑢2𝜕−1𝑢1 −4𝜀𝑢2𝜕−1𝑢3 4𝜀𝑢2𝜕−1𝑢42 − 8𝜀𝑢1𝜕−1𝑢2 −8𝜀𝑢1𝜕−1𝑢1 −4𝜀𝑢1𝜕−1𝑢3 4𝜀𝑢1𝜕−1𝑢4−6𝜀𝑢3𝜕−1𝑢2 −6𝜀𝑢3𝜕−1𝑢1 −3𝜀𝑢3𝜕−1𝑢3 −1 + 3𝜀𝑢3𝜕−1𝑢44𝜀𝑢4𝜕−1𝑢2 4𝜀𝑢4𝜕−1𝑢1 −1 + 2𝜀𝑢4𝜕−1𝑢3 −2𝜀𝑢4𝜕−1𝑢4 ). (28)In addition, generalized super-NLS-mKdV hierarchy (17)

    also possesses the following super-Hamiltonian form:

    𝑢𝑡𝑛 = 𝑅2𝐿( 𝑏𝑛−𝑐𝑛𝜌𝑛−𝜎𝑛)= 𝑅2𝐿𝑅1(𝑏𝑛 + 𝜀𝑢1𝑎𝑛−𝑐𝑛 − 𝜀𝑢2𝑎𝑛𝜌𝑛 + 𝜀𝑢4𝑎𝑛−𝜎𝑛 − 𝜀𝑢3𝑎𝑛)=𝑀𝛿𝐻𝑛𝛿𝑢 , 𝑛 ≥ 0,

    (29)

    where 𝑀 = 𝑅2𝐿𝑅1 = (𝑀𝑖𝑗)4×4 is the second super-Hamiltonian operator.

    3. Self-Consistent Sources

    Consider the linear system

    (𝜑1𝑗𝜑2𝑗𝜑3𝑗)𝑥 = 𝑈(𝜑1𝑗𝜑2𝑗𝜑3𝑗),

    (𝜑1𝑗𝜑2𝑗𝜑3𝑗)𝑡 = 𝑉(𝜑1𝑗𝜑2𝑗𝜑3𝑗).

    (30)

    From the result in [25], we set𝛿𝜆𝑗𝛿𝑢𝑖 = 13Str(Κ𝑗 𝜕𝑈 (𝑢, 𝜆𝑗)𝛿𝑢𝑖 ) , 𝑖 = 1, 2, . . . , 4, (31)

  • 6 Advances in Mathematical Physics

    with Str on behalf of the supertrace, and

    Κ𝑗 = (𝜑1𝑗𝜑2𝑗 −𝜑21𝑗 𝜑1𝑗𝜑3𝑗𝜑22𝑗 −𝜑1𝑗𝜑2𝑗 𝜑2𝑗𝜑3𝑗𝜑2𝑗𝜑3𝑗 −𝜑1𝑗𝜑3𝑗 0 ) , 𝑗 = 1, 2, . . . , 𝑁. (32)From system (30), we get 𝛿𝜆𝑗/𝛿𝑢 as follows:𝑁∑𝑗=1

    𝛿𝜆𝑗𝛿𝑢𝑖 = 𝑁∑𝑗=1((((((

    Str(Κ𝑗 𝛿𝑈𝛿𝑢1)Str(Κ𝑗 𝛿𝑈𝛿𝑢2)Str(Κ𝑗 𝛿𝑈𝛿𝑢3)Str(Κ𝑗 𝛿𝑈𝛿𝑢4)

    ))))))

    =( 2𝜀𝑢1 ⟹Ω1, Ί2⟩ − ⟹Ω1, Ί1⟩ + ⟹Ω2, Ί2⟩−2𝜀𝑢2 ⟹Ω1, Ί2⟩ + ⟹Ω1, Ί1⟩ + ⟹Ω2, Ί2⟩2𝜀𝑢4 ⟹Ω1, Ί2⟩ − 2 ⟹Ω2, Ί3⟩2𝜀𝑢3 ⟹Ω1, Ί2⟩ − 2 ⟹Ω1, Ί3⟩ ) ,(33)

    where Ί𝑖 = (𝜑𝑖1, . . . , 𝜑𝑖𝑁)𝑇, 𝑖 = 1, 2, 3.So, we obtain the self-consistent sources of generalized

    super-NLS-mKdV hierarchy (17):

    𝑢𝑡𝑛 =(𝑢1𝑢2𝑢3𝑢4)𝑡𝑛 = 𝐜𝛿𝐻𝑛+1𝛿𝑢𝑖 + 𝐜 𝑁∑𝑗=1𝛿𝜆𝑗𝛿𝑢𝑖

    = 𝐜( 𝑏𝑛+1 + 𝜀𝑢1𝑎𝑛+1−𝑐𝑛+1 − 𝜀𝑢2𝑎𝑛+1𝜌𝑛+1 + 𝜀𝑢4𝑎𝑛+1−𝜎𝑛+1 − 𝜀𝑢3𝑎𝑛+1)+ 𝐜( 2𝜀𝑢1 ⟹Ω1, Ί2⟩ − ⟹Ω1, Ί1⟩ + ⟹Ω2, Ί2⟩−2𝜀𝑢2 ⟹Ω1, Ί2⟩ + ⟹Ω1, Ί1⟩ + ⟹Ω2, Ί2⟩2𝜀𝑢4 ⟹Ω1, Ί2⟩ − 2 ⟹Ω2, Ί3⟩2𝜀𝑢3 ⟹Ω1, Ί2⟩ − 2 ⟹Ω1, Ί3⟩ ) .

    (34)

    For 𝑛 = 2, we get supersoliton equation with self-consistent sources as follows:𝑢1𝑡2 = 12𝑢2𝑥𝑥 + 𝑢32 − 𝑢2𝑢21 + 𝑢3𝑢3𝑥 + 𝑢4𝑢4𝑥 − 2𝑢2𝑢3𝑢4+ 𝜀 (2𝑢1𝑢2𝑢2𝑥 − 2𝑢21𝑢1𝑥 + 𝑢4𝑥𝑢3𝑢1 − 𝑢3𝑥𝑢4𝑢1− 2𝑢3𝑢4𝑢1𝑥 − 2𝑢2𝑢3𝑢4𝑥 − 2𝑢2𝑢4𝑢3𝑥 − 2𝑢2𝑢21𝑢3𝑢4+ 2𝑢32𝑢3𝑢4) + 2𝜀2𝑢2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2

    + 2𝜀2𝑢2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢22 − 𝑢21)+ 2𝜀𝑢1 𝑁∑𝑗=1

    𝜑1𝑗𝜑2𝑗 − 𝑁∑𝑗=1

    (𝜑21𝑗 − 𝜑22𝑗) ,𝑢2𝑡2 = 12𝑢1𝑥𝑥 − 𝑢31 + 𝑢1𝑢22 − 2𝑢1𝑢3𝑢4 + 𝑢3𝑢3𝑥 − 𝑢4𝑢4𝑥+ 𝜀 (2𝑢22𝑢2𝑥 − 2𝑢1𝑢2𝑢1𝑥 − 𝑢3𝑥𝑢4𝑢2 + 𝑢4𝑥𝑢3𝑢2− 2𝑢3𝑢4𝑢2𝑥 − 2𝑢1𝑢3𝑢4𝑥 − 2𝑢1𝑢4𝑢3𝑥)− 2𝜀2𝑢1 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22)+ 2𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢1 − 2𝜀2𝑢1𝑢3 (𝑢21− 𝑢22) 𝑢4 − 2𝜀𝑢2 𝑁∑

    𝑗=1

    𝜑1𝑗𝜑2𝑗 + 𝑁∑𝑗=1

    (𝜑21𝑗 + 𝜑22𝑗) ,𝑢3𝑡2 = 𝑢3𝑥𝑥 + 12𝑢3𝑢22 − 12𝑢3𝑢21 + 12𝑢4𝑢1𝑥 + 12𝑢4𝑢2𝑥+ 𝑢1𝑢4𝑥 + 𝑢2𝑢4𝑥 + 𝜀 (12𝑢3𝑢1𝑢2𝑥 − 12𝑢3𝑢2𝑢1𝑥+ 𝑢22𝑢3𝑥 − 𝑢21𝑢3𝑥 + 𝑢2𝑢2𝑥𝑢3 − 𝑢1𝑢1𝑥𝑢3− 2𝑢3𝑢4𝑢3𝑥) + 𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢3− 𝜀2𝑢3 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22)+ 2𝜀𝑢4 𝑁∑

    𝑗=1

    𝜑1𝑗𝜑2𝑗 − 𝑁∑𝑗=1

    𝜑2𝑗𝜑3𝑗,𝑢4𝑡2 = −𝑢4𝑥𝑥 − 12𝑢4𝑢22 + 12𝑢4𝑢21 + 12𝑢3𝑢2𝑥 − 12𝑢3𝑢1𝑥− 𝑢1𝑢3𝑥 + 𝑢2𝑢3𝑥 + 𝜀 (12𝑢4𝑢2𝑢1𝑥 − 12𝑢4𝑢1𝑢2𝑥− 𝑢1𝑢1𝑥𝑢4 + 𝑢2𝑢2𝑥𝑢4 − 𝑢21𝑢4𝑥 + 𝑢22𝑢4𝑥− 2𝑢3𝑢4𝑢4𝑥) − 𝜀2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)2 𝑢4− 𝜀2𝑢4 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) (𝑢21 − 𝑢22)+ 2𝜀𝑢3 𝑁∑𝑗=1

    𝜑1𝑗𝜑2𝑗 − 2 𝑁∑𝑗=1

    𝜑1𝑗𝜑3𝑗,𝜑1𝑗𝑥 = (𝜆 + 𝑀) 𝜑1𝑗 + (𝑢1 + 𝑢2) 𝜑2𝑗 + 𝑢3𝜑3𝑗,𝜑2𝑗𝑥 = (𝑢1 − 𝑢2) 𝜑1𝑗 − (𝜆 + 𝑀) 𝜑2𝑗 + 𝑢4𝜑3𝑗,𝜑3𝑗𝑥 = 𝑢4𝜑1𝑗 − 𝑢3𝜑2𝑗, 𝑗 = 1, . . . , 𝑁.(35)

  • Advances in Mathematical Physics 7

    4. Conservation Laws

    In the following, we shall derive the conservation laws ofsupersoliton hierarchy. Introducing the variables𝐟 = 𝜑2𝜑1 ,𝐺 = 𝜑3𝜑1 , (36)then we obtain𝐟𝑥 = 𝑢1 − 𝑢2 − 2 (𝜆 + 𝑀)𝐟 + 𝑢4𝐺 − (𝑢1 + 𝑢2)𝐟2− 𝑢3𝐟𝐺,𝐺𝑥 = 𝑢4 − 𝑢3𝐟 − (𝜆 + 𝑀)𝐺 − (𝑢1 + 𝑢2) 𝐺𝐟 − 𝑢3𝐺2. (37)

    Next, we expand 𝐟 and 𝐺 as series of the spectralparameter 𝜆

    𝐟 = ∞∑𝑗=1

    𝑘𝑗𝜆𝑗,𝐺 = ∞∑𝑗=1

    𝑔𝑗𝜆𝑗. (38)Substituting (38) into (37), we raise the recursion formulas for𝑘𝑗 and 𝑔𝑗:𝑘𝑗+1 = −12𝑘𝑗𝑥 − 𝑀𝑘𝑗 + 12𝑢4𝑔𝑗 − 12 (𝑢1 + 𝑢2) 𝑗−1∑

    𝑙=1

    𝑘𝑙𝑘𝑗−𝑙− 12𝑢3𝑗−1∑

    𝑙=1

    𝑘𝑙𝑔𝑗−𝑙,𝑔𝑗+1 = −𝑔𝑗𝑥 − 𝑢3𝑘𝑗 − 𝑀𝑔𝑗 − (𝑢1 + 𝑢2) 𝑗−1∑

    𝑙=1

    𝑔𝑙𝑘𝑗−𝑙− 𝑢3𝑗−1∑𝑙=1

    𝑔𝑙𝑔𝑗−𝑙, 𝑗 ≥ 2.(39)

    We write the first few terms of 𝑘𝑗 and 𝑔𝑗:𝑘1 = 12 (𝑢1 − 𝑢2) ,𝑔1 = 𝑢4,𝑘2 = −14 (𝑢1 − 𝑢2) 𝑥− 12𝜀 (𝑢1 − 𝑢2) (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) ,𝑔2 = −𝑢4𝑥 − 12 (𝑢1 − 𝑢2) (𝑢3 + 𝜀𝑢1 + 𝜀𝑢2) ,

    𝑘3 = 18 (𝑢1 − 𝑢2)𝑥𝑥 − 18 (𝑢1 + 𝑢2) (𝑢1 − 𝑢2)2+ 14𝑀𝑥 (𝑢1 − 𝑢2) + 12 (𝑢1 − 𝑢2)𝑥 𝑀+ 12 (𝑢1 − 𝑢2) 𝑀2 − 12𝑢4𝑢4𝑥,𝑔3 = 𝑢4𝑥𝑥 + 12 (𝑢1 − 𝑢2) 𝑢3𝑥 − 12 (𝑢21 − 𝑢22) 𝑢4+ 34 (𝑢1 − 𝑢2)𝑥 𝑢3 + 𝑀𝑥𝑢4 + 2𝑀𝑢4𝑥+ 𝑀 (𝑢1 − 𝑢2) 𝑢3 + 𝑀2𝑢4, . . . .(40)

    Note that 𝜕𝜕𝑡 [𝜆 + 𝑀 + (𝑢1 + 𝑢2)𝐟 + 𝑢3𝐺]= 𝜕𝜕𝑥 [𝐎 + (𝐵 + 𝐶)𝐟 + 𝜎𝐺] , (41)setting 𝛿 = 𝜆+𝑀+ (𝑢1 +𝑢2)𝐟+𝑢3𝐺, 𝜃 = 𝐎+ (𝐵+𝐶)𝐟+𝜎𝐺,which admitted that the conservation laws is 𝛿𝑡 = 𝜃𝑥. For (19),one infers that𝐎 = 𝜆2 + 12𝑢22 − 12𝑢21 − 𝑢3𝑢4,𝐵 = 𝑢1𝜆 + 12𝑢2𝑥 − 𝜀𝑢1 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) ,𝐶 = 𝑢2𝜆 + 12𝑢1𝑥 − 𝜀𝑢2 (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) ,𝜎 = 𝑢3𝜆 + 𝑢3𝑥 − 12𝜀𝑢3 (𝑢21 − 𝑢22) .

    (42)

    Expanding 𝛿 and 𝜃 as𝛿 = 𝜆 + 𝑀 + ∞∑

    𝑗=1

    𝛿𝑗𝜆−𝑗,𝜃 = 𝜆2 + 12𝑢22 − 12𝑢21 − 𝑢3𝑢4 + ∞∑

    𝑗=1

    𝜃𝑗𝜆−𝑗, (43)conserved densities and currents are the coefficients 𝛿𝑗, 𝜃𝑗,respectively. The first two conserved densities and currentsare read:𝛿1 = 12 (𝑢21 − 𝑢22) + 𝑢3𝑢4,𝜃1 = −14 (𝑢1 + 𝑢2) (𝑢1 − 𝑢2) 𝑥 + 14 (𝑢1 − 𝑢2) (𝑢1 + 𝑢2)⋅ 𝑥 − 14𝜀 (𝑢21 − 𝑢22) (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) − 12 (𝑢21

  • 8 Advances in Mathematical Physics

    − 𝑢22) (12𝑢21 − 12𝑢22 + 𝑢3𝑢4) − 12𝜀 (𝑢21 − 𝑢22) 𝑢3 − 12⋅ 𝜀 (𝑢21 − 𝑢22) 𝑢3𝑢4 − 𝑢3𝑢4𝑥 + 𝑢3𝑥𝑢4,𝛿2 = −14 (𝑢1 + 𝑢2) (𝑢2 − 𝑢1)𝑥 − 12𝜀 (𝑢21 − 𝑢22) (12𝑢21− 12𝑢22 + 𝑢3 + 𝑢3𝑢4) − 𝑢3𝑢4𝑥,𝜃2 = (𝑢1 + 𝑢2) 𝑘3 − 14 [(𝑢1 + 𝑢2)𝑥− 𝜀 (𝑢1 + 𝑢2) (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)]⋅ [12 (𝑢1 − 𝑢2) 𝑥 + (𝑢1 − 𝑢2)× (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)] + 𝑢3𝑔3 − [𝑢3𝑥− 12𝜀 (𝑢21 − 𝑢22) 𝑢3] [𝑢4𝑥+ 12 (𝑢1 − 𝑢2) (𝑢3 + 𝜀𝑢1 + 𝜀𝑢2)] ,(44)

    where 𝑘3 and 𝑔3 are given by (40).The recursion relationshipfor 𝛿𝑗 and 𝜃𝑗 is as follows:𝛿𝑗 = (𝑢1 + 𝑢2) 𝑘𝑗 + 𝑢3𝑔𝑗,𝜃𝑗 = (𝑢1 + 𝑢2) 𝑘𝑗+1 + 12 [(𝑢1 + 𝑢2)𝑥− 𝜀 (𝑢1 + 𝑢2) (12𝑢21 − 12𝑢22 + 𝑢3𝑢4)] 𝑘𝑗 + 𝑢3𝑔𝑗+1+ [𝑢3𝑥 − 12𝜀 (𝑢21 − 𝑢22) 𝑢3] 𝑔𝑗,

    (45)

    where 𝑘𝑗 and 𝑔𝑗 can be recursively calculated from (39). Wecan display the first two conservation laws of (18) as𝛿1𝑡 = 𝜃1𝑥,𝛿2𝑡 = 𝜃2𝑥, (46)where 𝛿1, 𝜃1, 𝛿2, and 𝜃2 are defined in (44). Then we canobtain the infinitely many conservation laws of (17) from(37)–(46).

    5. Conclusions

    In this work, we construct the generalized super-NLS-mKdV hierarchy with bi-Hamiltonian forms with the help ofvariational identity. Self-consistent sources and conservationlaws are also set up. In [26–29], the nonlinearization ofAKNS hierarchy and binary nonlinearization of super-AKNShierarchy were given. Can we do the binary nonlinearizationfor hierarchy (17)? The question may be investigated infurther work.

    Conflicts of Interest

    The authors declare that there are no conflicts of interestregarding the publication of this paper.

    Acknowledgments

    The project is supported by the National Natural ScienceFoundation of China (Grant nos. 11547175, 11271008, and11601055) and the Aid Project for the Mainstay Young Teach-ers in Henan Provincial Institutions of Higher Education ofChina (Grant no. 2017GGJS145).

    References

    [1] A. Roy Chowdhury and S. Roy, “On the Backlund transforma-tion and Hamiltonian properties of superevaluation equations,”Journal of Mathematical Physics, vol. 27, no. 10, pp. 2464–2468,1986.

    [2] X.-B. Hu, “An approach to generate superextensions of inte-grable systems,” Journal of Physics A:Mathematical andGeneral,vol. 30, no. 2, pp. 619–632, 1997.

    [3] W.-X. Ma, J.-S. He, and Z.-Y. Qin, “A supertrace identityand its applications to superintegrable systems,” Journal ofMathematical Physics, vol. 49, no. 3, Article ID 033511, 2008.

    [4] Y. S. Li and L. N. Zhang, “Hamiltonian structure of the superevolution equation,” Journal ofMathematical Physics, vol. 31, no.2, pp. 470–475, 1990.

    [5] S.-X. Tao and T.-C. Xia, “Lie algebra and lie super algebrafor integrable couplings of C-KdV hierarchy,” Chinese PhysicsLetters, vol. 27, no. 4, Article ID 040202, 2010.

    [6] X.-Z. Wang and X.-K. Liu, “Two types of Lie super-algebra forthe super-integrable Tu-hierarchy and its super-Hamiltonianstructure,”Communications in Nonlinear Science andNumericalSimulation, vol. 15, no. 8, pp. 2044–2049, 2010.

    [7] F. Yu and L. Li, “A new matrix Lie algebra, the multicompo-nent Yang hierarchy and its super-integrable coupling system,”Applied Mathematics and Computation, vol. 207, no. 2, pp. 380–387, 2009.

    [8] H.-X. Yang and Y.-P. Sun, “Hamiltonian and super-hamiltonianextensions related to Broer-Kaup-Kupershmidt system,” Inter-national Journal of Theoretical Physics, vol. 49, no. 2, pp. 349–364, 2010.

    [9] S. Tao and T. Xia, “Two super-integrable hierarchies and theirsuper-Hamiltonian structures,” Communications in NonlinearScience and Numerical Simulation, vol. 16, no. 1, pp. 127–132,2011.

    [10] J. Yu, J. He, W. Ma, and Y. Cheng, “The Bargmann symmetryconstraint and binary nonlinearization of the super Diracsystems,” Chinese Annals of Mathematics, Series B, vol. 31, no.3, pp. 361–372, 2010.

    [11] V. K. Mel’nikov, “Integration of the nonlinear Schrodingerequation with a source,” Inverse Problems, vol. 8, no. 1, articleno. 009, pp. 133–147, 1992.

    [12] V. S. Shchesnovich and E. V. Doktorov, “Modified Manakovsystem with self-consistent source,” Physics Letters A, vol. 213,no. 1-2, pp. 23–31, 1996.

    [13] T. C. Xia, “Two new integrable couplings of the soliton hierar-chies with self-consistent sources,”Chinese Physics B, vol. 19, no.10, Article ID 100303, 2010.

  • Advances in Mathematical Physics 9

    [14] H.-Y. Wei and T.-C. Xia, “A new six-component super solitonhierarchy and its self-consistent sources and conservation laws,”Chinese Physics B, vol. 25, no. 1, Article ID 010201, 2015.

    [15] Y. Fa-Jun, “Themulti-function jaulent-miodek equation hierar-chy with self-consistent sources,”Chinese Physics Letters, vol. 27,no. 5, Article ID 050201, 2010.

    [16] F.-J. Yu, “Conservation laws and self-consistent sources for asuper-classical- boussinesq hierarchy,” Chinese Physics Letters,vol. 28, no. 12, Article ID 120201, 2011.

    [17] H. Wang and T. Xia, “Super Jaulent-Miodek hierarchy and itssuper Hamiltonian structure, conservation laws and its self-consistent sources,” Frontiers of Mathematics in China, vol. 9,no. 6, pp. 1367–1379, 2014.

    [18] J. Yu, W.-X. Ma, J. Han, and S. Chen, “An integrable generaliza-tion of the super AKNS hierarchy and its bi-Hamiltonian for-mulation,”Communications in Nonlinear Science andNumericalSimulation, vol. 43, pp. 151–157, 2017.

    [19] R. M. Miura, C. S. Gardner, and M. . Kruskal, “Korteweg-deVries equation and generalizations. II. Existence of conserva-tion laws and constants of motion,” Journal of MathematicalPhysics, vol. 9, pp. 1204–1209, 1968.

    [20] M. Wadati, H. Sanuki, and K. Konno, “Relationships amonginverse method, Bäcklund transformation and an infinite num-ber of conservation laws,” Progress of Theoretical and Experi-mental Physics, vol. 53, no. 2, pp. 419–436, 1975.

    [21] H.Wei, T. Xia, and G. He, “A New Soliton Hierarchy Associatedwith so (3, R) and Its Conservation Laws,” MathematicalProblems in Engineering, vol. 2016, Article ID 3682579, 2016.

    [22] N. H. Ibragimov and T. Kolsrud, “Lagrangian approach to evo-lution equations: Symmetries and conservation laws,”NonlinearDynamics, vol. 36, no. 1, pp. 29–40, 2004.

    [23] A. H. Kara and F.M.Mahomed, “Relationship between symme-tries and conservation laws,” International Journal ofTheoreticalPhysics, vol. 39, no. 1, pp. 23–40, 2000.

    [24] Q.-L. Zhao, Y.-X. Li, X.-Y. Li, and Y.-P. Sun, “The finite-dimensional super integrable system of a super NLS-mKdVequation,” Communications in Nonlinear Science and NumericalSimulation, vol. 17, no. 11, pp. 4044–4052, 2012.

    [25] G. Z. Tu, “An extension of a theorem on gradients of conserveddensities of integrable systems,” Northeastern MathematicalJournal, vol. 6, no. 1, pp. 28–32, 1990.

    [26] C. W. Cao, “Nonlinearization of the Lax system for AKNShierarchy,” Science China Mathematics, vol. 33, no. 5, pp. 528–536, 1990.

    [27] C. Cao, Y.Wu, and X. Geng, “Relation between the Kadomtsev-Petviashvili equation and the confocal involutive system,” Jour-nal of Mathematical Physics, vol. 40, no. 8, pp. 3948–3970, 1999.

    [28] Z. J. Qiao, “A Bargmann system and the involutive represen-tation of solutions of the Levi hierarchy,” Journal of Physics A:Mathematical and General, vol. 26, no. 17, pp. 4407–4417, 1993.

    [29] J. He, J. Yu, Y. Cheng, and R. Zhou, “Binary nonlinearization ofthe super AKNS system,” Modern Physics Letters B, vol. 22, no.4, pp. 275–288, 2008.

  • Hindawiwww.hindawi.com Volume 2018

    MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical Problems in Engineering

    Applied MathematicsJournal of

    Hindawiwww.hindawi.com Volume 2018

    Probability and StatisticsHindawiwww.hindawi.com Volume 2018

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawiwww.hindawi.com Volume 2018

    OptimizationJournal of

    Hindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Engineering Mathematics

    International Journal of

    Hindawiwww.hindawi.com Volume 2018

    Operations ResearchAdvances in

    Journal of

    Hindawiwww.hindawi.com Volume 2018

    Function SpacesAbstract and Applied AnalysisHindawiwww.hindawi.com Volume 2018

    International Journal of Mathematics and Mathematical Sciences

    Hindawiwww.hindawi.com Volume 2018

    Hindawi Publishing Corporation http://www.hindawi.com Volume 2013Hindawiwww.hindawi.com

    The Scientific World Journal

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018Volume 2018

    Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisAdvances inAdvances in Discrete Dynamics in

    Nature and SocietyHindawiwww.hindawi.com Volume 2018

    Hindawiwww.hindawi.com

    Diï¿œerential EquationsInternational Journal of

    Volume 2018

    Hindawiwww.hindawi.com Volume 2018

    Decision SciencesAdvances in

    Hindawiwww.hindawi.com Volume 2018

    AnalysisInternational Journal of

    Hindawiwww.hindawi.com Volume 2018

    Stochastic AnalysisInternational Journal of

    Submit your manuscripts atwww.hindawi.com

    https://www.hindawi.com/journals/jmath/https://www.hindawi.com/journals/mpe/https://www.hindawi.com/journals/jam/https://www.hindawi.com/journals/jps/https://www.hindawi.com/journals/amp/https://www.hindawi.com/journals/jca/https://www.hindawi.com/journals/jopti/https://www.hindawi.com/journals/ijem/https://www.hindawi.com/journals/aor/https://www.hindawi.com/journals/jfs/https://www.hindawi.com/journals/aaa/https://www.hindawi.com/journals/ijmms/https://www.hindawi.com/journals/tswj/https://www.hindawi.com/journals/ana/https://www.hindawi.com/journals/ddns/https://www.hindawi.com/journals/ijde/https://www.hindawi.com/journals/ads/https://www.hindawi.com/journals/ijanal/https://www.hindawi.com/journals/ijsa/https://www.hindawi.com/https://www.hindawi.com/