815e chipset platform/ us370download.intel.com/design/chipsets/designex/29835002.pdf ·...

246
Intel ® 815E Chipset Platform For Use with Universal Socket 370 Design Guide September 2002 Document Number: 298350-002 R

Upload: others

Post on 08-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Intel® 815E Chipset Platform For Use with Universal Socket 370 Design Guide September 2002

Document Number: 298350-002

R

Page 2: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

2 Intel® 815E Chipset Platform Design Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTELS TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel 815E chipset may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and North American Philips Corporation.

Alert on LAN is a result of the Intel-IBM Advanced Manageability Alliance and a trademark of IBM.

Intel, Celeron, Pentium, and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright© 2001-2002, Intel Corporation

Page 3: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 3

Contents 1 Introduction ........................................................................................................................15

1.1 Terminology ..........................................................................................................16 1.2 Reference Documents ..........................................................................................18 1.3 System Overview ..................................................................................................19

1.3.1 System Features ...................................................................................20 1.3.2 Component Features.............................................................................21

1.3.2.1 Intel® 82815 GMCH Features ..............................................21 1.3.2.2 Intel® 82801BA I/O Controller Hub 2 (ICH2) ........................22 1.3.2.3 Firmware Hub (FWH)...........................................................23

1.3.3 Platform Initiatives .................................................................................23 1.3.3.1 Universal Motherboard Design ............................................23 1.3.3.2 Intel® PC 133........................................................................23 1.3.3.3 Accelerated Hub Architecture Interface ...............................23 1.3.3.4 Internet Streaming SIMD Extensions...................................23 1.3.3.5 AGP 2.0................................................................................24 1.3.3.6 Integrated LAN Controller ....................................................24 1.3.3.7 Ultra ATA/100 Support.........................................................24 1.3.3.8 Expanded USB Support .......................................................24 1.3.3.9 Manageability and Other Enhancements .............................24 1.3.3.10 AC97 6-Channel Support ....................................................25 1.3.3.11 Low-Pin-Count (LPC) Interface............................................27

2 General Design Considerations.........................................................................................29 2.1 Nominal Board Stack-up.......................................................................................29 2.2 Electrostatic Discharge Platform Recommendations ...........................................30

3 Component Layouts...........................................................................................................33

4 Universal Motherboard Design ..........................................................................................37 4.1 Universal Motherboard Definition Details..............................................................37 4.2 Processor Design Requirements ..........................................................................39

4.2.1 Use of Universal Motherboard Design With Incompatible GMCH ........39 4.2.2 Identifying the Processor at the Socket.................................................40 4.2.3 Setting the Appropriate Processor VTT Level .......................................41 4.2.4 VTT Processor Pin AG1........................................................................42 4.2.5 Identifying the Processor at the GMCH.................................................43 4.2.6 Configuring Non-VTT Processor Pins ...................................................44 4.2.7 VCMOS Reference................................................................................45 4.2.8 Processor Signal PWRGOOD...............................................................46 4.2.9 APIC Clock Voltage Switching Requirements .......................................47 4.2.10 GTLREF Topology and Layout..............................................................48 4.2.11 P-MOS Kicker ON Support .................................................................49

4.3 Power Sequencing on Wake Events ....................................................................49 4.3.1 Gating of Intel® CK-815 to VTTPWRGD ...............................................50 4.3.2 Gating of PWROK to ICH2....................................................................51

5 System Bus Design Guidelines .........................................................................................53

Page 4: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

4 Intel® 815E Chipset Platform Design Guide

5.1 System Bus Routing Guidelines ...........................................................................53 5.1.1 Initial Timing Analysis ............................................................................53

5.2 General Topology and Layout Guidelines.............................................................56 5.2.1 Motherboard Layout Rules for AGTL/AGTL+ Signals ...........................57

5.2.1.1 Motherboard Layout Rules for Non-AGTL/AGTL+ (CMOS) Signals .................................................................................59

5.2.1.2 THRMDP and THRMDN......................................................60 5.2.1.3 Additional Routing and Placement Considerations..............60

5.3 Electrical Differences for Universal PGA370 Designs ..........................................61 5.3.1 THERMTRIP Circuit ..............................................................................61

5.3.1.1 THERMTRIP Timing ............................................................62 5.3.1.2 THERMTRIP Support for Tualatin A-1 Stepping..................62

5.4 PGA370 Socket Definition Details ........................................................................63 5.5 BSEL[1:0] Implementation Differences.................................................................67 5.6 CLKREF Circuit Implementation...........................................................................68 5.7 Undershoot/Overshoot Requirements ..................................................................68 5.8 Processor Reset Requirements............................................................................69 5.9 Processor PLL Filter Recommendations ..............................................................70

5.9.1 Topology................................................................................................70 5.9.2 Filter Specification .................................................................................70 5.9.3 Recommendation for Intel Platforms.....................................................72 5.9.4 Custom Solutions ..................................................................................73

5.10 Voltage Regulation Guidelines..............................................................................74 5.11 Decoupling Guidelines for Universal PGA370 Designs ........................................74

5.11.1 VCCCORE Decoupling Design.................................................................74 5.11.2 VTT Decoupling Design ........................................................................75 5.11.3 VREF Decoupling Design......................................................................75

5.12 Thermal Considerations........................................................................................76 5.12.1 Heatsink Volumetric Keepout Regions..................................................76

5.13 Debug Port Changes ............................................................................................78 6 System Memory Design Guidelines...................................................................................79

6.1 System Memory Routing Guidelines.....................................................................79 6.2 System Memory 2-DIMM Design Guidelines ........................................................80

6.2.1 System Memory 2-DIMM Connectivity ..................................................80 6.2.2 System Memory 2-DIMM Layout Guidelines .........................................81

6.3 System Memory 3-DIMM Design Guidelines ........................................................83 6.3.1 System Memory 3-DIMM Connectivity ..................................................83 6.3.2 System Memory 3-DIMM Layout Guidelines .........................................84

6.4 System Memory Decoupling Guidelines ...............................................................85 6.5 Compensation.......................................................................................................86

7 AGP/Display Cache Design Guidelines.............................................................................87 7.1 AGP Interface .......................................................................................................87

7.1.1 Graphics Performance Accelerator (GPA) ............................................88 7.1.2 AGP Universal Retention Mechanism (RM) ..........................................88

7.2 AGP 2.0 ................................................................................................................90 7.2.1 AGP Interface Signal Groups ................................................................91

7.3 Standard AGP Routing Guidelines .......................................................................92 7.3.1 1X Timing Domain Routing Guidelines .................................................92

7.3.1.1 Flexible Motherboard Guidelines .........................................92

Page 5: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 5

7.3.1.2 AGP-Only Motherboard Guidelines......................................92 7.3.2 2X/4X Timing Domain Routing Guidelines............................................92

7.3.2.1 Flexible Motherboard Guidelines .........................................93 7.3.2.2 AGP-Only Motherboard Guidelines......................................94

7.3.3 AGP Routing Guideline Considerations and Summary.........................95 7.3.4 AGP Clock Routing ...............................................................................96 7.3.5 AGP Signal Noise Decoupling Guidelines.............................................96 7.3.6 AGP Routing Ground Reference...........................................................97

7.4 AGP Down Routing Guidelines.............................................................................98 7.4.1 1X AGP Down Option Timing Domain Routing Guidelines...................98 7.4.2 2X/4X AGP Down Timing Domain Routing Guidelines .........................98 7.4.3 AGP Routing Guideline Considerations and Summary.........................99 7.4.4 AGP Clock Routing .............................................................................100 7.4.5 AGP Signal Noise Decoupling Guidelines...........................................100 7.4.6 AGP Routing Ground Reference.........................................................101

7.5 AGP 2.0 Power Delivery Guidelines ...................................................................101 7.5.1 VDDQ Generation and TYPEDET#.....................................................101 7.5.2 VREF Generation for AGP 2.0 (2X and 4X) ........................................103

7.6 Additional AGP Design Guidelines......................................................................105 7.6.1 Compensation .....................................................................................105 7.6.2 AGP Pull-ups.......................................................................................105

7.6.2.1 AGP Signal Voltage Tolerance List....................................106 7.7 Motherboard / Add-in Card Interoperability.........................................................106 7.8 AGP / Display Cache Shared Interface...............................................................107

7.8.1 GPA Card Considerations ...................................................................107 7.8.1.1 AGP and GPA Mechanical Considerations........................107

7.8.2 Display Cache Clocking.......................................................................108 7.9 Designs That Do Not Use the AGP Port .............................................................108

8 Integrated Graphics Display Output.................................................................................109 8.1 Analog RGB/CRT................................................................................................109

8.1.1 RAMDAC/Display Interface .................................................................109 8.1.2 Reference Resistor (Rset) Calculation................................................111 8.1.3 RAMDAC Board Design Guidelines ....................................................111 8.1.4 RAMDAC Layout Recommendations ..................................................113 8.1.5 HSYNC/VSYNC Output Guidelines.....................................................113

8.2 Digital Video Out .................................................................................................114 8.2.1 DVO Interface Routing Guidelines ......................................................114 8.2.2 DVO I2C Interface Considerations.......................................................114 8.2.3 Leaving the DVO Port Unconnected ...................................................114

9 Hub Interface ...................................................................................................................115 9.1.1 Data Signals ........................................................................................116 9.1.2 Strobe Signals .....................................................................................116 9.1.3 HREF Generation/Distribution.............................................................116 9.1.4 Compensation .....................................................................................117

10 I/O Controller Hub 2 (ICH2) .............................................................................................119 10.1 Decoupling ..........................................................................................................119 10.2 1.85V/3.3V Power Sequencing ...........................................................................120 10.3 Power Sequencing on Wake Events ..................................................................121 10.4 Power Plane Splits ..............................................................................................122

Page 6: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

6 Intel® 815E Chipset Platform Design Guide

10.5 Power Supply PS_ON Considerations................................................................122 11 I/O Subsystem .................................................................................................................123

11.1 IDE Interface .......................................................................................................123 11.1.1 Cabling ................................................................................................123

11.2 Cable Detection for Ultra ATA/66 and Ultra ATA/100.........................................123 11.2.1 Combination Host-Side/Device-Side Cable Detection ........................124 11.2.2 Device-Side Cable Detection...............................................................125 11.2.3 Primary IDE Connector Requirements ................................................126 11.2.4 Secondary IDE Connector Requirements ...........................................127

11.3 AC97 ..................................................................................................................128 11.3.1 Communications Network Riser (CNR)...............................................129 11.3.2 AC97 Audio Codec Detect Circuit and Configuration Options............130

11.3.2.1 Valid Codec Configurations ...............................................133 11.3.3 SPKR Pin Considerations....................................................................133 11.3.4 AC97 Routing .....................................................................................134 11.3.5 Motherboard Implementation ..............................................................135

11.4 USB.....................................................................................................................135 11.4.1 Using Native USB Interface.................................................................135 11.4.2 Disabling the Native USB Interface of ICH2........................................136

11.5 IOAPIC Design Recommendation ......................................................................137 11.5.1 PIRQ Routing Example .......................................................................137

11.6 SMBus/SMLink Interface ....................................................................................138 11.6.1 SMBus Architecture & Design Considerations ....................................139

11.6.1.1 General Design Issues and Notes .....................................140 11.7 PCI ......................................................................................................................142 11.8 RTC.....................................................................................................................142

11.8.1 RTC Crystal .........................................................................................142 11.8.2 External Capacitors .............................................................................143 11.8.3 RTC Layout Considerations ................................................................143 11.8.4 RTC External Battery Connection .......................................................144 11.8.5 RTC External RTCRST Circuit ............................................................145 11.8.6 Power-Well Isolation Control ...............................................................145 11.8.7 RTC Routing Guidelines......................................................................146 11.8.8 VBIAS DC Voltage and Noise Measurements ....................................146

11.9 LAN Layout Guidelines .......................................................................................147 11.9.1 ICH2 LAN Interconnect Guidelines ..................................................148

11.9.1.1 Bus Topologies ..................................................................149 11.9.1.2 Point-to-Point Interconnect ................................................149 11.9.1.3 LOM/CNR Interconnect......................................................150 11.9.1.4 Signal Routing and Layout .................................................150 11.9.1.5 Crosstalk Consideration.....................................................151 11.9.1.6 Impedances .......................................................................151 11.9.1.7 Line Termination ................................................................151

11.9.2 General LAN Routing Guidelines and Considerations ........................152 11.9.2.1 General Trace Routing Considerations..............................152 11.9.2.2 Power and Ground Connections........................................154 11.9.2.3 A 4-Layer Board Design.....................................................155 11.9.2.4 Common Physical Layout Issues.......................................156

11.9.3 Intel® 82562EH Home/PNA* Guidelines..............................................157 11.9.3.1 Power and Ground Connections........................................157 11.9.3.2 Guidelines for Intel® 82562EH Component Placement......157

Page 7: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 7

11.9.3.3 Crystals and Oscillators .....................................................158 11.9.3.4 Phoneline HPNA Termination ............................................158 11.9.3.5 Critical Dimensions ............................................................159

11.9.4 Intel® 82562ET / Intel® 82562EM Guidelines ......................................160 11.9.4.1 Guidelines for Intel® 82562ET / Intel® 82562EM Component

Placement ..........................................................................160 11.9.4.2 Crystals and Oscillators .....................................................161 11.9.4.3 Intel® 82562ET / Intel® 82562EM Termination Resistors...161 11.9.4.4 Critical Dimensions ............................................................162 11.9.4.5 Reducing Circuit Inductance ..............................................163

11.9.5 Intel® 82562ET/82562EM Disable Guidelines .....................................164 11.9.6 Intel® 82562ET / Intel® 82562EH Dual Footprint Guidelines ...............165

11.10 LPC/FWH............................................................................................................167 11.10.1 In-Circuit FWH Programming..............................................................167 11.10.2 FWH VPP Design Guidelines ...............................................................167 11.10.3 FWH Decoupling .................................................................................168

12 Clocking...........................................................................................................................169 12.1 2-DIMM Clocking ................................................................................................169 12.2 3-DIMM Clocking ................................................................................................171 12.3 Clock Routing Guidelines....................................................................................173 12.4 Clock Driver Frequency Strapping ......................................................................175 12.5 Clock Skew Assumptions ...................................................................................176 12.6 Intel® CK-815 Power Gating On Wake Events ...................................................177

13 Power Delivery.................................................................................................................179 13.1 Thermal Design Power .......................................................................................182

13.1.1 Pull-Up and Pull-Down Resistor Values ..............................................183 13.2 ATX Power Supply PWRGOOD Requirements..................................................183 13.3 Power Management Signals ...............................................................................184

13.3.1 Power Button Implementation .............................................................185 13.3.2 1.85V/3.3V Power Sequencing............................................................186 13.3.3 3.3V/V5REF Sequencing.....................................................................187

13.4 Power Plane Splits ..............................................................................................188 13.5 Glue Chip 3 (ICH2 Glue Chip) ............................................................................189

14 System Design Checklist .................................................................................................191 14.1 Design Review Checklist ....................................................................................191 14.2 Processor Checklist ............................................................................................191

14.2.1 GTL Checklist......................................................................................191 14.2.2 CMOS Checklist ..................................................................................192 14.2.3 TAP Checklist for 370-Pin Socket Processors ....................................192 14.2.4 Miscellaneous Checklist for 370-Pin Socket Processors ....................193

14.3 GMCH Checklist .................................................................................................194 14.3.1 AGP Interface 1X Mode Checklist.......................................................194 14.3.2 Designs That Do Not Use the AGP Port .............................................195 14.3.3 System Memory Interface Checklist....................................................195 14.3.4 Hub Interface Checklist .......................................................................196 14.3.5 Digital Video Output Port Checklist .....................................................196

14.4 ICH2 Checklist ....................................................................................................196 14.4.1 PCI Interface .......................................................................................196

Page 8: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

8 Intel® 815E Chipset Platform Design Guide

14.4.2 Hub Interface.......................................................................................197 14.4.3 LAN Interface ......................................................................................197 14.4.4 EEPROM Interface..............................................................................197 14.4.5 FWH/LPC Interface .............................................................................197 14.4.6 Interrupt Interface ................................................................................198 14.4.7 GPIO Checklist....................................................................................199 14.4.8 USB .....................................................................................................199 14.4.9 Power Management ............................................................................200 14.4.10 Processor Signals ...............................................................................201 14.4.11 System Management ..........................................................................201 14.4.12 RTC 201 14.4.13 AC97 202 14.4.14 Miscellaneous Signals .........................................................................203 14.4.15 Power 204 14.4.16 IDE Checklist.......................................................................................205

14.5 LPC Checklist .....................................................................................................207 14.6 System Checklist ................................................................................................208 14.7 FWH Checklist ....................................................................................................208 14.8 Clock Synthesizer Checklist................................................................................209 14.9 System Memory Checklist ..................................................................................210 14.10 Power Delivery Checklist ....................................................................................210

15 Third-Party Vendor Information .......................................................................................211

Appendix A: Customer Reference Board CRB) ......................................................................................213

Page 9: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 9

Figures Figure 1. System Block Diagram .......................................................................................20 Figure 2. Component Block Diagram ................................................................................21 Figure 3. AC'97 Audio and Modem Connections...............................................................26 Figure 4. Board Construction Example for 60 Ω Nominal Stack-up ..................................29 Figure 5. GMCH 544-Ball µBGA* CSP Quadrant Layout (Top View)................................33 Figure 6. ICH2 360-Ball EBGA Quadrant Layout (Top View) ............................................34 Figure 7. Firmware Hub (FWH) Packages ........................................................................35 Figure 8. 0.13 Micron Socket 370 Processor Safeguard for Universal

Motherboard Designs Using A-2 GMCH ....................................................................39 Figure 9. Processor Detect Mechanism at Socket/TUAL5 Generation Circuit ..................40 Figure 10. VTT Selection Switch ........................................................................................41 Figure 11. Switching Pin AG1............................................................................................42 Figure 12. Processor Identification Strap on GMCH .........................................................43 Figure 13. VTTPWRGD Configuration Circuit ...................................................................44 Figure 14. GTL_REF/VCMOS_REF Voltage Divider Network ..........................................45 Figure 15. Resistor Divider Network for Processor PWRGOOD.......................................46 Figure 16 Voltage Switch for Processor APIC Clock.........................................................47 Figure 17. GTLREF Circuit Topology ................................................................................48 Figure 18. Gating Power to Intel® CK-815 .........................................................................50 Figure 19 PWROK Gating Circuit For ICH2 ......................................................................51 Figure 20. Topology for 370-Pin Socket Designs with Single-Ended Termination (SET)..56 Figure 21. AGTL/AGTL+ Trace Routing............................................................................57 Figure 22. Routing for THRMDP and THRMDN................................................................60 Figure 23. Example Implementation of THERMTRIP Circuit ............................................61 Figure 24. BSEL[1:0] Circuit Implementation for PGA370 Designs...................................67 Figure 25. Examples for CLKREF Divider Circuit..............................................................68 Figure 26. RESET#/RESET2# Routing Guidelines ...........................................................69 Figure 27. Filter Specification ............................................................................................71 Figure 28. Example PLL Filter Using a Discrete Resistor .................................................73 Figure 29. Example PLL Filter Using a Buried Resistor ....................................................73 Figure 30. Core Reference Model .....................................................................................74 Figure 31. Capacitor Placement on the Motherboard........................................................75 Figure 32. Heatsink Volumetric Keepout Regions.............................................................77 Figure 33. Motherboard Component Keepout Regions.....................................................77 Figure 34. TAP Connector Comparison ............................................................................78 Figure 35. System Memory Routing Guidelines ................................................................79 Figure 36. System Memory Connectivity (2 DIMM) ...........................................................80 Figure 37. System Memory 2-DIMM Routing Topologies..................................................81 Figure 38. System Memory Routing Example ...................................................................82 Figure 39. System Memory Connectivity (3 DIMM) ...........................................................83 Figure 40. System Memory 3-DIMM Routing Topologies..................................................84 Figure 41. Intel 815 Chipset Platform Decoupling Example ............................................85 Figure 42. Intel® 815 Chipset Decoupling Example...........................................................86 Figure 43. AGP Left-Handed Retention Mechanism .........................................................89 Figure 44. AGP Left-Handed Retention Mechanism Keepout Information........................89 Figure 45. AGP 2X/4X Routing Example for Interfaces < 6 inches and GPA/AGP

Solutions.....................................................................................................................93 Figure 46. AGP Decoupling Capacitor Placement Example .............................................97 Figure 47. AGP Down 2X/4X Routing Recommendations ................................................99 Figure 48. AGP VDDQ Generation Example Circuit .......................................................102

Page 10: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

10 Intel® 815E Chipset Platform Design Guide

Figure 49. AGP 2.0 VREF Generation and Distribution...................................................104 Figure 50. Display Cache Input Clocking.........................................................................108 Figure 51. Schematic of RAMDAC Video Interface.........................................................110 Figure 52. Cross-Sectional View of a Four-Layer Board .................................................111 Figure 53. Recommended RAMDAC Component Placement and Routing ....................112 Figure 54. Recommended RAMDAC Reference Resistor Placement and Connections 113 Figure 55. Hub Interface Signal Routing Example ..........................................................115 Figure 56. Single Hub Interface Reference Divider Circuit..............................................117 Figure 57. Locally Generated Hub Interface Reference Dividers ....................................117 Figure 58. ICH2 Decoupling Capacitor Layout ................................................................120 Figure 59. 1.85V/3.3V Power Sequencing Circuit Example ............................................121 Figure 60. Power Plane Split Example ............................................................................122 Figure 61. Combination Host-Side / Device-Side IDE Cable Detection ..........................124 Figure 62. Device-Side IDE Cable Detection...................................................................125 Figure 63. Connection Requirements for Primary IDE Connector...................................126 Figure 64. Connection Requirements for Secondary IDE Connector..............................127 Figure 65. ICH2 AC97 Codec Connection....................................................................128 Figure 66. CNR Interface.................................................................................................129 Figure 67. CDC_DN_ENAB# Support Circuitry for a Single Codec on Motherboard......130 Figure 68. CDC_DN_ENAB# Support Circuitry for Multi-Channel Audio Upgrade..........131 Figure 69. CDC_DN_ENAB# Support Circuitry for Two-Codecs on Motherboard / One-

Codec on CNR .........................................................................................................131 Figure 70. CDC_DN_ENAB# Support for Two-Codecs on Motherboard / Two-Codecs

on CNR.....................................................................................................................132 Figure 71. Example Speaker Circuit................................................................................133 Figure 72. USB Data Signals...........................................................................................136 Figure 73. Example PIRQ Routing ..................................................................................138 Figure 74. SMBus/SMLink Interface................................................................................139 Figure 75. Unified VCC_Suspend Architecture ...............................................................140 Figure 76. Unified VCCCORE Architecture.........................................................................141 Figure 77. Mixed VCC_Suspend/VCCCORE Architecture .................................................141 Figure 78. PCI Bus Layout Example................................................................................142 Figure 79. External Circuitry for the ICH2 RTC ...............................................................143 Figure 80. Diode Circuit to Connect RTC External Battery..............................................144 Figure 81. RTCRST External Circuit for ICH2 RTC ........................................................145 Figure 82. ICH2 / LAN Connect Section..........................................................................148 Figure 83. Single-Solution Interconnect...........................................................................149 Figure 84. LOM/CNR Interconnect ..................................................................................150 Figure 85. LAN_CLK Routing Example ...........................................................................151 Figure 86. Trace Routing.................................................................................................153 Figure 87. Ground Plane Separation ...............................................................................154 Figure 88. Intel® 82562EH Termination...........................................................................158 Figure 89. Critical Dimensions for Component Placement..............................................159 Figure 90. Intel® 82562ET/Intel® 82562EM Termination .................................................161 Figure 91. Critical Dimensions for Component Placement..............................................162 Figure 92. Termination Plane ..........................................................................................164 Figure 93. Intel® 82562ET/82562EM Disable Circuit.......................................................165 Figure 94. Dual-Footprint LAN Connect Interface ...........................................................166 Figure 95. Dual-Footprint Analog Interface .....................................................................166 Figure 96. FWH VPP Isolation Circuitry ..........................................................................168 Figure 97. Platform Clock Architecture for a 2-DIMM Solution........................................170 Figure 98. Platform Clock Architecture for a 3-DIMM Solution........................................172 Figure 99. Clock Routing Topologies ..............................................................................173 Figure 100. Power Delivery Map......................................................................................180

Page 11: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 11

Figure 101. Pull-Up Resistor Example ............................................................................183 Figure 102. Example 1.85V/3.3V Power Sequencing Circuit ..........................................186 Figure 103. 3.3V/V5REF Sequencing Circuitry ...............................................................187 Figure 104. Power Plane Split Example ..........................................................................188 Figure 105. USB Data Line Schematic............................................................................200 Figure 106. ICH2 Oscillator Circuitry ...............................................................................202 Figure 107. SPKR Circuitry..............................................................................................203 Figure 108. V5REF Circuitry............................................................................................204 Figure 109. Host/Device Side Detection Circuitry............................................................206 Figure 110. Device Side Only Cable Detection ...............................................................206

Page 12: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

12 Intel® 815E Chipset Platform Design Guide

Tables Table 1. Processor Considerations for Universal Motherboard Design ............................37 Table 2. GMCH Considerations for Universal Motherboard Design..................................38 Table 3. ICH2 Considerations for Universal Motherboard Design.....................................38 Table 4. Clock Synthesizer Considerations for Universal Motherboard Design ................39 Table 5. Determining the Installed Processor via Hardware Mechanisms ........................43 Table 6. Intel® Pentium® III Processor AGTL/AGTL+ Parameters for Example

Calculations................................................................................................................54 Table 7. Example TFLT_MAX Calculations for 133 MHz Bus ................................................55 Table 8. Example TFLT_MIN Calculations (Frequency Independent) ....................................55 Table 9. Trace Guidelines for Figure 20............................................................................56 Table 10. Trace Width:Space Guidelines..........................................................................56 Table 11. Routing Guidelines for Non-AGTL/AGTL+ Signals ...........................................59 Table 12. Processor Pin Definition Comparison................................................................63 Table 13. Resistor Values for CLKREF Divider (3.3V Source)..........................................68 Table 14. RESET#/RESET2# Routing Guidelines ............................................................69 Table 15. Component Recommendations Inductor........................................................72 Table 16. Component Recommendations Capacitor .....................................................72 Table 17. Component Recommendation Resistor .........................................................72 Table 18. System Memory 2-DIMM Solution Space..........................................................81 Table 19. System Memory 3-DIMM Solution Space..........................................................84 Table 20. Retention Mechanism Vendors .........................................................................90 Table 21. AGP 2.0 Signal Groups .....................................................................................91 Table 22. AGP 2.0 Data/Strobe Associations....................................................................91 Table 23. AGP 2.0 Routing Summary ...............................................................................95 Table 24. AGP 2.0 Down Routing Summary ...................................................................100 Table 25. TYPDET#/VDDQ Relationship ........................................................................102 Table 26. Connector/Add-in Card Interoperability ...........................................................106 Table 27. Voltage/Data Rate Interoperability...................................................................106 Table 28. Decoupling Capacitor Recommendation.........................................................119 Table 29. Signal Descriptions..........................................................................................132 Table 30. Codec Configurations ......................................................................................133 Table 31. IOAPIC Interrupt Inputs 16 thru 23 Usage.......................................................137 Table 32. Pull-up Requirements for SMBus and SMLink ................................................139 Table 33. LAN Connect ...................................................................................................147 Table 34. Single-Solution Interconnect Length Requirements ........................................149 Table 35. LOM/CNR Length Requirements.....................................................................150 Table 36. Critical Dimensions for Component Placement...............................................159 Table 37. Critical Dimensions for Component Placement...............................................162 Table 38. Intel® 82562ET Operating States.....................................................................165 Table 39. Intel® CK-815 (2-DIMM) Clocks.......................................................................169 Table 40. Intel® CK-815 (3-DIMM) Clocks.......................................................................171 Table 41. Simulated Clock Routing Solution Space ........................................................174 Table 42. Simulated Clock Skew Assumptions ...............................................................176 Table 43. Power Delivery Definitions...............................................................................179 Table 44. Recommendations for Unused AGP Port........................................................195

Page 13: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

Intel® 815E Chipset Platform Design Guide 13

Revision History

Rev. No. Description Rev. Date

-001 • Initial Release. April 2001

-002 • Added Section 5.3.1.2, THERMTRIP Support for Tualatin A-1 Stepping

• Revised Checklist item RTCRST# in Section 14.4.12

• Revised Section 11.8.6, Power-Well Isolation Control. Added Figure 87. RTC Power-well Isolation Control

• Revised Table 39 and Table 40, in Section 12.1, 2-DIMM Clocking and Section 12.2, 3-DIMM Clocking

• Revised Section 13.3.3, 3.3V/V5REF Sequencing

• Added Section 2.2, Electrostatic Discharge Platform Recommendations

• Replaced Figure 106, Power Delivery Map in Section 13

• Revised RSMRST# in Section 14.4.9, Power Management

• Revised Packaging/Power bullet in Section 1.3.2.1

• Added Section 10.5, Power Supply PS_ON Considerations

• Add SUSCLK to Section 14.4.12, RTC Checklist

• Revised V5REF_SUS in Section 14.4.15, Power

• Replaced Figure 92 in Section 11.9.2.1, General Trace Routing Considerations

• Added Section 4.2.11, P-MOS Kicker ON Support

August 2002

Page 14: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

R

14 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 15: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 15

1 Introduction This design guide organizes Intel design recommendations for the Intel® 815E chipset platform for use with universal socket 370. In addition to providing motherboard design recommendations (e.g., layout and routing guidelines), this document also addresses system design issues (e.g., thermal requirements) for the chipset platform.

This design guide contains design recommendations, board schematics, debug recommendations, and a system checklist. These design guidelines are developed to ensure maximum flexibility for board designers while reducing the risk of board-related issues.

Board designers can use the schematics in Appendix A, “Customer Reference Board (CRB)” as a reference. While the included schematics cover specific designs, the core schematics will remain the same for most 815E chipset platforms that use the universal socket 370. Consult the debug recommendations when debugging your design. However, these debug recommendations should be understood before completing board design to ensure that the debug port, in addition to other debug features, are implemented correctly.

The 815E chipset platform supports the following processors:

• Intel® Pentium® III processor based on 0.18 micron technology (CPUID = 068xh).

• Intel® Celeron® processor based on 0.18 micron technology (CPUID = 068xh). This applies to Celeron 533A MHz and ≥566 MHz processors

• 0.13 micron socket 370 processors

Note: The system bus speed supported by the design is based on the capabilities of the processor, chipset, and clock driver.

Note: The 815 chipset for use with the universal socket 370 is not compatible with the Intel® Pentium® II processor (CPUID = 066xh) 370-pin socket.

Page 16: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

16 Intel® 815E Chipset Platform Design Guide

1.1 Terminology This section describes some of the terms used in this document. Additional power delivery term definitions are provided at the beginning of Chapter13, “Power Delivery”.

Term Description

AGP Accelerated Graphics Port

AGTL/AGTL+ Refers to processor bus signals that are implemented using either Assisted Gunning Transceiver Logic (AGTL+) or its lower voltage variant (AGTL), depending on which processor is being used.

Bus Agent A component or group of components that, when combined, represent a single load on the AGTL+ bus.

Crosstalk The reception on a victim network of a signal imposed by aggressor network(s) through inductive and capacitive coupling between the networks.

• Backward Crosstalkcoupling that creates a signal in a victim network that travels in the opposite direction as the aggressors signal.

• Forward Crosstalkcoupling that creates a signal in a victim network that travels in the same direction as the aggressors signal.

• Even Mode Crosstalkcoupling from single or multiple aggressors when all the aggressors switch in the same direction that the victim is switching.

• Odd Mode Crosstalkcoupling from single or multiple aggressors when all the aggressors switch in the opposite direction that the victim is switching.

GMCH Graphics and Memory Controller Hub. A component of the Intel® 815 chipset platform for use with the Universal Socket 370

Intel® ICH Intel® 82801AA I/O Controller Hub component.

ISI Inter-symbol interference is the effect of a previous signal (or transition) on the interconnect delay. For example, when a signal is transmitted down a line and the reflections due to the transition have not completely dissipated, the following data transition launched onto the bus is affected. ISI is dependent upon frequency, time delay of the line, and the reflection coefficient at the driver and receiver. ISI can impact both timing and signal integrity.

Network Length The distance between agent 0 pins and the agent pins at the far end of the bus.

Pad The electrical contact point of a semiconductor die to the package substrate. A pad is only observable in simulation.

Pin The contact point of a component package to the traces on a substrate such as the motherboard. Signal quality and timings can be measured at the pin.

Ringback The voltage that a signal rings back to after achieving its maximum absolute value. Ringback may be due to reflections, driver oscillations, or other transmission line phenomena.

Setup Window The time between the beginning of Setup to Clock (TSU_MIN) and the arrival of a valid clock edge. This window may be different for each type of bus agent in the system.

Page 17: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 17

Term Description

SSO Simultaneous Switching Output (SSO) Effects refers to the difference in electrical timing parameters and degradation in signal quality caused by multiple signal outputs simultaneously switching voltage levels (e.g., high-to-low) in the opposite direction from a single signal (e.g., low-to-high) or in the same direction (e.g., high-to-low). These are respectively called odd-mode switching and even-mode switching. This simultaneous switching of multiple outputs creates higher current swings that may cause additional propagation delay (or push-out), or a decrease in propagation delay (or pull-in). These SSO effects may impact the setup and/or hold times and are not always taken into account by simulations. System timing budgets should include margin for SSO effects.

Stub The branch from the bus trunk terminating at the pad of an agent.

System Bus The system bus is the processor bus.

Trunk The main connection, excluding interconnect branches, from one end agent pad to the other end agent pad.

Undershoot Minimum voltage observed for a signal to extend below VSS at the device pad.

Universal Socket 370 Refers to the 815E chipset using the universal PGA370 socket. In general, these designs support 66/100/133 MHz system bus operation, Intel® VRM guidelines for 0.13 micron processors, and Intel® Celeron® processors (CPUID=068xh), Intel®

Pentium® III processor (CPUID=068xh), and future Pentium III processors in single-microprocessor based designs.

Victim A network that receives a coupled crosstalk signal from another network is called the victim network.

Page 18: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

18 Intel® 815E Chipset Platform Design Guide

1.2 Reference Documents Document Document Number /

Location

Intel® 815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet

298351

Intel® 82802AB/82802AC Firmware Hub (FWH) Datasheet 290658

Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet

290687

Intel® Pentium® III Processor Specification Update (latest revision from website) http://developer.intel.com/design/PentiumIII/specupdt/

AP 907 Intel® Pentium® III Processor Power Distribution Guidelines 245085

AP-585 Intel® Pentium® II Processor AGTL+ Guidelines 243330

AP-587 Intel® Pentium® II Processor Power Distribution Guidelines 243332

Accelerated Graphics Port Interface Specification, Revision 2.0

Graphics Performance Accelerator Specification ftp://download.intel.com/technology/agp/downloads/agp20.pdf

PCI Local Bus Specification, Revision 2.2

AC ’97 2.1 Specification http://developer.intel.com/pc-supp/platform/ac97/index.htm.

82562EH HomePNA 1 Mb/s Physical Layer Interface Datasheet (Doc # 278313) http://developer.intel.com

82562EH HomePNA 1 Mb/s Physical Layer Interface Brief Datasheet (Doc # 278314) http://developer.intel.com

Communication Network Riser Specification, Revision 1.1 http://developer.intel.com/technology/cnr/

Universal Serial Bus, Revision 1.0 Specification

Page 19: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 19

1.3 System Overview The 815E chipset platform for use with the universal socket 370 contains a Graphics and Memory Controller Hub (GMCH) component and I/O Controller Hub 2 (ICH2) component for desktop platforms.

The GMCH provides the processor interface (optimized for the Pentium III processor (CPUID = 068xh) and 0.13 micron 370 socket processors), DRAM interface, hub interface, and an Accelerated Graphics Port (AGP) interface or internal graphics. This product provides flexibility and scalability in graphics and memory subsystem performance. Competitive internal graphics may be scaled via an AGP card interface, and PC100 SDRAM system memory may be scaled to PC133 system memory.

The Accelerated Hub Architecture interface (i.e., the chipset component interconnect) is designed into the chipset to provide an efficient, high-bandwidth communication channel between the GMCH and the I/O controller hub. The chipset architecture also enables a security and manageability infrastructure through the Firmware Hub component.

An ACPI-compliant 815E chipset platform can support the Full-on (S0), Stop Grant (S1), Suspend to RAM (S3), Suspend to Disk (S4), and Soft-off (S5) power management states. The chipset also supports wake-on-LAN* for remote administration and troubleshooting. The chipset architecture removes the requirement for the ISA expansion bus that was traditionally integrated into the I/O subsystem of PCIsets/AGPsets. This removes many of the conflicts experienced when installing hardware and drivers into legacy ISA systems. The elimination of ISA provides true plug-and-play for the platform. Traditionally, the ISA interface was used for audio and modem devices. The addition of AC 97 allows the OEM to use software-configurable AC 97 audio and modem coder/decoders (codecs), instead of the traditional ISA devices.

Page 20: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

20 Intel® 815E Chipset Platform Design Guide

1.3.1 System Features

The 815E chipset platform contains two components: the Intel® 82815 Graphics and Memory Controller Hub (GMCH) and the Intel® 82801BA I/O Controller Hub 2 (ICH2). The GMCH integrates a 66/100/133 MHz, P6 family system bus controller, integrated 2D/3D graphics accelerator or AGP (2X/4X) discrete graphics card, 100/133 MHz SDRAM controller, and a high-speed accelerated hub architecture interface for communication with the ICH2. The ICH2 integrates an UltraATA/100 controller, 2 Universal Serial Bus (USB) host controllers with a total of 4 ports, Low Pin Count (LPC) interface controller, Firmware Hub (FWH) interface controller, PCI interface controller, AC-link, integrated LAN controller, and a hub interface for communication with the GMCH.

Figure 1. System Block Diagram

Sys_Blk_815E_B0

Processor

82815 B-0 GMCH

82801BA ICH2

KBC/SIO

AGP graphics cardor

display cache AIMM(AGP in-line m em ory module)

AGP 2X/4X

Analog display out

Digital video out

66/100/133 MHz system bus

Hub interface

100/133 MHzSDRAM

PCI slots

FW HFlash BIOS

4x USB2x IDE

Audio codec

Modem codec

AC97

LAN connectcom ponent

LPC I/F

PCI bus

LANconnect

815E Chipset

Page 21: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 21

1.3.2 Component Features

Figure 2. Component Block Diagram

System bus (66/100/133 MHz)

Processor I/FSystem

memory I/F

AGP I/F

Local memory I/F

Hub I/F

Datastream

control &dispatch

Primary display Overlay

H/W cursor 3D pipeline

2D (blit engine)

RAMDAC FP / TVout

Internal graphics

GPA or AGP2X/4X

card

Hub

SDRAM 100/133 MHz, 64 bit

Monitor Digital video out

comp_blk_1

1.3.2.1 Intel® 82815 GMCH Features • Processor/System Bus Support

Optimized for Intel® Pentium® III processors at 133 MHz system bus frequency Support for Intel® Celeron® processors (CPUID = 068xh) (66 MHz system bus) Supports 32-bit AGTL or AGTL+ bus addressing Supports uniprocessor systems Utilizes AGTL and AGTL+ bus driver technology (gated AGTL/AGTL+ receivers for

reduced power)

• Integrated DRAM controller 32 MB to 512 MB using 16Mb/64Mb/128 Mb technology Supports up to 3 double-sided DIMMS (6 rows) 100 MHz, 133 MHz SDRAM interface 64-bit data interface Standard Synchronous DRAM (SDRAM) support (x-1-1-1 access) Supports only 3.3V DIMM DRAM configurations No registered DIMM support Support for symmetrical and asymmetrical DRAM addressing Support for x8, x16 DRAM device widths Refresh mechanism: CAS-before-RAS only Support for DIMM serial PD (presence detect) scheme via SMbus interface Suspend-To-RAM (STR) power management support via self-refresh mode using CKE

Page 22: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

22 Intel® 815E Chipset Platform Design Guide

• Accelerated Graphics Port (AGP) Interface Supports AGP 2.0, including 4X AGP data transfers, but not the 2X/4X Fast Write

protocol AGP universal connector support via dual-mode buffers to allow AGP 2.0 3.3V or 1.5V

signaling 32-deep AGP request queue AGP address translation mechanism with integrated fully associative 20-entry TLB High-priority access support Delayed transaction support for AGP reads that can not be serviced immediately AGP semantic traffic to the DRAM not snooped on system bus and therefore not coherent

with processor caches • Integrated Graphics Controller

Full 2D/3D/DirectX acceleration Texture-mapped 3D with point sampled, bilinear, trilinear, and anisotropic filtering Hardware setup with support for strips and fans Hardware motion compensation assist for software MPEG/DVD decode Digital Video Out interface for support of digital displays and TV-Out PC99A/PC2001 compliant Integrated 230 MHz DAC

• Integrated Local Graphics Memory Controller (Display Cache) 0 MB to 4 MB (via Graphics Performance Accelerator) using zero, one or two parts 32-bit data interface 133 MHz memory clock Supports ONLY 3.3V SDRAMs

• Packaging/Power 544 BGA with local memory port 1.85 V core and mixed 3.3 V, 1.5 V, and AGTL+ IO. Note that the 82801BA ICH2 has a

1.8 V requirement and the 82815 GMCH has a 1.85V requirement. Instead of separate voltage regulators to meet these requirements, a single voltage regulator can be set to 1.795 V to 1.910 V. See Figure 100, Power Delivery Map.

1.3.2.2 Intel® 82801BA I/O Controller Hub 2 (ICH2) The Intel® I/O Controller Hub 2 allows the I/O subsystem to access the rest of the system, as follows:

• Upstream accelerated hub architecture interface for access to the GMCH • PCI 2.2 interface (6 PCI Request/Grant pairs) • 2 channel Ultra ATA/100 Bus Master IDE controller • USB controller (Expanded capabilities for 4 ports) • I/O APIC • SMBus controller • FWH interface • LPC interface • AC 97 2.1 interface • Integrated system management controller • Alert-on-LAN* • Integrated LAN controller • Packaging/Power

Page 23: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 23

360 EBGA 1.8V (± 3% within margins of 1.795 V to 1.9 V) core and 3.3V standby

1.3.2.3 Firmware Hub (FWH)

The hardware features of the firmware hub include:

• An integrated hardware Random Number Generator (RNG)

• Register-based locking

• Hardware-based locking

• 5 General Purpose Interrupts (GPI)

• Packaging/Power 40L TSOP and 32L PLCC 3.3V core and 3.3V / 12V for fast programming

1.3.3 Platform Initiatives

1.3.3.1 Universal Motherboard Design

The 815E chipset platform for use with the universal socket 370 allows systems designers to build one system that is compatible with the Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors. When implemented, the 815E chipset universal socket 370 platform can detect which processor is present in the socket and function accordingly.

1.3.3.2 Intel® PC 133

The Intel® PC133 initiative provides the memory bandwidth necessary to obtain high performance from the processor and AGP graphics controller. The platforms SDRAM interface supports 100 MHz and 133 MHz operation. The latter delivers 1.066 GB/s of theoretical memory bandwidth compared with the 800 MB/s theoretical memory bandwidth of 100 MHz SDRAM systems.

1.3.3.3 Accelerated Hub Architecture Interface

As I/O speeds increase, the demand placed on the PCI bus by the I/O bridge becomes significant. With the addition of AC 97 and Ultra ATA/100, coupled with the existing USB, I/O requirements could impact PCI bus performance. The 815E platforms accelerated hub architecture ensures that the I/O subsystem, both PCI and the integrated I/O features (IDE, AC 97, USB, LAN), receives adequate bandwidth. By placing the I/O bridge on the accelerated hub architecture interface instead of PCI, I/O functions integrated into the ICH2 and the PCI peripherals are ensured the bandwidth necessary for peak performance.

1.3.3.4 Internet Streaming SIMD Extensions

The Pentium III processors provide 70 new SIMD (single instruction, multiple data) instructions. The new extensions are floating-point SIMD extensions. Intel® MMX technology provides integer SIMD instructions. The Internet Streaming SIMD extensions complement the MMX

Page 24: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

24 Intel® 815E Chipset Platform Design Guide

technology SIMD instructions and provide a performance boost to floating-point-intensive 3D applications.

1.3.3.5 AGP 2.0

The AGP 2.0 interface allows graphics controllers to access main memory at over 1 GB/s, twice the bandwidth of previous AGP platforms. AGP 2.0 provides the infrastructure necessary for photorealistic 3D. In conjunction with the Internet Streaming SIMD extensions, AGP 2.0 delivers the next level of 3D graphics performance.

1.3.3.6 Integrated LAN Controller

The 815E chipset platform incorporates an ICH2 integrated LAN Controller. Its bus master capabilities enable the component to process high-level commands and perform multiple operations; this lowers processor utilization by off-loading communication tasks from the processor.

The ICH2 functions with several options of LAN connect components to target the desired market segment. The Intel® 82562EH provides a HomePNA 1 Mbit/sec connection. The Intel® 82562ET provides a basic Ethernet 10/100 connection. The Intel® 82562EM provides an Ethernet 10/100 connection with the added flexibility of Alert on LAN. More advanced LAN solutions can be implemented with the Intel® 82550 or other PCI-based product offerings.

1.3.3.7 Ultra ATA/100 Support

The 815E chipset platform incorporates an IDE controller with two sets of interface signals (primary and secondary) that can be independently enabled, tri-stated or driven low. The component supports Ultra ATA/100, Ultra ATA/66, Ultra ATA/33, and multiword PIO modes for transfers up to 100 MB/sec.

1.3.3.8 Expanded USB Support

The 815E chipset platform contains two USB Host Controllers. Each Host Controller includes a root hub with two separate USB ports each, for a total of 4 USB ports. The addition of a second USB Host Controller expands the functionality of the platform.

1.3.3.9 Manageability and Other Enhancements

The 815E chipset platform integrates several functions designed to manage the system and lower the total cost of ownership (TCO) of the system. These system management functions are designed to report errors, diagnose the system, and recover from system lockups, without the aid of an external microcontroller.

SMBus

The ICH2 integrates an SMBus controller. The SMBus provides an interface for managing peripherals such as serial presence detection (SPD) and thermal sensors. The slave interface allows an external microcontroller to access system resources.

Page 25: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 25

Interrupt Controller

The interrupt capabilities of the platform expand support for up to 8 PCI interrupt pins and PCI 2.2 message-based interrupts. In addition, the ICH2 supports system bus interrupt delivery.

Firmware Hub (FWH)

The platform supports firmware hub BIOS memory sizes up to 8 MB for increased system flexibility.

1.3.3.10 AC ’97 6-Channel Support

The Audio Codec ’97 (AC 97) Specification defines a digital interface that can be used to attach an audio codec (AC), a modem codec (MC), an audio/modem codec (AMC), or both an AC and an MC. The AC 97 Specification defines the interface between the system logic and the audio or modem codec known as the AC-link.

The 815E chipset platforms AC 97 (with the appropriate codecs) not only replaces ISA audio and modem functionality, but also improves overall platform integration by incorporating the AC-link. Using the platforms integrated AC-link reduces cost and eases migration from ISA.

By using an audio codec, the AC-link allows for cost-effective, high-quality, integrated audio. In addition, an AC 97 soft modem can be implemented with the use of a modem codec. Several system options exist when implementing AC 97. The 815E chipset platforms integrated digital link allows several external codecs to be connected to the ICH2. The system designer can provide audio with an audio codec, a modem with a modem codec, or an integrated audio/modem codec (Figure 3c). The digital link is expanded to support two audio codecs (Figure 3a) or a combination of an audio and modem codec (Figure 3b).

Modem implementation for different countries must be taken into consideration, as telephone systems may vary. By implementing a split design, the audio codec can be on board, and the modem codec can be placed on a riser. Intel is developing an AC-link connector. With a single integrated codec, or AMC, both audio and modem can be routed to a connector near the rear panel where the external ports can be located.

The digital link in the ICH2 is AC 97 Rev. 2.1 compliant, supporting two codecs with independent PCI functions for audio and modem. Microphone input and left and right audio channels are supported for a high-quality, two-speaker audio solution. Wake-on-ring-from-suspend also is supported with the appropriate modem codec.

The 815E chipset platform expands audio capability with support for up to six channels of PCM audio output (i.e., full AC3 decode). Six-channel audio consists of Front Left, Front Right, Back Left, Back Right, Center and Woofer, for a complete surround sound effect. ICH2 has expanded support for two audio codecs on the AC-link.

Page 26: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

26 Intel® 815E Chipset Platform Design Guide

Figure 3. AC '97 Audio and Modem Connections

AC97_connections

ICH2360 EBGA

AC97AudioCodecAC97 Digital

Link

AC97AudioCodec

Audio Port

Audio Port

ICH2360 EBGA

AC97 DigitalLink AC97

Audio/ModemCodec

Audio Port

Modem Port

a) AC'97 with Audio Codecs (4-Channel Secondary)

b) AC'97 with Modem and Audio Codecs

c) AC'97 with Audio/Modem Codec

ICH2360 EBGA

AC97ModemCodec

Modem Port

Audio Port

AC97 DigitalLink

AC97AudioCodec

Page 27: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

Intel® 815E Chipset Platform Design Guide 27

1.3.3.11 Low-Pin-Count (LPC) Interface

In the 815E chipset platform, the Super I/O (SIO) component has migrated to the Low-Pin-Count (LPC) interface. Migration to the LPC interface allows for lower-cost Super I/O designs. The LPC Super I/O component requires the same feature set as traditional Super I/O components. It should include a keyboard and mouse controller, floppy disk controller, and serial and parallel ports. In addition to the Super I/O features, an integrated game port is recommended because the AC 97 interface does not provide support for a game port. In systems with ISA audio, the game port typically existed on the audio card. The fifteen-pin game port connector provides for two joysticks and a two-wire MPU-401 MIDI interface. Consult your preferred Super I/O vendor for a comprehensive list of the devices offered and the features supported.

In addition, depending on system requirements, specific system I/O requirements may be integrated into the LPC Super I/O. For example, a USB hub may be integrated to connect to the ICH2 USB output and extend it to multiple USB connectors. Other SIO integration targets include a device bay controller or an ISA-IRQ-to-serial-IRQ converter to support a PCI-to-ISA bridge. Contact your Super I/O vendor to ensure the availability of desired LPC Super I/O features.

Page 28: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Introduction

R

28 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 29: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

General Design Considerations

R

Intel® 815E Chipset Platform Design Guide 29

2 General Design Considerations This design guide provides motherboard layout and routing guidelines for systems based on the 815E chipset for use with the universal socket 370. The document does not discuss the functional aspects of any bus or the layout guidelines for an add-in device.

If the guidelines listed in this document are not followed, it is very important that thorough signal integrity and timing simulations be completed for each design. Even when the guidelines are followed, critical signals should be simulated to ensure the proper signal integrity and flight time. As bus speeds increase, it is imperative that the guidelines documented are followed precisely. Any deviation from these guidelines should be simulated.

The trace impedance typically noted (i.e., 60 Ω ± 15%) is the nominal trace impedance for a 5 mil-wide trace. That is, it is the impedance of the trace when not subjected to the fields created by changing current in neighboring traces. When calculating flight times, it is important to consider the minimum and maximum impedance of a trace, based on the switching of neighboring traces. The use of wider spaces between the traces can minimize this trace-to-trace coupling. In addition, these wider spaces reduce crosstalk and settling time.

Coupling between two traces is a function of the coupled length, the distance separating the traces, the signal edge rate, and the degree of mutual capacitance and inductance. To minimize the effects of trace-to-trace coupling, follow the routing guidelines documented in this section.

The routing guidelines in this design guide have been created using a PCB stack-up similar to that shown in Figure 4. If this stack-up is not used, extremely thorough simulations of every interface must be completed. Using a thicker dielectric (prepreg) will make routing very difficult or impossible.

2.1 Nominal Board Stack-up The 815E chipset platform requires a board stack-up yielding a target impedance of 60 Ω ± 15% with a 5 mil nominal trace width. Figure 4 shows an example stack-up that achieves this. It is a 4-layer printed circuit board (PCB) construction using 53%-resin FR4 material.

Figure 4. Board Construction Example for 60 ΩΩΩΩ Nominal Stack-up

board_4.5mil_stackup

~48-mil core

Component-side layer 1: ½ oz. Cu

Power plane layer 2: 1 oz. Cu4.5-mil prepreg

Ground layer 3: 1 oz. Cu

Solder-side layer 4: ½ oz. Cu4.5-mil prepreg

Total thickness:62 mils

Page 30: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

General Design Considerations

R

30 Intel® 815E Chipset Platform Design Guide

2.2 Electrostatic Discharge Platform Recommendations Electrostatic discharge (ESD) into a system can lead to system instability, and possibly cause functional failures when a system is in use. There are system level design methodologies that when followed can lead to higher ESD immunity. Electromagnetic fields due to ESD are introduced into a system through chassis openings such as the I/O back panel and PCI slots. These fields can introduce noise into signals and cause the system to malfunction. One can reduce the potential for issues at the I/O area by adding more ground plane on the motherboard around the I/O area. This can lead to a higher ESD immunity.

Intel recommends that the I/O area on the top and bottom signal layers of a 4-layer motherboard near the I/O back panel be filled with a ground fill as shown in Figures 1-4. In addition, a ground fill cutout should be placed on the Vcc layer in the area where the ground fill is done on the top and bottom layers. Intel recommends filling the I/O area as much as possible without effecting the signal routing. The board designer should fill the entire I/O area along the board edge.

The spacing from the ground fill to other shapes/traces should be at least 20 mils. It is recommended that these ground fill areas be connected to two chassis mounting holes (as seen in Figure 2). This will allow ESD current to travel to the chassis instead of the board. Ground stitching vias should be placed throughout the entire ground fill if possible. It is important that the vias are placed along the board edge. Ground stitching vias for the ground fill should be 100-150 mils apart or less.

In conclusion, Intel recommends the following: 1. Fill the I/O area with the ground fill in all layers including signal layers

whenever possible 2. Extend the ground fill along the entire back I/O area 3. Connect the ground fill to mounting holes 4. Place stitching vias 100-150 mils apart in the entire ground fill

Figure 5. Top Signal Layer before the Ground Fill Near the I/O Layer

Page 31: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

General Design Considerations

R

Intel® 815E Chipset Platform Design Guide 31

Figure 6. Top Signal Layer after the Ground Fill Near the I/O Layer

Ground Fill

Figure 7. Bottom Signal Layer before The Ground Fill Near the I/O Area

Figure 8. Bottom Signal Layer after the Ground Fill Near the I/O

Ground Fill

Page 32: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

General Design Considerations

R

32 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 33: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Component Layouts

R

Intel® 815E Chipset Platform Design Guide 33

3 Component Layouts Figure 9 illustrates the relative signal quadrant locations on the GMCH ballout. It does not represent the actual ballout. Refer to the Intel® 82815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet for the actual ballout.

Figure 9. GMCH 544-Ball µµµµBGA* CSP Quadrant Layout (Top View)

Quad_GMCH

GMCH

System Memory

AGP /Display Cache

Video

Hub Interface

System Bus

Pin 1corner

Page 34: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Component Layouts

R

34 Intel® 815E Chipset Platform Design Guide

Figure 10 illustrates the relative signal quadrant locations on the ICH2 ballout. It does not represent the actual ballout. Refer to the Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet for the actual ballout.

Figure 10. Intel® ICH2 360-Ball EBGA Quadrant Layout (Top View)

SM busAC'97

Hub interface Processor

PCI LPC USB

Quad_ICH2

LAN

IDE

ICH2

Page 35: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Component Layouts

R

Intel® 815E Chipset Platform Design Guide 35

Figure 11. Firmware Hub (FWH) Packages

pck_fwh.vsd

1234567891011121314151617181920

4039383736353433323130292827262524232221

FWH Interface

(40-Lead TSOP)

5

6

7

8

9

10

11

12

13

29

28

27

26

25

24

23

22

21

1234 32 31 30

14 15 16 17 18 19 20

FWH Interface

(32-Lead PLCC,0.450" x 0.550")

Top View

Page 36: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Component Layouts

R

36 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 37: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 37

4 Universal Motherboard Design

4.1 Universal Motherboard Definition Details The universal socket 370 platform supports Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) as well as 0.13 micron socket 370 processors. The Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) have different requirements for functioning properly in a platform than socket 370 processors. It is necessary to understand these differences and how they affect the design of the platform. Refer to Table 1 through

Table 4 for a high-level description of the differences that require additional circuitry on the motherboard. Specific details on implementing this circuitry are discussed further in this chapter. For a detailed description of the differences between the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), and socket 370 processor pins, refer to Section 0.

Table 1. Processor Considerations for Universal Motherboard Design

Signal Name or

Pin Number

Function In Intel® Pentium® III

Processor (CPUID=068xh) and

Intel® Celeron® Processor

(CPUID=068xh)

Function In 0.13 micron Socket 370 Processors

Implementation for Universal Socket 370 Design

AF36 VSS DETECT Addition of circuitry that generates a processor identification signal used to configure board-level operation.

AG1 VSS VTT Addition of FET switch to ground or VTT, controlled by processor identification signal.

Note: FET must have no more than 100 milliohms resistance between source and drain.

AJ3 VSS RESET2# Addition of stuffing option for pull-down to ground, which lets designer prevent 0.13 micron socket 370 processors from being used with incompatible stepping of Intel® 82815 GMCH.

AK22 GTL_REF VCMOS_REF Addition of resistor-divider network to provide 1.0 V, which will satisfy voltage tolerance requirements of the Intel®

Pentium® III processor (CPUID=068xh) and Intel® Celeron® processor (CPUID=068xh) as well as 0.13 micron socket 370 processors.

PICCLK Requires 2.5V Requires 2.0V Addition of FET switch to provide proper voltage, controlled by processor identification signal.

Page 38: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

38 Intel® 815E Chipset Platform Design Guide

Signal Name or

Pin Number

Function In Intel® Pentium® III

Processor (CPUID=068xh) and

Intel® Celeron® Processor

(CPUID=068xh)

Function In 0.13 micron Socket 370 Processors

Implementation for Universal Socket 370 Design

PWRGOOD Requires 2.5V Requires 1.8V Addition of resistor-divider network to provide 2.1V, which will satisfy voltage tolerance requirements of the Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) as well as 0.13 micron socket 370 processors.

VTT Requires 1.5V Requires 1.25V Modification to VTT generation circuit to switch between 1.5V or 1.25V, controlled by processor identification signal.

VTTPWRGD Not used Input signal to 0.13 micron socket 370 processors to indicate that VID signals are stable

Addition of VTTPWRGD generation circuit.

Table 2. GMCH Considerations for Universal Motherboard Design

Pin Name/Number

Issue Implementation For Universal Socket 370 Design

SMAA[12] New strap required for determining

Intel® Pentium® III Processor (CPUID=068xh) and Intel® Celeron® Processor (CPUID=068xh)

or

0.13 micron socket 370 processors

Addition of FET switch controlled by processor identification signal.

Table 3. Intel® ICH2 Considerations for Universal Motherboard Design

Signal Issue Implementation For Universal Motherboard Design

PWROK GMCH and Intel® CK815 must not sample BSEL[1:0] until VTTPWRGD is asserted. The ICH2 must not initialize before the Intel CK815 clocks stabilize.

Addition of circuitry to have VTTPWRGD gate PWROK from power supply to ICH2. The ICH2 will hold the GMCH in reset until VTTPWRGD asserted plus 20 ms time delay to allow Intel CK815 clocks to stabilize.

Page 39: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 39

Table 4. Clock Synthesizer Considerations for Universal Motherboard Design

Signal Issue Implementation For Universal Motherboard Design

VDD Intel® CK815 does not support VTTPWRGD

Addition of FET switch that supplies power to VDD only when VTTPWRGD is asserted.

Note: FET must have no more than 100 milliohms resistance between source and drain.

4.2 Processor Design Requirements

4.2.1 Use of Universal Motherboard Design With Incompatible GMCH

The universal socket 370 design is intended for use with the 815 chipset platform for use with the universal socket 370. A universal socket 370 design populated with an earlier stepping of the GMCH is not compatible with 0.13 micron socket 370 processors and, if used, will cause eventual failure of these processors. To prevent a 0.13 micron socket 370 processor from being used with an incompatible stepping of the GMCH, the recommendation is to lay out the site for a 0 Ω pull-down to ground on processor pin AJ3. This pin is a RESET# signal on 0.13 micron socket 370 processors and, by populating the resistor, these future processors will be prevented from functioning when placed in a board with an incompatible stepping of the GMCH. All Pentium III (CPUID=068xh) and Celeron (CPUID=068xh) processors will continue to boot normally. Not populating the resistor will allow 0.13 micron socket 370 processors to boot. Refer to Figure 12 for an example implementation.

Figure 12. 0.13 Micron Socket 370 Processor Safeguard for Universal Motherboard Designs Using A-2 GMCH

Future 0.13 MicronSocket 370Processors

AJ3

0 Ω

Tual_pin_aj3

Page 40: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

40 Intel® 815E Chipset Platform Design Guide

4.2.2 Identifying the Processor at the Socket

For the platform to configure for the requirements of the processor in the socket, it must first identify whether the processor is a Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), or a 0.13 micron socket 370 processors. Pin AF36 is a ground pin on a Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh); pin AF36 is an unconnected pin on 0.13 micron Socket 370 processors. Referring to Figure 13, the platform uses a detect circuit connected to this processor pin. If a 0.13 micron Socket 370 processor is present in the socket, the TUAL5 reference schematic signal will be pulled to the 5V rail and the TUAL5# reference schematic signal will be pulled to ground. Otherwise, for a Pentium III processor (CPUID=068xh) or Celeron processor (CPUID=068xh), the TUAL5 reference schematic signal will be pulled to ground and the TUAL5# will be pulled to the 5V rail.

Figure 13. Processor Detect Mechanism at Socket/TUAL5 Generation Circuit

1 KΩ

2.2 KΩ

2.2 KΩVTT

VCC5

VCC5

TUAL5

TUAL5#

MOSFET N

NPNProcessor PinAF36

Proc_Detect_815E_B0

Page 41: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 41

4.2.3 Setting the Appropriate Processor VTT Level

Because the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors require different VTT levels, the platform must be able to provide the appropriate voltage level after determining which processor is in the socket. Referring to Figure 14, the TUAL5 reference schematic signal serves to control the FET, and by doing so determines whether the voltage regulator supplies 1.25V or 1.5V to VTT for AGTL or AGTL+, respectively.

Figure 14. VTT Selection Switch

VinVout

ADJ

VCC3_3

10 µF

LT1587-ADJ

TUAL5

MOSFET N10 Ω1%

49.9 Ω1%

0.1 µF

22 µFTantalum

VTT

Vtt_Sel_Sw_815E_B0

Page 42: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

42 Intel® 815E Chipset Platform Design Guide

4.2.4 VTT Processor Pin AG1

Processor pin AG1 requires additional attention since it is a ground pin on a Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh) and a VTT pin on a 0.13 micron socket 370 processor. A separate switch controlled by the TUAL5 reference schematic signal determines whether pin AG1 is pulled to ground or VTT. Refer to Figure 15 for an example implementation.

Figure 15. Switching Pin AG1

1 KΩ

Processor PinAG1

TUAL5

VTT

Note: The FET must have no more than100 milliohms resistance between thesource and the drain.

AG1_Switch_815E_B0

Page 43: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 43

4.2.5 Identifying the Processor at the GMCH

The GMCH determines whether the socket contains a 0.13 micron socket 370 processor or Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh) based on the input to pin SMAA12 on the GMCH. In a system using 0.13 micron socket 370 processors, SMAA12 will be pulled down during reset to indicate to the GMCH that a 0.13 micron socket 370 processor is in the socket. Refer to Figure 16. for an implementation example.

Figure 16. Processor Identification Strap on GMCH

10 KΩ

TUAL5

SMAA[12]

Proc_ID_Strap_815E_B0

Table 5 provides the logic decoding to determine which processor is installed in a PGA370 design.

Table 5. Determining the Installed Processor via Hardware Mechanisms

Processor Pin AF36

CPUPRES# Notes

Hi-Z 0 0.13 micron socket 370 processor installed.

Low 0 Intel® Pentium® III processor (CPUID=068xh) or Intel® Celeron® processor (CPUID=068xh) installed.

X 1 No processor installed.

Page 44: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

44 Intel® 815E Chipset Platform Design Guide

4.2.6 Configuring Non-VTT Processor Pins

When asserted, the VTTPWGRD signal must be level-shifted to 12V to properly drive the gating circuitry of the Intel® CK815. Furthermore, while the VTTPWRGD signal is connected to the VTTPWRGD pin on a 0.13 micron socket 370 processor, on a Pentium III processor (CPUID=068xh) or Celeron processor (CPUID=068xh) that same pin is a ground. To provide proper functionality, a 1.0 kΩ resistor must be placed in series between the circuitry that generates the signal VTTPWRGD and the processor pin VTTPWRGD. Refer to Figure 17 for an example implementation. Voltage regulators that generate the standard VTTPWRGD signal are available.

Figure 17. VTTPWRGD Configuration Circuit

5

3

2

4

VTT

VCC5

V1_8SB

732 Ω1%

1 Κ Ω1%

Vcc

IN+ 1

IN- 1

Gnd

2

3

1

VCC5

VTTPW RGD_Config_815E_B0

1

BAT54C

V1_8SB

8

76IN+ 2

IN- 2Out 1

Out 2

VCC5

20 KΩ

VCC5

1 KΩ

VTTPW RGD5#

LM393 Ch2LM393 Ch1 0.1 µF

VTTPW RGD

1 KΩ

1 KΩ

VTT

VTTPW RGD12

2.2 KΩ

VCC12

2.0 ms delay nom inal

MOSFET N

MOSFET N

ASSERTEDLOW

NOTE: the diode is included so that repeated pressing of the reset or power button does not cause the capacitor to build up enough charge to circumvent the 20 ms delay.

Page 45: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 45

4.2.7 VCMOS Reference

In previous platforms supporting the Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh), VCMOS was generated by the same power plane as VTT. The 0.13 micron socket 370 processors do not generate VCMOS, and the universal platform is required to generate this separately on the motherboard. Processor pin AK22, which is a GTL_REF pin on a Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh), has been changed to a VCMOS_REF pin on 0.13 micron socket 370 processors. Referring to Figure 18, a network of resistors and a capacitor must be added so that this pin operates appropriately for whichever processor is in the socket.

Figure 18. GTL_REF/VCMOS_REF Voltage Divider Network

75 Ω1%

150 Ω1%

VCMOS

Processor PinAK22

.1 µF

GTL_CMOS_Ref_815E_B0

Page 46: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

46 Intel® 815E Chipset Platform Design Guide

4.2.8 Processor Signal PWRGOOD

The processor signal PWRGOOD is specified at different voltage levels depending on whether it is a Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), or whether it is a 0.13 micron socket 370 processor. As there is an overlap between the ranges of accepted voltage levels for these two processor groups, a resistor divider network that provides 2.1V will satisfy the requirements of all supported processors. See Figure 19 for an example implementation.

Figure 19. Resistor Divider Network for Processor PWRGOOD

PW RGOOD to Processor

VCC2_5

PW RGOOD from ICH2

330 Ω

1.8 Κ Ω

PW RGOOD_Divider_815E_B0

Page 47: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 47

4.2.9 APIC Clock Voltage Switching Requirements

The processors APIC clock is also specified at different voltage levels depending on whether it is for the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh) or whether it is for a 0.13 micron socket 370 processor. There is no overlap in the range of accepted voltage levels for the two processor groups, so a voltage switch is required to ensure proper operation. Figure 20 shows an example implementation.

Figure 20 Voltage Switch for Processor APIC Clock

30 Ω

130 Ω

IOAPIC

APICCLK_CPU

TUAL5

MOSFET N

API_CLK_SW _815E_B0

NOTE: The 30 Ω resistor represents the series resistor typically used in connecting the APIC clock to the processor.

Page 48: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

48 Intel® 815E Chipset Platform Design Guide

4.2.10 GTLREF Topology and Layout

In a platform supporting the 0.13 micron socket 370 processors, the voltage requirements for GTLREF are different for the processor and the chipset. The GTLREF on the processor is specified to be 2/3 * VTT, while the GTLREF on the chipset is 0.7 * VTT. This difference requires that separate resistor sites be added to the layout to split the GTLREF sources. In a universal motherboard design, a Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) will be unaffected by the difference in GTLREF. The recommended GTLREF circuit topology is shown in Figure 21.

Note: If an A-2 stepping of the GMCH is used with the universal motherboard design, the GTLREF for the GMCH should be set at 2/3 * VTT. This requires changing the 63.4 Ω, 1% resistor on the GMCH side to 75 Ω, 1%.

Figure 21. GTLREF Circuit Topology

gtlref_circuit

VTT

63.4 Ω 75 Ω

150 Ω 150 Ω

ProcessorGMCH

GTLREF Layout and Routing Guidelines • Place all resistor sites for GTLREF generation close to the GMCH.

• Route GTLREF with as wide a trace as possible.

• Use one 0.1 µF decoupling capacitor for every two GTLREF pins at the processor (four capacitors total). Place as close as possible (within 500 mils) to the Socket 370 GTLREF pins.

• Use one 0.1 µF decoupling capacitor for each of the two GTLREF pins at the GMCH (two capacitors total). Place as close as possible to the GMCH GTLREF balls.

Given the higher GTLREF level for the GMCH, a debug test hook should be added for validation purposes. The debug test hook should be placed on the processor signal ADS# and consists of laying down the site for a 56 Ω pull-up to VTT. The resistor site should be located within 150 mils of the GMCH, and placed as close to the ADS# signal trace as possible.

Page 49: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 49

4.2.11 P-MOS Kicker “ON” Support

The PSB P-MOS Kicker circuit should be enabled on all 815E Universal Socket 370 designs. This is accomplished by strapping SMAA[9] high through an internal 50 kΩ pull-up resistor which enables the P-MOS Kicker. Use of the P-MOS Kicker circuit improves PSB timings by improving AGTL and AGTL+ signal flight time.

Existing designs which have implemented the pull-down resistor circuit on the SMAA[9] signal as shown in the Customer Reference Board schematics and populated the resistor site to over-ride the internal pull-up resistor, may depopulate the site to enable the P-MOS Kicker circuit. This activity should be based on timing analysis of the specific platform.

P-MOS Kicker circuit ON is the recommended setting for all 815E Universal Socket 370 designs including those using 0.13 micron technology processors.

4.3 Power Sequencing on Wake Events In addition to the mechanism for identifying the processor in the socket, special handling of wake events is required for the 815 chipset platform that support functionality of the 0.13 micron socket 370 processors. When a wake event is triggered, the GMCH and the CK815 must not sample BSEL[1:0] until the signal VTTPWRGD is asserted. This is handled by setting up the following sequence of events: 1. Power is not connected to the CK815-compliant clock driver until VTTPWRGD12 is

asserted. 2. Clocks to the ICH2 stabilize before the power supply asserts PWROK to the ICH2. There is

no guarantee this will occur as the implementation for the previous step relies on the 12V supply. Thus it is necessary to gate PWROK to the ICH2 from the power supply while the CK815 is given sufficient time for the clocks to become stable. The amount of time required is a minimum 20 ms.

3. ICH2 takes the GMCH out of reset. 4. GMCH samples BSEL[1:0]. CK815 will have sampled BSEL[1:0] much earlier.

Page 50: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

50 Intel® 815E Chipset Platform Design Guide

4.3.1 Gating of Intel® CK815 to VTTPWRGD

System designers must ensure that the VTTPWRGD signal is asserted before the CK815-compliant clock driver receives power. This is handled by having the 3.3V rail of the clock driver gated by the VTTPWRGD12 reference schematic signal. Unlike previous 815E chipset designs, the 3.3V standby rail is not used to power the clock because the VTTPWRGD12 reference schematic signal will cut power to the clock when going into any sleep state. Refer to Figure 22 for an example implementation.

Figure 22. Gating Power to Intel® CK815

VCC3_3

VDD on CK-815VTTPW RGD12

MOSFET N

Note: The FET must have no more than100 milliohms resistance between thesource and the drain.

Page 51: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

Intel® 815E Chipset Platform Design Guide 51

4.3.2 Gating of PWROK to Intel® ICH2

With power being gated to the CK815 by the signal VTTPWRGD12, it is important that the clocks to the ICH2 are stable before the power supply asserts PWROK to the ICH2. As the clocking power gating circuitry relies on the 12 V supply, there is no guarantee that these conditions will be met. This is why an estimated minimum time delay of 20 ms must be added after power is connected to the CK815 to give the clock driver sufficient time to stabilize. This time delay will gate the power supplys assertion of PWROK to the ICH2. After the time delay, the power supply can safely assert PWROK to the ICH2, with the ICH2 subsequently taking the GMCH out of reset. Refer to Figure 23 for an example implementation.

Figure 23 PWROK Gating Circuit for Intel® ICH2

VDD on CK-815

1.0uF

43k

PWROKICH2_PWROK

VCC3_3

ICH2_PWROK_GATING

Note: delay 20ms afterVDD on CK-815 ispowered

NOTE: The diode is included so that repeated pressing of the reset or power button does not cause the capacitor to build up enough charge to circumvent the 20ms delay.

Page 52: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Universal Motherboard Design

R

52 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 53: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 53

5 System Bus Design Guidelines The Pentium III processor delivers higher performance by integrating the Level 2 cache into the processor and running it at the processor's core speed. The Pentium III processor runs at higher core and system bus speeds than previous-generation IA-32 processors while maintaining hardware and software compatibility with earlier Pentium III processors. The new Flip Chip-Pin Grid Array 2 (FC-PGA2) package technology enables compatibility with previous Flip Chip-Pin Grid Array (FC-PGA) packages using the PGA370 socket.

This section presents the considerations for designs capable of using the 815E universal platform with the full range of Pentium III processors using the PGA370 socket.

5.1 System Bus Routing Guidelines The following layout guide supports designs using Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors with the 815 chipset platform. The solution covers system bus speeds of 66/100/133 MHz for the Pentium III processor (CPUID=068xh) / Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors. All processors must also be configured to 56 Ω on-die termination.

5.1.1 Initial Timing Analysis

Table 6 lists the AGTL/AGTL+ component timings of the processors and 815E universal platforms GMCH defined at the pins.

Note: These timings are for reference only. Obtain each processors specifications from the respective processor datasheet and the chipset values from the appropriate 815 chipset datasheet.

Page 54: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

54 Intel® 815E Chipset Platform Design Guide

Table 6. Intel® Pentium® III Processor AGTL/AGTL+ Parameters for Example Calculations

IC Parameters Intel® Pentium® III Processor at 133 MHz System Bus

GMCH Notes

Clock to Output maximum (TCO_MAX)

3.25 ns (for 66/100/133 MHz system bus speeds)

4.1 ns 1, 2

Clock to Output minimum (TCO_MIN)

0.40 ns (for 66/100/133 MHz system bus) 1.05 ns 1, 2

Setup time (TSU_MIN) 1.20 ns for BREQ Lines

0.95 ns for all other AGTL/AGTL+ Lines @ 133 MHz

1.20 ns for all other AGTL/AGTL+ Lines @ 66/100 MHz

2.65 ns 1, 2,3

Hold time (THOLD) 1.0 ns (for 66/100/133 MHz system bus speeds)

0.10 ns 1

NOTES: 1. All times in nanoseconds. 2. Numbers in table are for reference only. These timing parameters are subject to change. Check the

appropriate component documentation for the valid timing parameter values. 3. TSU_MIN = 2.65 ns assumes that the GMCH sees a minimum edge rate equal to 0.3 V/ns.

Table 7 contains an example AGTL+ initial maximum flight time, and Table 8 contains an example minimum flight time calculation for a 133 MHz, uniprocessor system using the Pentium III processor and the 815E chipset platforms system bus. Note that assumed values were used for the clock skew and clock jitter.

Note: The clock skew and clock jitter values depend on the clock components and the distribution method chosen for a particular design, and must be budgeted into the initial timing equations as appropriate for each design.

Table 7 and Table 8 were derived assuming the following:

• CLKSKEW = 0.20 ns (Note: This assumes that the clock driver pin-to-pin skew is reduced to 50 ps by tying the two host clock outputs together (i.e., ganging) at the clock driver output pins, and that the PCB clock routing skew is 150 ps. The system timing budget must assume 0.175 ns of clock driver skew if outputs are not tied together as well as the use of a clock driver that meets the CK815 Clock Synthesizer/Driver Specification.)

• CLKJITTER = 0.250 ns

Page 55: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 55

See the respective processor datasheet and the appropriate 815 chipset platform documentation for details on clock skew and jitter specifications. Exact details regarding the host clock routing topology are provided with the platform design guideline.

Table 7. Example TFLT_MAX Calculations for 133 MHz Bus

Driver Receiver Clk Period2

TCO_MAX TSU_MIN ClkSKEW ClkJITTER MADJ Recommended TFLT_MAX

Processor GMCH 7.50 3.25 2.65 0.20 0.25 0.40 1.1

GMCH Processor 7.50 4.1 1.20 0.20 0.25 0.40 1.35

NOTES: 1. All times in nanoseconds 2. BCLK period = 7.50 ns @ 133.33 MHz

Table 8. Example TFLT_MIN Calculations (Frequency Independent)

Driver Receiver THOLD ClkSKEW TCO_MIN Recommended TFLT_MIN

Processor GMCH 0.10 0.20 0.40 0.10

GMCH Processor 1.00 0.20 1.05 0.15

NOTE: All times in nanoseconds

The flight times in Table 7 include margin to account for the following phenomena that Intel observed when multiple bits are switching simultaneously. These multi-bit effects can adversely affect the flight time and signal quality and sometimes are not accounted for during simulation. Accordingly, the maximum flight times depend on the baseboard design, and additional adjustment factors or margins are recommended.

• SSO push-out or pull-in

• Rising or falling edge rate degradation at the receiver caused by inductance in the current return path, requiring extrapolation that causes additional delay

• Crosstalk on the PCB and inside the package which can cause variation in the signals

Additional effects exist that may not necessarily be covered by the multi-bit adjustment factor and should be budgeted as appropriate to the baseboard design. These effects are included as MADJ in the example calculations in Table 7. Examples include:

• The effective board propagation constant (SEFF), which is a function of: Dielectric constant (εr) of the PCB material Type of trace connecting the components (stripline or microstrip) Length of the trace and the load of the components on the trace. Note that the board

propagation constant multiplied by the trace length is a component of the flight time, but not necessarily equal to the flight time.

Page 56: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

56 Intel® 815E Chipset Platform Design Guide

5.2 General Topology and Layout Guidelines

Figure 24. Topology for 370-Pin Socket Designs with Single-Ended Termination (SET)

sys_bus_topo_PGA370

GMCHPGA370Socket

Z0 = 60 Ω ± 15%

Table 9. Trace Guidelines for Figure 24 1, 2, 3

Description Min. Length (inches) Max. Length (inches)

GMCH to PGA370 socket trace 1.90 4.50

NOTES: 1. All AGTL/AGTL+ bus signals should be referenced to the ground plane for the entire route. 2. Use an intragroup AGTL/AGTL+ spacing : line width : dielectric thickness ratio of at least 2:1:1 for

microstrip geometry. If εr = 4.5, this should limit coupling to 3.4%. For example, intragroup AGTL+ routing could use 10 mil spacing, 5 mil traces, and a 5 mil prepreg between the signal layer and the plane it references (assuming a 4-layer motherboard design).

3. The recommended trace width is 5 mils, but not greater than 6 mils.

Table 10 contains the trace width: space ratios assumed for this topology. Three types of crosstalk are considered in this guideline: Intragroup AGTL/AGTL+, Intergroup AGTL/AGTL+, and AGTL/AGTL+ to non-AGTL/AGTL+. Intragroup AGTL/AGTL+ crosstalk involves interference between AGTL/AGTL+ signals within the same group. Intergroup AGTL/AGTL+ crosstalk involves interference from AGTL/AGTL+ signals in a particular group to AGTL/AGTL+ signals in a different group. An example of AGTL/AGTL+ to non-AGTL/AGTL+ crosstalk is when CMOS and AGTL/AGTL+ signals interfere with each other. The AGTL/AGTL+ signals consist of the following groups: data signals, control signals, clock signals, and address signals.

Table 10. Trace Width:Space Guidelines

Crosstalk Type Trace Width:Space Ratios1, 2

Intragroup AGTL/AGTL+ signals (same group AGTL/AGTL+) 5:10 or 6:12

Intergroup AGTL/AGTL+ signals (different group AGTL/AGTL+) 5:15 or 6:18

AGTL/AGTL+ to System Memory Signals 5:30 or 6:36

AGTL/AGTL+ to non-AGTL/AGTL+ 5:25 or 6:24

NOTES: 1. Edge-to-edge spacing. 2. Units are in mils.

Page 57: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 57

5.2.1 Motherboard Layout Rules for AGTL/AGTL+ Signals

Ground Reference

It is strongly recommended that AGTL/AGTL+ signals be routed on the signal layer next to the ground layer (referenced to ground). It is important to provide an effective signal return path with low inductance. The best signal routing is directly adjacent to a solid GND plane with no splits or cuts. Eliminate parallel traces between layers not separated by a power or ground plane. If a signal has to go through routing layers, the recommendations are:

Note: Following these layout rules is critical for AGTL/AGTL+ signal integrity, particularly for 0.18 micron and smaller process technology.

• For signals going from a ground reference to a power reference, add capacitors between ground and power near the vias to provide an AC return path. One capacitor should be used for every three signal lines that change reference layers. Capacitor requirements are as follows: C=100nF, ESR=80mΩ, ESL=0.6nH. Refer to Figure 25 for an example of switching reference layers.

• For signals going from one ground reference to another, separate ground reference, add vias between the two ground planes to provide a better return path.

Figure 25. AGTL/AGTL+ Trace Routing

AGTL_trace_route

Ground Plane

1.2V Power Plane

GMCH Processor

Layer 2

Layer 3 Socket Pin

0-500 mils1.5-3.5 inches

Reference Plane Splits

Splits in reference planes disrupt signal return paths and increase overshoot/undershoot due to significantly increased inductance.

Processor Connector Breakout

It is strongly recommended that AGTL/AGTL+ signals do not traverse multiple signal layers. Intel recommends breaking out all signals from the connector on the same layer. If routing is tight, break out from the connector on the opposite routing layer over a ground reference and cross over to main signal layer near the processor connector.

Page 58: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

58 Intel® 815E Chipset Platform Design Guide

Minimizing Crosstalk

The following general rules minimize the impact of crosstalk in a high-speed AGTL/AGTL+ bus design:

• Maximize the space between traces. Where possible, maintain a minimum of 10 mils (assuming a 5 mil trace) between trace edges. It may be necessary to use tighter spacing when routing between component pins. When traces must be close and parallel to each other, minimize the distance that they are close together and maximize the distance between the sections when the spacing restrictions are relaxed.

• Avoid parallelism between signals on adjacent layers, if there is no AC reference plane between them. As a rule of thumb, route adjacent layers orthogonally.

• Since AGTL/AGTL+ is a low-signal-swing technology, it is important to isolate AGTL/AGTL+ signals from other signals by at least 25 mils. This will avoid coupling from signals that have larger voltage swings (e.g., 5V PCI).

• AGTL/AGTL+ signals must be well isolated from system memory signals. AGTL/AGTL+ signal trace edges must be at least 30 mils from system memory trace edges within 100 mils of the ball of the 82815 GMCH.

• Select a board stack-up that minimizes the coupling between adjacent signals. Minimize the nominal characteristic impedance within the AGTL/AGTL+ specification. This can be done by minimizing the height of the trace from its reference plane, which minimizes crosstalk.

• Route AGTL/AGTL+ address, data, and control signals in separate groups to minimize crosstalk between groups. Keep at least 15 mils between each group of signals.

• Minimize the dielectric used in the system. This makes the traces closer to their reference plane and thus reduces the crosstalk magnitude.

• Minimize the dielectric process variation used in the PCB fabrication.

• Minimize the cross-sectional area of the traces. This can be done by means of narrower traces and/or by using thinner copper, but the trade-off for this smaller cross-sectional area is higher trace resistivity, which can reduce the falling-edge noise margin because of the I*R loss along the trace.

Page 59: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 59

5.2.1.1 Motherboard Layout Rules for Non-AGTL/AGTL+ (CMOS) Signals

Table 11. Routing Guidelines for Non-AGTL/AGTL+ Signals

Signal Trace Width

Spacing to Other Traces Trace Length

A20M# 5 mils 10 mils 1 to 9

FERR# 5 mils 10 mils 1 to 9

FLUSH# 5 mils 10 mils 1 to 9

IERR# 5 mils 10 mils 1 to 9

IGNNE# 5 mils 10 mils 1 to 9

INIT# 5 mils 10 mils 1 to 9

LINT[0] (INTR) 5 mils 10 mils 1 to 9

LINT[1] (NMI) 5 mils 10 mils 1 to 9

PICD[1:0] 5 mils 10 mils 1 to 9

PREQ# 5 mils 10 mils 1 to 9

PWRGOOD 5 mils 10 mils 1 to 9

SLP# 5 mils 10 mils 1 to 9

SMI# 5 mils 10 mils 1 to 9

STPCLK 5 mils 10 mils 1 to 9

THERMTRIP# 5 mils 10 mils 1 to 9

NOTE: Route these signals on any layer or combination of layers.

Page 60: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

60 Intel® 815E Chipset Platform Design Guide

5.2.1.2 THRMDP and THRMDN

These traces (THRMDP and THRMDN) route the processors thermal diode connections. The thermal diode operates at very low currents and may be susceptible to crosstalk. The traces should be routed close together to reduce loop area and inductance.

Figure 26. Routing for THRMDP and THRMDN

1 Maximize (min. 20 mils)

1 Maximize (min. 20 mils)

2 Minimize

Signal Y

THRMDP

THRMDN

Signal Z

bus_routing_thrmdp-thrmdn

NOTES: 1. Route these traces parallel and equalize lengths within ± 0.5 inch. 2. Route THRMDP and THRMDN on the same layer.

5.2.1.3 Additional Routing and Placement Considerations • Distribute VTT with a wide trace. An 0.050 inch minimum trace is recommended to minimize

DC losses. Route the VTT trace to all components on the host bus. Be sure to include decoupling capacitors.

• The VTT voltage should be 1.5V ± 3% for static conditions, and 1.5V ± 9% for worst-case transient conditions when the Pentium III processor (CPUID=068xh) or Celeron processor (CPUID=068xh) is present in the socket. If a 0.13 micron socket 370 processor is being used, the VTT voltage should then be 1.25V ± 3% for static conditions, and 1.25V ± 9% for worst-case transient conditions.

• Place resistor divider pairs for VREF generation at the GMCH component. VREF also is delivered to the processor.

Page 61: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 61

5.3 Electrical Differences for Universal PGA370 Designs There are several electrical changes between previous PGA370 designs and the universal PGA370 design, as follows:

• Changes to the PGA370 socket pin definitions. • Addition of VTTPWRGD signal to ensure stable VID selection for 0.13 micron socket 370

processors. • Addition of THERMTRIP circuit to allow processor to detect catastrophic overheat. • Addition of VID[25mV] signal to support 0.13 micron socket 370 processors. • Processor VTT level is switchable to 1.25V or 1.5V, depending on which processor is present

in the socket. • In designs using 0.13 micron socket 370 processors, the processor does not generate

VCMOS_REF.

5.3.1 THERMTRIP Circuit

To ensure that the processor detects and prevents catastrophic overheat, THERMTRIP is required on all designs that support 0.13 micron socket 370 processors. Figure 27 offers one possible implementation that makes use of the 4s Power Button feature on the ICH2.

Figure 27. Example Implementation of THERMTRIP Circuit

1.5V

Thermtrip#

SW _ON#

1 KΩ

4.7 KΩ

1 KΩ

1 KΩ

Thermstrip_2

1.8V

2.2 KΩ

CPU_RST#

Q1

Q2

Q3

NOTES: 1. The pull-up voltage on the collector of Q1 is required to be 1.8V derived from a 3.3V source. 2. THERMTRIP is not valid until after CPU_RST# is deasserted. This is handled by gating the assertion of

THERMTRIP with CPU_RST#. Using the CPU_RST# in this manner has minimal impact to the signal quality.

3. THERMTRIP must not go higher than VccCMOS levels. The pull-up on THERMTRIP is now connected to 1.5V.

4. CPU_RST# must gate SW_ON# from ground. This prevents glitching on SW_ON# during power-up and power-down.

5. The resistance to the base of the transistor gating CPU_RST# must be at least 2.2 KΩ for proper Vih levels on CPU_RST#.

Page 62: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

62 Intel® 815E Chipset Platform Design Guide

5.3.1.1 THERMTRIP Timing

When the THERMTRIP signal is asserted, both the VCC and VTT supplies to the processor must be turned off to prevent thermal runaway of the processor. The time required from THERMTRIP asserted to VCC rail at ½ nominal is 5 s, and THERMTRIP asserted to VTT rail at ½ nominal is 5 s. System designers must ensure that the decoupling scheme used on these rails does not violate the THERMTRIP timing specifications.

5.3.1.2 THERMTRIP Support for Tualatin A-1 Stepping

A platform supporting the 0.13 micron technology processor must implement a workaround required for the A-1 stepping of that processor, identified by CPUID = 6B1h.

The internal control register bit responsible for operation of the THERMTRIP circuit functionality may power up in an un-initialized state. As a result, THERMTRIP# may be incorrectly asserted during de-assertion of RESET# at nominal operating temperatures. When THERMTRIP# is asserted as a result of this, the processor may shut down internally and stop execution. In addition, when the THERMTRIP# pin is asserted the processor may incorrectly continue to execute, leading to intermittent system power-on boot failures. The occurrence and repeatability of failures is system dependent, however all systems and processors are susceptible to failure.

To prevent the risk of power-on boot failures, a platform workaround is required. The system must provide a rising edge on the TCK signal during the power-on sequence that meets all of the following requirements:

• Rising edge occurs after Vcc_core is valid and stable

• Rising edge occurs before or at the de-assertion of RESET#

• Rising edge occurs after all Vref input signals are at valid voltage levels

• TCK input meets the Vih min (1.3 V) and max (1.65 V) spec requirements

Specific workaround implementations may be platform specific. The following examples have been tested as acceptable workaround implementations. Note: the example workaround circuits attached require circuit modification for ITP tools to function correctly. These modifications must remove the workaround circuitry from the platform and may cause systems to fail to boot. Review the accompanying notes with each workaround for ITP modification details. If the system fails to boot when using ITP, issuing the ITP Reset Target command on failing systems will reset the system and provide a sufficient rising edge on the TCK pin to ensure proper system boot. In addition, the example workaround circuits shown do not support production motherboard test methodologies that require the use of the processor JTAG/TAP port. Alternative workaround solutions must be found if such test capability is required.

Page 63: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 63

Figure 28. Example Workaround Circuits

TCK

PWRGD

39 ohmR5

R1

R2

R3

R4

0 ohm

330 ohm

510 ohm

1.3K ohm

TCK

PGA370

ITP

2.5V

• For Production Boards Depopulate R5

• To use ITP Install R5, Depopulate R4

5.4 PGA370 Socket Definition Details Table 12 compares the pin names and functions of the Intel® processors supported in the 815E universal platform.

Table 12. Processor Pin Definition Comparison

Pin # Pin Name Intel® Celeron®

Processor (CPUID=068xh)

Pin Name Intel® Pentium®

III Processor (CPUID=068xh)

Pin Name 0.13 micron Socket 370 Processors

Function

AA33 Reserved VTT VTT • AGTL/AGTL+ termination voltage

Page 64: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

64 Intel® 815E Chipset Platform Design Guide

Pin # Pin Name Intel® Celeron®

Processor (CPUID=068xh)

Pin Name Intel® Pentium®

III Processor (CPUID=068xh)

Pin Name 0.13 micron Socket 370 Processors

Function

AA35 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AB36 VCCCMOS VCCCMOS VTT • CMOS voltage level for Intel®

Pentium® III processor (CPUID=068xh) and Intel®

Celeron® processor (CPUID=068xh).

• AGTL termination voltage for socket 370 processors.

AD36 VCC1.5 VCC1.5 VTT • VCC1.5 for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• VTT for 0.13 micron socket 370 processors.

AF36 VSS VSS DETECT • Ground for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• DETECT for 0.13 micron socket 370 processors.

AG11 VSS VSS VTT • Ground for Pentium III processor (CPUID=068xh) and Celeron® processor (CPUID=068xh).

• VTT for 0.13 micron socket 370 processors

AH4 Reserved RESET# RESET# • Processor reset for the Pentium III processor (068xh) and 0.13 micron socket 370 processors

AH20 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AJ31 VSS VSS RESET2# • Ground for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• RESET2# for 0.13 micron socket 370 processors

AK4 VSS VSS VTTPWRGD • Ground for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• VID control signal on 0.13 micron socket 370 processors.

AK16 Reserved VTT VTT • AGTL/AGTL+ termination voltage

Page 65: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 65

Pin # Pin Name Intel® Celeron®

Processor (CPUID=068xh)

Pin Name Intel® Pentium®

III Processor (CPUID=068xh)

Pin Name 0.13 micron Socket 370 Processors

Function

AK22 GTL_REF GTL_REF VCMOS_REF • GTL reference voltage for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• CMOS reference voltage for 0.13 micron socket 370 processors

AK36 VSS VSS VID[25mV] • Ground for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• 25mV step VID select bit for 0.13 micron socket 370 processors

AL13 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AL21 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AN3 GND GND DYN_OE • Ground for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• Dynamic output enable for 0.13 micron socket 370 processors

AN11 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AN15 Reserved VTT VTT • AGTL/AGTL+ termination voltage

AN21 Reserved VTT VTT • AGTL/AGTL+ termination voltage

E23 Reserved VTT VTT • AGTL/AGTL+ termination voltage

G35 Reserved VTT VTT • AGTL/AGTL+ termination voltage

G37 Reserved Reserved VTT • Reserved for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• AGTL termination voltage for 0.13 micron socket 370 processors

N372 NC NC NCHCTRL • No connect for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• NCHCTRL for0.13 micron socket 370 processors

Page 66: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

66 Intel® 815E Chipset Platform Design Guide

Pin # Pin Name Intel® Celeron®

Processor (CPUID=068xh)

Pin Name Intel® Pentium®

III Processor (CPUID=068xh)

Pin Name 0.13 micron Socket 370 Processors

Function

S33 Reserved VTT VTT • AGTL/AGTL+ termination voltage

S37 Reserved VTT VTT • AGTL/AGTL+ termination voltage

U35 Reserved VTT VTT • AGTL/AGTL+ termination voltage

U37 Reserved VTT VTT • AGTL/AGTL+ termination voltage

W3 Reserved A34# A34# • Additional AGTL/AGTL+ address

X41 RESET# RESET2# VSS • Processor reset for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• Ground for 0.13 micron socket 370 processors

X6 Reserved A32# A32# • Additional AGTL/AGTL+ address

X342 VCCCORE VCCCORE VTT • Reserved for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• AGTL termination voltage for 0.13 micron socket 370 processors

Y1 Reserved Reserved Reserved • Reserved for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• Reserved for 0.13 micron socket 370 processors

Y33 Reserved CLKREF CLKREF • 1.25V PLL reference

Z362 VCC2.5 VCC2.5 Reserved • VCC2.5 for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh).

• Reserved for 0.13 micron socket 370 processors

NOTES: 1. Refer to Section 4. 2. Refer to Section 14.2

Page 67: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 67

5.5 BSEL[1:0] Implementation Differences A 0.13 micron socket 370 processor will select the 133 MHz system bus frequency setting from the clock synthesizer. A Pentium III processor (CPUID=068xh) utilizes the BSEL1 pin to select either the 100 MHz or 133 MHz system bus frequency setting from the clock synthesizer. A

Celeron processor (CPUID=068xh) will use both BSEL pins to select 66 MHz system bus frequency from the clock synthesizer. Processors in an FC-PGA or an FC-PGA2 are 3.3V tolerant for these signals, as are the clock and chipset.

The CK815 has been designed to support selections of 66 MHz, 100 MHz, and 133 MHz. The REF input pin has been redefined to be a frequency selection strap (BSEL1) during power-on and then becomes a 14 MHz reference clock output. Figure 29 details the new BSEL[1:0] circuit design for universal PGA370 designs. Note that BSEL[1:0] now are pulled up using 1 kΩ resistors. Also refer to Figure 30 for more details.

Note: In a design supporting 0.13 micron socket 370 processors, the BSEL[1:0] lines are not valid until VTTPWRGD is asserted. Refer to Section 4.3 for full details.

Figure 29. BSEL[1:0] Circuit Implementation for PGA370 Designs

Processor

BSEL0 BSEL1

Chipset

Clock Driver

1 kΩ1 kΩ

3.3V

sys_ bus_BSEL_PGA370

3.3V

Page 68: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

68 Intel® 815E Chipset Platform Design Guide

5.6 CLKREF Circuit Implementation The CLKREF input (used by the Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors) requires a 1.25V source. It can be generated from a voltage divider on the VCC2.5 or VCC3.3 sources utilizing 1% tolerant resistors. A 4.7 µF decoupling capacitor should be included on this input. See Figure 30 and Table 13 for example CLKREF circuits. Do not use VTT as the source for this reference!

Figure 30. Examples for CLKREF Divider Circuit

Vcc2.5

150 Ω, 1%

PGA370

CLKREFY33

4.7 µF

150 Ω, 1%

Vcc3.3

R1

R2

PGA370

CLKREFY33

4.7 µF

sys_bus_CLKREF_divider

Table 13. Resistor Values for CLKREF Divider (3.3V Source)

R1 (ΩΩΩΩ), 1% R2 (ΩΩΩΩ), 1% CLKREF Voltage (V)

182 110 1.243

301 182 1.243

374 221 1.226

499 301 1.242

5.7 Undershoot/Overshoot Requirements Undershoot and overshoot specifications become more critical as the process technology for microprocessors shrinks due to thinner gate oxide. Violating these undershoot and overshoot limits will degrade the life expectancy of the processor.

The Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors have more restrictive overshoot and undershoot requirements for system bus signals than previous processors. These requirements stipulate that a signal at the output of the driver buffer and at the input of the receiver buffer must not exceed the maximum absolute overshoot voltage limit or the minimum absolute undershoot voltage limit. Exceeding either of these limits will damage the processor. There is also a time-dependent, non-linear overshoot and undershoot requirement that depends on the amplitude and duration of the overshoot/undershoot. See the appropriate processor datasheet for more details on the processor overshoot/undershoot specifications.

Page 69: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 69

5.8 Processor Reset Requirements Universal PGA370 designs must route the AGTL/AGTL+ reset signal from the chipset to two pins on the processor as well as to the debug port connector. This reset signal is connected to the following pins at the PGA370 socket:

• AH4 (RESET#). The reset signal is connected to this pin for the Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors

• X4 (Reset2# or GND, depending on processor). The X4 pin is RESET2# for Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh). X4 is GND for 0.13 micron socket 370 processors. An additional 1 kΩ resistor is connected in series with pin X4 to the reset circuitry since pin X4 is a ground pin in 0.13 micron socket 370 processors.

Note: The AGTL/AGTL+ reset signal must always terminate to VTT on the motherboard.

Designs that do not support the debug port will not utilize the 240 Ω series resistor or the connection of RESET# to the debug port connector. RESET2# is not required for platforms that do not support the Celeron processor (CPUID=068xh). Pin X4 should then be connected to ground.

The routing rules for the AGTL/AGTL+ reset signal are shown in Figure 31.

Figure 31. RESET#/RESET2# Routing Guidelines

ITP

Pin X4 Processor

Pin AH4

lenITP

VTT

Daisy chain

10 pF

86 Ω

lenCPUlenCS

91 Ω

cs_rtt_stub

Chipset

VTT

240 Ω

22 Ω

cpu_rtt_stub

sys_bus_reset_routin

1 kΩ

Table 14. RESET#/RESET2# Routing Guidelines (see Figure 31)

Parameter Minimum (in) Maximum (in)

LenCS 0.5 1.5

LenITP 1 3

LenCPU 0.5 1.5

cs_rtt_stub 0.5 1.5

cpu_rtt_stub 0.5 1.5

Page 70: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

70 Intel® 815E Chipset Platform Design Guide

5.9 Processor PLL Filter Recommendations Intel® PGA370 processors have internal phase lock loop (PLL) clock generators that are analog and require quiet power supplies to minimize jitter.

5.9.1 Topology

The general desired topology for these PLLs is shown in Figure 33. Not shown are the parasitic routing and local decoupling capacitors. Excluded from the external circuitry are parasitics associated with each component.

5.9.2 Filter Specification

The function of the filter is to protect the PLL from external noise through low-pass attenuation. The low-pass specification, with input at VCCCORE and output measured across the capacitor, is as follows:

• < 0.2 dB gain in pass band • < 0.5 dB attenuation in pass band (see DC drop in next set of requirements) • > 34 dB attenuation from 1 MHz to 66 MHz • > 28 dB attenuation from 66 MHz to core frequency

The filter specification is graphically shown in Figure 32.

Page 71: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 71

Figure 32. Filter Specification

0dB

-28dB

-34dB

0.2dB

-0.5 dB

1 MHz 66 MHz fcorefpeak1HzDC

passbandhigh frequency

band

filter_spec

ForbiddenZone

ForbiddenZone

NOTES: 1. Diagram not to scale. 2. No specification for frequencies beyond fcore. 3. fpeak should be less than 0.05 MHz.

Other requirements:

• Use shielded-type inductor to minimize magnetic pickup.

• Filter should support DC current > 30 mA.

• DC voltage drop from VCC to PLL1 should be < 60 mV, which in practice implies series R < 2 Ω. This also means pass-band (from DC to 1 Hz) attenuation < 0.5 dB for VCC = 1.1 V, and < 0.35 dB for VCC = 1.5 V.

Page 72: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

72 Intel® 815E Chipset Platform Design Guide

5.9.3 Recommendation for Intel® Platforms

The following tables contain examples of components that meet Intels recommendations when configured in the topology of Figure 33.

Table 15. Component Recommendations – Inductor

Part Number Value Tolerance SRF Rated Current

DCR (Typical)

TDK MLF2012A4R7KT 4.7 µH 10% 35 MHz 30 mA 0.56 Ω (1 Ω max.)

Murata LQG21N4R7K00T1 4.7 µH 10% 47 MHz 30 mA 0.7 Ω (±50%)

Murata LQG21C4R7N00 4.7 µH 30% 35 MHz 30 mA 0.3 Ω max.

Table 16. Component Recommendations – Capacitor

Part Number Value Tolerance ESL ESR

Kemet T495D336M016AS 33 µF 20% 2.5 nH 0.225 Ω

AVX TPSD336M020S0200 33 µF 20% 2.5 nH 0.2 Ω

Table 17. Component Recommendation – Resistor

Value Tolerance Power Note

1 Ω 10% 1/16 W Resistor may be implemented with trace resistance, in which case a discrete R is not needed. See Figure 34.

To satisfy damping requirements, total series resistance in the filter (from VCCCORE to the top plate of the capacitor) must be at least 0.35 Ω. This resistor can be in the form of a discrete component or routing or both. For example, if the chosen inductor has minimum DCR of 0.25 Ω, then a routing resistance of at least 0.10 Ω is required. Be careful not to exceed the maximum resistance rule (2 Ω). For example, if using discrete R1 (1 Ω ± 1%), the maximum DCR of the L (trace plus inductor) should be less than 2.0 1.1 = 0.9 Ω, which precludes the use of some inductors and sets a max. trace length.

Other routing requirements:

• The capacitor (C) should be close to the PLL1 and PLL2 pins, < 0.1 Ω per route. These routes do not count towards the minimum damping R requirement.

• The PLL2 route should be parallel and next to the PLL1 route (i.e., minimize loop area).

• The inductor (L) should be close to C. Any routing resistance should be inserted between VCCCORE and L.

• Any discrete resistor (R) should be inserted between VCCCORE and L.

Page 73: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 73

Figure 33. Example PLL Filter Using a Discrete Resistor

Processor

PLL1

PLL2

C

LR

VCCCORE

PLL_filter_1

Discrete resistor

<0.1 Ω route

<0.1 Ω route

Figure 34. Example PLL Filter Using a Buried Resistor

Processor

PLL1

PLL2

C

LR

VCCCORE

PLL_filter_2

Trace resistance

<0.1 Ω route

<0.1 Ω route

5.9.4 Custom Solutions

As long as designers satisfy filter performance and requirements as specified and outlined in Section 5.9.2, other solutions are acceptable. Custom solutions should be simulated against a standard reference core model, which is shown in Figure 35.

Page 74: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

74 Intel® 815E Chipset Platform Design Guide

Figure 35. Core Reference Model

PLL1

PLL2

sys_bus_core_ref_model

0.1 Ω

0.1 Ω

120 pF 1 kΩ

Processor

NOTES: 1. 0.1 Ω resistors represent package routing. 2. 120 pF capacitor represents internal decoupling capacitor. 3. 1 kΩ resistor represents small signal PLL resistance. 4. Be sure to include all component and routing parasitics. 5. Sweep across component/parasitic tolerances. 6. To observe IR drop, use DC current of 30 mA and minimum VCCCORE level. 7. For other modules (interposer, DMM, etc.), adjust routing resistor if desired, but use minimum numbers.

5.10 Voltage Regulation Guidelines A universal PGA370 design will need the voltage regulation module (VRM) or on-board voltage regulator (VR) to be compliant with Intel® VRM guidelines for 0.13 micron processors.

5.11 Decoupling Guidelines for Universal PGA370 Designs These preliminary decoupling guidelines for universal PGA370 designs are estimated to meet the specifications of Intel VRM guidelines for 0.13 micron processors.

5.11.1 VCCCORE Decoupling Design • Sixteen or more 4.7 µF capacitors in 1206 packages.

All capacitors should be placed within the PGA370 socket cavity and mounted on the primary side of the motherboard. The capacitors are arranged to minimize the overall inductance between the VCCCORE/VSS power pins, as shown in Figure 36.

Page 75: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 75

Figure 36. Capacitor Placement on the Motherboard

5.11.2 VTT Decoupling Design

For Itt = 2.3 A (max.)

• Twenty 0.1 µF capacitors in 0603 packages placed as closed as possible to the processor VTT pins. The capacitors are shown on the exterior of Figure 36.

5.11.3 VREF Decoupling Design • Four 0.1 µF capacitors in 0603 package placed near VREF pins (within 500 mils).

Page 76: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

76 Intel® 815E Chipset Platform Design Guide

5.12 Thermal Considerations

5.12.1 Heatsink Volumetric Keepout Regions

Current heatsink recommendations are only valid for supported Celeron and Pentium III processor frequencies.

Figure 37 shows the system component keepout volume above the socket connector required for the reference design thermal solution for high frequency processors. This keepout envelope provides adequate room for the heatsink, fan and attach hardware under static conditions as well as room for installation of these components on the socket. The heatsink must be compatible with the Integrated Heat Spreader (IHS) used by higher frequency Pentium III processors.

Figure 38 shows component keepouts on the motherboard required to prevent interference with the reference design thermal solution. Note portions of the heatsink and attach hardware hang over the motherboard.

Adhering to these keepout areas will ensure compatibility with Intel boxed processor products and Intel enabled third-party vendor thermal solutions for high frequency processors. While the keepout requirements should provide adequate space for the reference design thermal solution, systems integrators should check with their vendors to ensure their specific thermal solutions fit within their specific system designs. Please ensure that the thermal solutions under analysis comprehend the specific thermal design requirements for higher frequency Pentium III processors.

While thermal solutions for lower frequency processors may not require the full keepout area, larger thermal solutions will be required for higher frequency processors, and failure to adhere to the guidelines will result in mechanical interference.

Page 77: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 77

Figure 37. Heatsink Volumetric Keepout Regions

Figure 38. Motherboard Component Keepout Regions

Page 78: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Bus Design Guidelines

R

78 Intel® 815E Chipset Platform Design Guide

5.13 Debug Port Changes Due to the lower voltage technology employed with newer processors, changes are required to support the debug port. Previously, test access port (TAP) signals used 2.5V logic, as is the case with the Celeron processor in the PPGA package. Pentium III processor (CPUID=068xh), Celeron processor (CPUID=068xh), and 0.13 micron socket 370 processors utilize 1.5V logic levels on the TAP. As a result, the type of debug port connecter used in universal PGA370 designs is dependent on the processor that is currently in the socket. The 1.5V connector is a mirror image of the older 2.5V connector. Either connector will fit into the same printed circuit board layout. Only the pin numbers change (Figure 39). Also required, along with the new connector, is an In-Target Probe* (ITP) that is capable of communicating with the TAP at the appropriate logic levels.

Figure 39. TAP Connector Comparison

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

RESET#

RESET#

2.5 V connector, AMP 104068-3 vertical plug, top view

1.5 V connector, AMP 104078-4 vertical receptacle, top view

sys_bus_TAP_conn

Caution: The Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) require an in-target probe (ITP) compatible with 1.5V signal levels on the TAP. Previous ITPs were designed to work with higher voltages and may damage the processor if connected to any of these specified processors.

See the processor datasheet for more information regarding the debug port.

Page 79: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 79

6 System Memory Design Guidelines

6.1 System Memory Routing Guidelines Ground plane reference all system memory signals. To provide a good current return path and limit noise on the system memory signals, the signals should be ground referenced from the GMCH to the DIMM connectors and from DIMM connector-to-DIMM connector. If ground referencing is not possible, system memory signals should be, at a minimum, referenced to a single plane. If single plane referencing is not possible, stitching capacitors should be added no more than 200 mils from the signal via field. System memory signals may via to the backside of the PCB under the GMCH without a stitching capacitor as long as the trace on the topside of the PCB is less than 200 mils.

Note: Intel recommends that a parallel plate capacitor between VCC3.3SUS and GND be added to account for the current return path discontinuity (See Decoupling section). Use (1) .01uf X7R capacitor per every (5) system memory signals that switch plane references. No more than two vias are allowed on any system memory signal.

If a group of system memory signals must change layers, a via field should be created and a decoupling capacitor should be added at the end of the via field. Do not route signals in the middle of a via field, this causes noise to be generated on the current return path of these signals and can lead to issues on these signals (see Figure 40). The traces shown are on layer 1 only. The figure shows signals that are changing layer and two signals that are not changing layer. Note that the two signals around the via field create a keepout zone where no signals that do not change layer should be routed.

Figure 40. System Memory Routing Guidelines

Do not route any signal inthe middle of the via fieldthat do not change layers

Add (1) 0.01 uf capacitorX7R (5) signals that via

Stagger vias in via field to avoidpower/ground plane cut off becauseof the antipad on the internal layers

sys-mem-route

Page 80: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

80 Intel® 815E Chipset Platform Design Guide

6.2 System Memory 2-DIMM Design Guidelines

6.2.1 System Memory 2-DIMM Connectivity

Figure 41. System Memory Connectivity (2 DIMM)

SCSA[3:2]#SCSA[1:0]#

SCKE[1:0]

SCKE[3:2]

SRAS#

SCAS#

SWE#SBS[1:0]

SMAA[12:8,3:0]

SMAA[7:4]SMAB[7:4]#

SDQM[7:0]

SMD[63:0]

DIMM_CLK[3:0]

DIMM_CLK[7:4]

SMB_CLKSMB_DATA

Notes:Min. (16 Mbit) 8 MBMax. (64 Mbit) 256 MBMax. (128 Mbit) 512 MB

sys_mem_conn_2DIMM

SCSB[3:2]#

SCSB[1:0]#

DIMM 0 & 1

ICH

CK815

82815

Double-Sided, Unbuffered Pinout without ECC

Page 81: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 81

6.2.2 System Memory 2-DIMM Layout Guidelines

Figure 42. System Memory 2-DIMM Routing Topologies

Topology 1

82815

Topology 2

Topology 3

Topology 4

Topology 5

sys_mem_2DIMM_routing_topo

A

C

D

F

F

10 Ω

10 ΩE

E

B

DIMM 0 DIMM 1

Table 18. System Memory 2-DIMM Solution Space

Trace Lengths (inches) Trace (mils)

A B C D E F

Signal Top.

Width Spacing Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

SCS[3:2]# 3 5 10 1 4.5

SCS[1:0]# 2 5 10 1 4.5

SMAA[7:4] 4 10 10 0.4 0.5 2 4

SMAB[7:4]# 5 10 10 0.4 0.5 2 4

SCKE[3:2] 3 10 10 3 4

SCKE[1:0] 2 10 10 3 4

SMD[63:0] 1 5 10 1.75 4 0.4 0.5

SDQM[7:0] 1 10 10 1.5 3.5 0.4 0.5

SCAS#, SRAS#, SWE# 1 5 10 1 4.0 0.4 0.5

SBS[1:0], SMAA[12:8,3:0]

1 5 10 1 4.0 0.4 0.5

In addition to meeting the spacing requirements outlined in Table 18, system memory signal trace edges must be at least 30 mils from any other non-system memory signal trace edge.

Page 82: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

82 Intel® 815E Chipset Platform Design Guide

Figure 43. System Memory Routing Example

sys_mem_routing_ex

NOTE: Routing in this figure is for example purposes only. It does not necessarily represent complete and correct routing for this interface.

Page 83: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 83

6.3 System Memory 3-DIMM Design Guidelines

6.3.1 System Memory 3-DIMM Connectivity

Figure 44. System Memory Connectivity (3 DIMM)

SCSA[3:2]#SCSA[1:0]#

SCKE[1:0]SCKE[3:2]

SRAS#

SCAS#

SWE#SBS[1:0]

SMAA[12:8,3:0]

SMAA[7:4]SMAB[7:4]#

SDQM[7:0]

SMD[63:0]

DIMM_CLK[3:0]DIMM_CLK[7:4]

SMB_CLKSMB_DATA

sys_mem_conn_3DIMM

SCSB[3:2]#SCSB[1:0]#

DIMM 0 & 1 & 2

ICH

CK815

82815

Double-Sided, Unbuffered Pinout without ECC

SCSA[5:4]#

SCKE[5:4]SCSB[5:4]#

SMAC[7:4]#

DIMM_CLK[11:8]

Notes:Min. (16 Mbit) 8 MBMax. (64 Mbit) 256 MBMax. (128 Mbit) 512 MB

Page 84: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

84 Intel® 815E Chipset Platform Design Guide

6.3.2 System Memory 3-DIMM Layout Guidelines

Figure 45. System Memory 3-DIMM Routing Topologies

Topology 1

82815

Topology 2

Topology 3

Topology 6

Topology 7

sys_mem_3DIMM_routing_topo

A

C

D

C

D

10 Ω

10 Ω

G

G

DIMM 0 DIMM 1

B

DIMM 2

B

Topology 4 E

Topology 5 F

Topology 8 E10 Ω

G

B B

In addition to meeting the spacing requirements outlined in Table 19, system memory signal trace edges must be at least 30 mils from any other non-system memory signal trace edge.

Table 19. System Memory 3-DIMM Solution Space

Trace Lengths (inches) Trace (mils)

A B C D E F G

Signal Top.

Width Spacing Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Min. Max.

SCS[5:4]# 4 5 10 1 4.5

SCS[3:2]# 3 5 10 1 4.5

SCS[1:0]# 2 5 10 1 4.5

SMAA[7:4] 6 10 10 2 4 0.4 0.5

SMAB[7:4]# 7 10 10 2 4 0.4 0.5

SMAC[7:4 8 10 10 2 4 0.4 0.5

SCKE[5:4] 4 10 10 3 4

SCKE[3:2] 3 10 10 3 4

SCKE[1:0] 2 10 10 3 4

SMD[63:0] 1 5 10 1.75 4 0.4 0.5

SDQM[7:0] 1 10 10 1.5 3.5 0.4 0.5

SCAS#,SRAS#, SWE#

5 5 10 0.4 0.5 1 4

SBS[1:0], SMAA[12:8,3:0]

5 5 10 0.4 0.5 1 4

Page 85: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 85

6.4 System Memory Decoupling Guidelines A minimum of eight 0.1 µF low-ESL ceramic capacitors (e.g., 0603 body type, X7R dielectric) are required and must be as close as possible to the GMCH. They should be placed within at most 70 mils to the edge of the GMCH package edge for VSUS_3.3 decoupling, and they should be evenly distributed around the system memory interface signal field including the side of the GMCH where the system memory interface meets the host interface. There are power and GND balls throughout the system memory ball field of the GMCH that need good local decoupling. Make sure to use at least 14 mil drilled vias and wide traces from the pads of the capacitor to the power or ground plane to create a low inductance path. If possible multiple vias per capacitor pad are recommended to further reduce inductance. To add the decoupling capacitors within 70 mils of the GMCH and/or close to the vias, the trace spacing may be reduced as the traces go around each capacitor. The narrowing of space between traces should be minimal and for as short a distance as possible (500mils max).

To further de-couple the GMCH and provide a solid current return path for the system memory interface signals it is recommended that a parallel plate capacitor be added under the GMCH. Add a topside or bottom side copper flood under center of the GMCH to create a parallel plate capacitor between VCC3.3 and GND (see Figure 46). The dashed lines indicate power plane splits on layer 2 or layer 3 depending on stack-up. The filled region in the middle of the GMCH indicates a ground plate (on layer 1 if the power plane is on layer 2 or on layer 4 if the power layer is on layer 3).

Figure 46. Intel 815 Chipset Platform Decoupling Example

Page 86: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Memory Design Guidelines

R

86 Intel® 815E Chipset Platform Design Guide

Yellow lines show layer two plane splits. Note that the layer 1 shapes do NOT cross the plane splits. The bottom shape is a VSS fill over VddSDRAM. The left-side shape is a VSS fill over VddAGP. The larger upper-right-side shape is a VSS fill over VddCORE.

Additional decoupling capacitors should be added between the DIMM connectors to provide a current return path for the reference plane discontinuity created by the DIMM connectors themselves. One 0.01 µF X7R capacitor should be added per every ten SDRAM signals. Capacitors should be placed between the DIMM connectors and evenly spread out across the SDRAM interface.

For debug purposes, four or more 0603 capacitor sites should be placed on the backside of the board, evenly distributed under the 815E chipset platforms system memory interface signal field.

Figure 47. Intel® 815 Chipset Decoupling Example

6.5 Compensation A system memory compensation resistor (SRCOMP) is used by the GMCH to adjust the buffer characteristics to specific board and operating environment characteristics. Refer to the Intel® 815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet for details on compensation. Tie the SRCOMP pin of the GMCH to a 40 Ω 1% or 2% pull-up resistor to 3.3 Vsus (3.3V standby) via a 10 mil-wide, 0.5 inch trace (targeted for a nominal impedance of 40 Ω).

Page 87: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 87

7 AGP/Display Cache Design Guidelines For the detailed AGP interface functionality (e.g., protocols, rules, signaling mechanisms), refer to the latest AGP Interface Specification, Revision 2.0, which can be obtained from http://www.agpforum.org. This design guide focuses only on specific 815 chipset platform recommendations.

7.1 AGP Interface A single AGP connector is supported by the GMCH AGP interface. LOCK# and SERR#/PERR# are not supported. See the display cache discussion for a description of display cache/AGP muxing as well as a description of the Graphics Performance Accelerator (GPA).

The AGP buffers operate in one of two selectable modes, to support the AGP universal connector:

• 3.3V drive, not 5V safe. This mode is compliant with the AGP 1.0 66 MHz specification

• 1.5V drive, not 3.3V safe. This mode is compliant with the AGP 2.0 specification

The AGP 4X must operate at 1.5 V and only use differential clocking mode. The AGP 2X can operate at 3.3 V or 1.5 V. The AGP interface supports up to 4X AGP signaling, though 4X fast writes are not supported. AGP semantic cycles to DRAM are not snooped on the host bus.

The GMCH supports PIPE# or SBA[7:0] AGP address mechanisms, but not both simultaneously. Either the PIPE# or the SBA[7:0] mechanism must be selected during system initialization. The GMCH contains a 32-deep AGP request queue. High-priority accesses are supported. All AGP semantic accesses hitting the graphics aperture pass through an address translation mechanism with a fully-associative, 20-entry TLB.

Accesses between AGP and the hub interface are limited to hub interface-originated memory writes to AGP. Cacheable accesses from the IOQ queue flow through one path, while aperture accesses follow another path. Cacheable AGP (SBA, PIPE#, and FRAME#) reads to DRAM all snoop the cacheable global write buffer (GWB) for system data coherency. Aperture AGP (SBA, PIPE#) reads to DRAM snoop the aperture queue (GCMCRWQ). Aperture AGP (FRAME#) reads and writes to DRAM proceed through a FIFO and there is no RAW capability, so no snoop is required.

The AGP interface is clocked from the 66 MHz clock (3V66). The AGP-to-host/memory interface is synchronous with a clock ratio of 1:1 (66 MHz: 66 MHz), 2:3 (66 MHz: 100 MHz) and 1:2 (66 MHz: 133 MHz).

Page 88: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

88 Intel® 815E Chipset Platform Design Guide

7.1.1 Graphics Performance Accelerator (GPA)

The GMCH multiplexes the AGP signal interface with the integrated graphics display cache interface. As a result, for a universal motherboard that supports both integrated graphics and add-in AGP video cards, display cache (for integrated graphics) must be populated on a card in the universal AGP slot. The card is called a Graphics Performance Accelerator (GPA) card. Intel provides a specification for this card in a separate document (Graphics Performance Accelerator Specification).

AGP guidelines are presented in this section for motherboards that support the population of a GPA card in their AGP slot as well as for those that do not, and for AGP down implementations in which AGP-compliant devices are implemented directly on motherboards. Where there are distinct guidelines dependent on whether or not a motherboard will support a GPA card, the section detailing standard routing guidelines is divided into subsections, as follows:

• The Flexible Motherboard Guidelines subsection is to be complied with if the motherboard supports a GPA card populated in the AGP slot.

• The AGP-Only Motherboard Guidelines subsection is to be complied with if the motherboard does not support a GPA card populated in the AGP slot.

7.1.2 AGP Universal Retention Mechanism (RM)

Environmental testing and field reports indicate that AGP cards and Graphics Performance Accelerator (GPA) cards may come unseated during system shipping and handling without proper retention. To avoid disengaged AGP cards and GPA modules, Intel recommends that AGP-based platforms use the AGP retention mechanism (RM).

The AGP RM is a mounting bracket that is used to properly locate the card with respect to the chassis and to assist with card retention. The AGP RM is available in two different handle orientations: left-handed (see Figure 48) and right-handed. Most system boards accommodate the left-handed AGP RM. The manufacturing capacity of the left-handed RM currently exceeds the right-handed capacity, and as a result Intel recommends that customers design their systems to insure they can use the left-handed version of the AGP RM. The right-handed AGP RM is identical to the left-handed AGP RM, except for the position of the actuation handle. This handle is located on the same end as the primary design, but extends from the opposite side (mirrored about the center axis running parallel to the length of the part). Figure 49 contains keepout information for the left hand AGP retention mechanism. Use this information to make sure that the motherboard design leaves adequate space to install the retention mechanism.

The AGP interconnect design requires that the AGP card must be retained to the extent that the card not back out more than 0.99 mm (0.039 in) within the AGP connector. To accomplish this it is recommended that new cards implement an additional notch feature in the mechanical keying tab to allow an anchor point on the AGP card for interfacing with an AGP RM. The retention mechanisms round peg engages with the AGP or GPA cards retention tab and prevents the card from disengaging during dynamic loading. The additional notch feature in the mechanical keying tab is required for 1.5Volt AGP cards and is recommended for the new 3.3Volt AGP cards.

Page 89: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 89

Figure 48. AGP Left-Handed Retention Mechanism

Figure 49. AGP Left-Handed Retention Mechanism Keepout Information

Engineering Change Request number 48 (ECR #48) of the AGP specification details the AGP RM, which is recommended for all AGP cards. These are approved changes to the Accelerated Graphics Port (AGP) Interface Specification, Revision 2.0. Intel intends to incorporate the AGP RM changes into later revisions of the AGP Interface Specification. In addition, Intel has defined a reference design of a mechanical device to utilize the features defined in ECR #48.

ECR #48 can be viewed off the Intel website at:

http://developer.intel.com/technology/agp/ecr.htm

Page 90: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

90 Intel® 815E Chipset Platform Design Guide

More information regarding this component (AGP RM) is available from the following vendors.

Table 20. Retention Mechanism Vendors

Resin Color Supplier Part Number

“Left Handed” Orientation (Preferred)

“Right Handed” Orientation (Alternate)

AMP P/N 136427-1 136427-2 Black

Foxconn P/N 006-0002-939 006-0001-939

Green Foxconn P/N 009-0004-008 009-0003-008

7.2 AGP 2.0 Rev. 2.0 of the AGP Interface Specification enhances the functionality of the original AGP Interface Specification, Revision 1.0, by allowing 4X data transfers (4 data samples per clock) and 1.5V operation. The 4X operation of the AGP interface provides for quad-pumping of the AGP AD (address/data) and SBA (side-band addressing) buses. That is, data is sampled four times during each 66 MHz AGP clock, which means that each data cycle is ¼ of a 15 ns (66 MHz) clock, or 3.75 ns. Note that 3.75 ns is the data cycle time, not the clock cycle time. During 2X operation, data is sampled twice during a 66 MHz clock cycle, so the data cycle time is 7.5 ns. To allow for such high-speed data transfers, the 2X mode of AGP operation uses source-synchronous data strobing. During 4X operation, the AGP interface uses differential source-synchronous strobing.

With data-cycle times as small as 3.75 ns and setup/hold times of 1 ns, propagation delay mismatch is critical. In addition to reducing propagation delay mismatch, it is important to minimize noise. Noise on the data lines causes the settling time to be long. If the mismatch between a data line and the associated strobe is too great or if there is noise on the interface, incorrect data will be sampled. The low-voltage operation on the AGP (1.5 V) requires even more noise immunity. For example, during 1.5V operation, Vilmax is 570 mV. Without proper isolation, crosstalk could create signal integrity issues.

Page 91: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 91

7.2.1 AGP Interface Signal Groups

The signals on the AGP interface are broken into three groups: 1X timing domain signals, 2X/4X timing domain signals, and miscellaneous signals. Each group has different routing requirements. In addition, within the 2X/4X timing domain signals, there are three sets of signals. All signals in the 2X/4X timing domain must meet minimum and maximum trace length requirements as well as trace width and spacing requirements. However, trace length matching requirements only must be satisfied within each set of 2X/4X timing domain signals. The signal groups are listed in Table 21.

Table 21. AGP 2.0 Signal Groups

Groups Signal

1X Timing Domain CLK (3.3 V), RBF#, WBF#, ST[2:0], PIPE#, REQ#, GNT#, PAR, FRAME#, IRDY#, TRDY#, STOP#, DEVSEL#

2X/4X Timing Domain Set #1: AD[15:0], C/BE[1:0]#, AD_STB0, AD_STB0#1

Set #2: AD[31:16], C/BE[3:2]#, AD_STB1, AD_STB1#1

Set #3: SBA[7:0], SB_STB, SB_STB#1

Miscellaneous, async. USB+, USB-, OVRCNT#, PME#, TYPDET#, PERR#, SERR#, INTA#, INTB#

NOTE: These signals are used in 4X AGP mode ONLY.

Table 22. AGP 2.0 Data/Strobe Associations

Data Associated Strobe in 1X Associated Strobe in 2X

Associated Strobes in 4X

AD[15:0] and C/BE[1:0]#

Strobes are not used in 1X mode. All data is sampled on rising clock edges.

AD_STB0 AD_STB0, AD_STB0#

AD[31:16] and C/BE[3:2]#

Strobes are not used in 1X mode. All data is sampled on rising clock edges.

AD_STB1 AD_STB1, AD_STB1#

SBA[7:0] Strobes are not used in 1X mode. All data is sampled on rising clock edges.

SB_STB SB_STB, SB_STB#

Throughout this section the term data refers to AD[31:0], C/BE[3:0]#, and SBA[7:0]. The term strobe refers to AD_STB[1:0], AD_STB[1:0]#, SB_STB, and SB_STB#. When the term data is used, it refers to one of the three sets of data signals, as listed in Table 21. When the term strobe is used, it refers to one of the strobes as it relates to the data in its associated group.

The routing guidelines for each group of signals (1X timing domain signals, 2X/4X timing domain signals, miscellaneous signals) will be addressed separately.

Page 92: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

92 Intel® 815E Chipset Platform Design Guide

7.3 Standard AGP Routing Guidelines

7.3.1 1X Timing Domain Routing Guidelines

7.3.1.1 Flexible Motherboard Guidelines • The AGP 1X timing domain signals (Table 21) have a maximum trace length of 4 inches for

motherboards that support a Graphics Performance Accelerator (GPA) card. This maximum applies to ALL signals listed as 1X timing domain signals in Table 21.

• AGP 1X signals multiplexed with display cache signals (listed below) should be routed with a 1:3 trace width-to-spacing ratio. All other AGP 1X timing domain signals can be routed with 5 mil minimum trace separation.

• There are no trace length matching requirements for 1X timing domain signals.

The following are multiplexed AGP1X signals on flexible motherboards:

• RBF# • FRAME# • ST[2:0] • IRDY# • PIPE# • TRDY# • REQ# • STOP# • GNT# • DEVSEL# • PAR

7.3.1.2 AGP-Only Motherboard Guidelines • AGP 1X timing domain signals (Table 21) have a maximum trace length of 7.5 inches for

motherboards that will not support a Graphics Performance Accelerator (GPA) card. This maximum applies to ALL signals listed as 1X timing domain signals in Table 21.

• All AGP 1X timing domain signals can be routed with 5 mil minimum trace separation.

• There are no trace length matching requirements for 1X timing domain signals.

7.3.2 2X/4X Timing Domain Routing Guidelines

These trace length guidelines apply to ALL signals listed in Table 21 as 2X/4X timing domain signals. These signals should be routed using 5 mil (60 Ω) traces.

The maximum line length and length mismatch requirements depend on the routing rules used on the motherboard. These routing rules were created to provide design freedom by making trade-offs between signal coupling (trace spacing) and line lengths. The maximum length of the AGP interface defines which set of routing guidelines must be used. Guidelines for short AGP interfaces (e.g., < 6 inches) and long AGP interfaces (e.g., > 6 inches and < 7.25 inches) are documented separately. The maximum length allowed for the AGP interface (on AGP-only motherboards) is 7.25 inches.

Page 93: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 93

7.3.2.1 Flexible Motherboard Guidelines • For motherboards that support either an AGP card or a GPA card in the AGP slot, the

maximum length of AGP 2X/4X timing domain signals is 4 inches.

• 1:3 trace width-to-spacing is required for AGP 2X/4X signal traces.

• AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 21), within ± 0.5 inch.

For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) are 3.7 inches long, the data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) can be 3.2 inches to 4 inches long (since there is a 4 inches max. length). Another strobe set (e.g., SB_STB and SB_STB#) could be 3.1 inches long, so that the associated data signals (e.g., SBA[7:0]) can be 2.6 inches to 3.6 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#) act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken when routing these signals. Since each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed using 5 mil traces with at least 15 mils of space (1:3) between them. This pair should be separated from the rest of the AGP signals (and all other signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ± 0.1 inch (i.e., a strobe and its complement must be the same length within 0.1 inch).

Figure 50. AGP 2X/4X Routing Example for Interfaces < 6 inches and GPA/AGP Solutions

2X/4X signal

2X/4X signal

AGP STB#

AGP STB

2X/4X signal

2X/4X signal

15 mils

15 mils

15 mils

20 mils

20 mils

5-mil trace

5-mil trace

5-mil trace

5-mil trace

5-mil trace

2X/4X signal

2X/4X signal

AGP STB#

AGP STB

2X/4X signal

2X/4X signal

STB/STB# length

Associated AGP 2X/4X data signal length

Min. Max.0.5" 0.5"

AGP_2x-4x_routing

Page 94: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

94 Intel® 815E Chipset Platform Design Guide

7.3.2.2 AGP-Only Motherboard Guidelines

For motherboards that will not support a GPA card populated in the AGP slot, the maximum AGP 2X/4X signal trace length is 7.25 inches. However, there are different guidelines for AGP interfaces shorter than 6 inches (e.g., all AGP 2X/4X signals are shorter than 6 inches) and those longer than 6 inches but shorter than the 7.25 inches maximum.

AGP Interfaces Shorter Than 6 Inches The following guidelines are for designs that require less than 6 inches between the AGP connector and the GMCH:

• 1:3 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces. • AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 21),

within ± 0.5 inch.

For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) are 5.3 inches long, the data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) can be 4.8 inches to 5.8 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be 4.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be 3.7 inches to 4.7 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#) act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken when routing these signals. Because each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed on 5 mil traces with at least 15 mils of space (1:3) between them. This pair should be separated from the rest of the AGP signals (and all other signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ± 0.1 inches (i.e., a strobe and its complement must be the same length, within 0.1 inches). Refer to Table 21 for an illustration of these requirements.

AGP Interfaces Longer Than 6 Inches Since longer lines have more crosstalk, they require wider spacing between traces to reduce the skew. The following guidelines are for designs that require more than 6 inches (but less than the 7.25 inches max.) between the AGP connector and the GMCH:

• 1:4 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces. • AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 21),

within ± 0.125 inches.

For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) are 6.5 inches long, the data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) can be 6.475 inches to 6.625 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be 6.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be 6.075 inches to 6.325 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#) act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken when routing these signals. Because each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed on 5 mil traces with at least 20 mils of space (1:4) between them. This pair should be separated from the rest of the AGP signals (and all other

Page 95: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 95

signals) by at least 20 mils (1:4). The strobe pair must be length-matched to less than ±0.1 inch (i.e., a strobe and its complement must be the same length, within 0.1 inch).

7.3.3 AGP Routing Guideline Considerations and Summary

This section applies to all AGP signals in any motherboard support configuration (e.g., flexible or AGP only):

• The 2X/4X timing domain signals can be routed with 5 mil spacing when breaking out of the GMCH. The routing must widen to the documented requirements within 0.3 inches of the GMCH package.

• When matching trace lengths for the AGP 4X interface, all traces should be matched from the ball of the GMCH to the pin on the AGP connector. It is not necessary to compensate for the length of the AGP signals on the GMCH package.

• Reduce line length mismatch to ensure added margin. The trace length mismatch for all signals within a signal group should be as close as possible to zero, to provide timing margin.

• To reduce trace-to-trace coupling (i.e., crosstalk), separate the traces as much as possible. • All signals in a signal group should be routed on the same layer. • The trace length and trace spacing requirements must not be violated by any signal.

Table 23. AGP 2.0 Routing Summary

Signal Maximum Length

Trace Spacing (5 Mil Traces)

Length Mismatch Relative To Notes

1X Timing Domain

7.5 inches 4 5 mils No requirement

N/A None

2X/4X Timing Domain Set 1

7.25 inches 4 20 mils ±0.125 inch AD_STB0 and AD_STB0#

AD_STB0 and AD_STB0# must be the same length.

2X/4X Timing Domain Set 2

7.25 inches 4 20 mils ±0.125 inch AD_STB1 and AD_STB1#

AD_STB1 and AD_STB1# must be the same length.

2X/4X Timing Domain Set 3

7.25 inches4 20 mils ±0.125 inch SB_STB and SB_STB#

SB_STB and SB_STB# must be the same length.

2X/4X Timing Domain Set 1

6 inches 3 15 mils1 ±0.5 inch AD_STB0 and AD_STB0#

AD_STB0 and AD_STB0# must be the same length.

2X/4X Timing Domain Set 2

6 inches3 15 mils1 ±0.5 inch AD_STB1 and AD_STB1#

AD_STB1 and AD_STB1# must be the same length.

2X/4X Timing Domain Set 3

6 inches3 15 mils1 ±0.5 inch SB_STB and SB_STB#

SB_STB and SB_STB# must be the same length.

NOTES: 1. Each strobe pair must be separated from other signals by at least 20 mils. 2. These guidelines apply to board stack-ups with 15% impedance tolerance. 3. 4 inches is the maximum length for flexible motherboards. 4. Solution valid for AGP-only motherboards

Page 96: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

96 Intel® 815E Chipset Platform Design Guide

7.3.4 AGP Clock Routing

The maximum total AGP clock skew, between the GMCH and the graphics component, is 1 ns for all data transfer modes. This 1 ns includes skew and jitter that originates on the motherboard, add-in card, and clock synthesizer. Clock skew must be evaluated not only at a single threshold voltage, but also at all points on a clock edge that falls within in the switching range. The 1 ns skew budget is divided such that the motherboard is allotted 0.9 ns of clock skew. (The motherboard designer must determine how the 0.9 ns is allocated between the board and the synthesizer.)

For the 815E universal platforms AGP clock routing guidelines, refer to Section 12.3.

7.3.5 AGP Signal Noise Decoupling Guidelines

The following routing guidelines are recommended for an optimal system design. The main focus of these guidelines is to minimize signal integrity problems on the AGP interface of the GMCH. The following guidelines are not intended to replace thorough system validation of products based on the 815E chipset platform:

• A minimum of six 0.01 µF capacitors are required and must be as close as possible to the GMCH. These should be placed within 70 mils of the outer row of balls on the GMCH for VDDQ decoupling. The closer the placement, the better.

• The designer should evenly distribute the placement of decoupling capacitors within the AGP interface signal field.

• It is recommended that the designer use a low-ESL ceramic capacitor (e.g., a 0603 body-type X7R dielectric)

• To add the decoupling capacitors within 70 mils of the GMCH and/or close to the vias, the trace spacing may be reduced as the traces go around each capacitor. The narrowing of the space between traces should be minimal and for as short a distance as possible (1 inch max.).

• In addition to the minimum decoupling capacitors, the designer should place bypass capacitors at vias that transition the AGP signal from one reference signal plane to another. In a typical four-layer PCB design, the signals transition from one side of the board to the other. One extra 0.01 µF capacitor is required per 10 vias. The capacitor should be placed as close as possible to the center of the via field.

The designer should ensure that the AGP connector is well decoupled, as described in the AGP Design Guide, Revision 1.0, Section 1.5.3.3.

Page 97: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 97

Figure 51. AGP Decoupling Capacitor Placement Example

NOTE: This figure is for example purposes only. It does not necessarily represent complete and correct routing for this interface.

7.3.6 AGP Routing Ground Reference

It is strongly recommended that, at a minimum, the following critical signals be referenced to ground from the GMCH to an AGP connector (or to an AGP video controller if implemented as a down solution on an AGP-only motherboard), using a minimum number of vias on each net: AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, SB_STB#, G_GTRY#, G_IRDY#, G_GNT#, and ST[2:0].

In addition to the minimum signal set listed previously, it is strongly recommended that half of all AGP signals be reference to ground, depending on board layout. In an ideal design, the entire AGP interface signal field would be referenced to ground. This recommendation is not specific to any particular PCB stack-up, but should be applied to all designs using the 815E chipset platform.

Page 98: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

98 Intel® 815E Chipset Platform Design Guide

7.4 AGP Down Routing Guidelines The routing guidelines in this section are for AGP down implementations with AGP-compliant devices that are implemented directly on the motherboards, eliminating the need for connectors or add-in cards.

7.4.1 1X AGP Down Option Timing Domain Routing Guidelines

Routing guidelines for an AGP device on the motherboard are very similar to those when the device is implemented with an AGP connector.

• AGP 1X timing domain signals (Table 21) have a maximum trace length of 7.5 inches. This maximum applies to ALL signals listed as 1X timing domain signals in Table 24.

• All AGP 1X timing domain signals can be routed with 5 mil minimum trace separation

• There are no trace length matching requirements for 1X timing domain signals

7.4.2 2X/4X AGP Down Timing Domain Routing Guidelines

These trace length guidelines apply to ALL signals listed in Table 21 as 2X/4X timing domain signals. These signals should be routed using 5 mil (60 Ω) traces.

• The maximum AGP 2X/4X signal trace length is 6 inches.

• 1:3 trace width-to-spacing is required for AGP 2X/4X timing domain signal traces.

• AGP 2X/4X signals must be matched with their associated strobe (as outlined in Table 21), within ±0.5 inch.

For example, if a set of strobe signals (e.g., AD_STB0 and AD_STB0#) is 5.3 inches long, the data signals associated with those strobe signals (e.g., AD[15:0] and C/BE[2:0]#) could be 4.8 inches to 5.8 inches long. Another strobe set (e.g., SB_STB and SB_STB#) could be 4.2 inches long, and the data signals associated with those strobe signals (e.g., SBA[7:0]) could be 3.7 inches to 4.7 inches long.

The strobe signals (AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, and SB_STB#) act as clocks on the source-synchronous AGP interface. Therefore, special care must be taken when routing these signals. Because each strobe pair is truly a differential pair, the pair should be routed together (e.g., AD_STB0 and AD_STB0# should be routed next to each other). The two strobes in a strobe pair should be routed on 5 mil traces with at least 15 mils of space (1:3) between them. This pair should be separated from the rest of the AGP signals and all other signals by at least 20 mils (1:4). The strobe pair must be length-matched to less than ± 0.2 inch (i.e., a strobe and its complement must be the same length, within 0.2 inch).

Page 99: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 99

Figure 52. AGP Down 2X/4X Routing Recommendations

Signals

Strobes Length: Dependent on Data Width: 5 mil Spacing: 15 milsStrobe-to-Strobe Mismatch: ±0.2"

Length: 0.5 in. 6.0 in. Width to Spacing: 1:3 Strobe-to-Data Mismatch: ±0.5 in.

AGP Compliant Graphics Device

GMCH

AGP_Down_Routing

7.4.3 AGP Routing Guideline Considerations and Summary

This section applies to all AGP signals, as follows:

• The 2X/4X timing domain signals can be routed with 5 mil spacing when breaking out of the GMCH. The routing must widen to the documented requirements, within 0.3 inch of the GMCH package.

• When matching the trace length for the AGP 4X interface, all traces should be matched from the ball of the GMCH to the ball on the AGP compliant device. It is not necessary to compensate for the lengths of the AGP signals on the GMCH package.

• Reduce line length mismatch to ensure added margin. Trace length mismatch for all signals within a signal group should be as close to zero as possible to provide timing margin.

• To reduce trace-to-trace coupling (crosstalk), separate the traces as much as possible.

• All signals in a signal group should be routed on the same layer.

• The trace length and trace spacing requirements must not be violated by any signal.

Page 100: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

100 Intel® 815E Chipset Platform Design Guide

Table 24. AGP 2.0 Down Routing Summary

Signal Max. Length

Trace Spacing(5 mil Traces)

Length Mismatch Relative to Notes

1X Timing Domain

7.5 inches

5 mils No requirement

N/A None

2X/4X Timing Domain Set 1

6 inches 15 mils1 ±0.5 inch AD_STB0 and AD_STB0#

AD_STB0, AD_STB0# must be the same length

2X/4X Timing Domain Set 2

6 inches 15 mils1 ±0.5 inch AD_STB1 and AD_STB1#

AD_STB1, AD_STB1# must be the same length

2X/4X Timing Domain Set 3

6 inches 15 mils1 ±0.5 inch SB_STB and SB_STB#

SB_STB, SB_STB# must be the same length

NOTES: 1. Each strobe pair must be separated from other signals by at least 20 mils.

7.4.4 AGP Clock Routing

The maximum total AGP clock skew, between the GMCH and the graphics component, is 1 ns for all data transfer modes. This 1 ns includes skew and jitter that originates on the motherboard, and clock synthesizer. Clock skew must be evaluated not only at a single threshold voltage, but at all points on the clock edge that fall within the switching range. For AGP clock routing guidelines for the 815E chipset platform, refer to Section 12.3.

7.4.5 AGP Signal Noise Decoupling Guidelines

The following routing guidelines are recommended for the optimal system design. The main focus of these guidelines is to minimize signal integrity problems on the AGP interface of the GMCH. The following guidelines are not intended to replace thorough system validation for products based on the 815E chipset platform.

• A minimum of six 0.01 µF capacitors are required and must be as close as possible to the GMCH. These should be placed within 70 mils of the outer row of balls on the GMCH for VDDQ decoupling. The closer the placement, the better.

• The designer should evenly distribute placement of decoupling capacitors in the AGP interface signal field.

• It is recommended that the designer use a low-ESL ceramic capacitor, such as with a 0603 body-type X7R dielectric.

• To add the decoupling capacitors within 70 mils of the GMCH and/or close to the vias, the trace spacing may be reduced as the traces go around each capacitor. The narrowing of space between traces should be minimal and for as short a distance as possible (1 inch max.).

Page 101: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 101

• In addition to the minimum decoupling capacitors, the designer should place bypass capacitors at vias that transition the AGP signal from one reference signal plane to another. On a typical four-layer PCB design, the signals transition from one side of the board to the other. One extra 0.01 µF capacitor is required per ten vias. The capacitor should be placed as close as possible to the center of the via field.

7.4.6 AGP Routing Ground Reference

It is strongly recommended that at least the following critical signals be referenced to ground from the GMCH to an AGP video controller on an AGP-only motherboard using a minimum number of vias on each net: AD_STB0, AD_STB0#, AD_STB1, AD_STB1#, SB_STB, SB_STB#, G_GTRY#, G_IRDY#, G_GNT#, and ST[2:0].

In addition to this minimum signal set, it is strongly recommended that half of all AGP signals be referenced to ground, depending on the board layout. In an ideal design, the complete AGP interface signal field would be referenced to ground. This recommendation is not specific to any particular PCB stack-up, but should be applied to all 815E chipset platform designs.

7.5 AGP 2.0 Power Delivery Guidelines

7.5.1 VDDQ Generation and TYPEDET#

AGP specifies two separate power planes: VCC and VDDQ. VCC is the core power for the graphics controller. This voltage is always 3.3 V. VDDQ is the interface voltage. In AGP 1.0 implementations, VDDQ also was 3.3 V. For the designer developing an AGP 1.0 motherboard, there is no distinction between VCC and VDDQ, since both are tied to the 3.3V power plane on the motherboard.

AGP 2.0 requires that these power planes be separate. In conjunction with the 4X data rate, the AGP 2.0 Interface Specification provides for low-voltage (1.5V) operation. The AGP 2.0 specification implements a TYPEDET# (type detect) signal on the AGP connector that determines the operating voltage of the AGP 2.0 interface (VDDQ). The motherboard must provide either 1.5 V or 3.3 V to the add-in card, depending on the state of the TYPEDET# signal (see Table 25). 1.5 V low-voltage operation applies only to the AGP interface (VDDQ). VCC is always 3.3 V.

Note: The motherboard provides 3.3V to the VCC pins of the AGP connector. If the graphics controller needs a lower voltage, then the add-in card must regulate the 3.3VCC voltage to the controllers requirements. The graphics controller may only power AGP I/O buffers with the VDDQ power pins.

The TYPEDET# signal indicates whether the AGP 2.0 interface operates at 1.5 V or 3.3 V. If TYPEDET# is floating (i.e., No Connect) on an AGP add-in card, the interface is 3.3 V. If TYPEDET# is shorted to ground, the interface is 1.5 V.

Page 102: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

102 Intel® 815E Chipset Platform Design Guide

Table 25. TYPDET#/VDDQ Relationship

TYPEDET# (on Add-in Card) VDDQ (Supplied by MB)

GND 1.5 V

N/C 3.3 V

As a result of this requirement, the motherboard must provide a flexible voltage regulator or key the slot to preclude add-in cards with voltage requirements incompatible with the motherboard. This regulator must supply the appropriate voltage to the VDDQ pins on the AGP connector. For specific design recommendations, refer to the schematics in Appendix A. VDDQ generation and AGP VREF generation must be considered together. Before developing VDDQ generation circuitry, refer to Section 7.5.1 and the AGP 2.0 Interface Specification.

Figure 53. AGP VDDQ Generation Example Circuit

SHDN IPOS

VIN INEG

GND GATE

FB COMPC1 2.2 kΩ

10 pF

C2

5

R3

R4

C3

+12V

+3.3VVDDQ

R1 1 µF

TYPEDET#

U1 LT15751

2

3

4

8

7

6

5

C5

R5C4

R2

301 - 1%

1.21 kΩ - 1%

47 µF

220 µF

AGP_VDDQ_gen_ex_circ

.001 µF

7.5 kΩ - 1%

Figure 53 demonstrates one way to design the VDDQ voltage regulator. This regulator is a linear regulator with an external, low-Rdson FET. The source of the FET is connected to 3.3V. This regulator converts 3.3V to 1.5V or passes 3.3V, depending on the state of TYPEDET#. If a linear regulator is used, it must draw power from 3.3V (not 5V) to control thermals. (i.e., 5V regulated down to 1.5V with a linear regulator will dissipate approximately 7 W at 2 A.) Because it must draw power from 3.3V and, in some situations, must simply pass that 3.3V to VDDQ (when a 3.3V add-in card is placed in the system), the regulator MUST use a low-Rdson FET.

AGP 1.0 ECR #44 modified VDDQ 3.3min to 3.1 V. When an ATX power supply is used, the 3.3 Vmin is 3.168. Therefore, 68 mV of drop is allowed across the FET at 2 A. This corresponds to an FET with an Rdson of 34 mΩ.

Page 103: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 103

How does the regulator switch? The feedback resistor divider is set to 1.5 V. When a 1.5 V card is placed in the system, the transistor is off and the regulator regulates to 1.5 V. When a 3.3 V card is placed in the system, the transistor is on, and the feedback will be pulled to ground. When this happens, the regulator will drive the gate of the FET to nearly 12 V. This will turn on the FET and pass 3.3 V 2 A * Rdson to VDDQ.

7.5.2 VREF Generation for AGP 2.0 (2X and 4X)

VREF generation for AGP 2.0 is different, depending on the AGP card type used. The 3.3 V AGP cards generate VREF locally. That is, they have a resistor divider on the card that divides VDDQ down to VREF (see Figure 54). To account for potential differences between VDDQ and GND at the GMCH and graphics controller, 1.5V cards use source-generated VREF. That is, the VREF signal is generated at the graphics controller and sent to the GMCH, and another VREF is generated at the GMCH and sent to the graphics controller (see Figure 54).

Both the graphics controller and the GMCH must generate VREF and distribute it through the connector (1.5V add-in cards only). The following two pins defined on the AGP 2.0 universal connector allow this VREF passing:

• VREFGC VREF from the graphics controller to the chipset

• VREFCG VREF from the chipset to the graphics controller

To preserve the common-mode relationship between the VREF and data signals, the routing of the two VREF signals must be matched in length to the strobe lines, within 0.5 inch on the motherboard and within 0.25 inch on the add-in card.

The voltage divider networks consist of AC and DC elements, as shown in Figure 54.

The VREF divider network should be placed as close as practical to the AGP interface, to get the benefit of the common-mode power supply effects. However, the trace spacing around the VREF signals must be a minimum of 25 mils to reduce crosstalk and maintain signal integrity.

During 3.3V AGP 2.0 operation, VREF must be 0.4 VDDQ. However, during 1.5V AGP 2.0 operation, VREF must be 0.5 VDDQ. This requires a flexible voltage divider for VREF. Various methods of accomplishing this exist, and one such example is shown in Figure 54.

Page 104: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

104 Intel® 815E Chipset Platform Design Guide

Figure 54. AGP 2.0 VREF Generation and Distribution

C8500 pF

AGPDevice

1.5V AGPCard

VDDQ

GND

R9 300 Ω 1%

R2 200 Ω 1%

C90.1 uF

VDDQ

REF

GND

GMCH

C8500 pF

REF

U6

mosfet

R71 KΩ

+12V

TYPEDET#

VrefCG

VrefGC

VDDQ

Notes:1. The resistor dividers should be placed near the GMCH. The AGPREF signal must be 5 mils wide and routed 10 mils from adjacent signals.2. R7 is the same resistor seen in AGP VDDQ generation example circuit figure (R1)

AGPDevice

3.3V AGPCard

VDDQ

GNDC10

0.1 uF

VDDQ

REF

GND

GMCH

R61 KΩ

R21 KΩ

R582 Ω

R482 Ω

REF

U6

mosfet

+12V

TYPEDET#

VrefCG

VrefGC

VDDQ

The resistor dividers should be placed near the GMCH. The AGPREF signal must be 5 mils wide and routed 25 mils from adjacent signals.

C9500 pF

R9300 Ω

1%

R2200 Ω

1%

agp_2.0ref_gen_dist

b) 3.3V AGP Card

a) 1.5V AGP Card

R61 KΩ

R582 Ω

R21 KΩ

R482 Ω

C9500 pF

(See note 2)

R71 KΩ

(See note 2)

The flexible VREF divider shown in Figure 54 uses a FET switch to switch between the locally generated VREF (for 3.3V add-in cards) and the source-generated VREF (for 1.5V add-in cards).

Use of the source-generated VREF at the receiver is optional and is a product implementation issue beyond the scope of this document.

Page 105: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 105

7.6 Additional AGP Design Guidelines

7.6.1 Compensation

The GMCH AGP interface supports resistive buffer compensation (RCOMP). Tie the GRCOMP pin to a 40 Ω, 2% (or 39 Ω, 1%) pull-down resistor (to ground) through a 10 mil-wide, very short (<0.5 inch) trace.

7.6.2 AGP Pull-Ups

AGP control signals require pull-up resistors to VDDQ on the motherboard, to ensure that they contain stable values when no agent is actively driving the bus. The pull-up/pull-down resistor value requirements are Rmin = 4 kΩ and Rmax = 16 kΩ. The recommended AGP pull-up/pull-down resistor value is 8.2 kΩ.

1X Timing Domain Signals Requiring Pull-uUp Resistors The following bullets list the 1X timing domain signals that require pull-up resistors.

• FRAME# • PERR# • TRDY# • RBF# • IRDY# • PIPE# • DEVSEL# • REQ# • STOP# • WBF# • SERR# • GNT# • ST[2:0]

Note: It is critical that these signals be pulled up to VDDQ, not 3.3 V.

The trace stub to the pull-up resistor on 1X timing domain signals should be kept shorter than 0.5 inch to avoid signal reflections from the stub.

Note: INTA# and INTB# should be pulled to 3.3 V, not VDDQ.

2X/4X Timing Domain Signals Requiring Pull-Up/Pull-Down Resistors The following bullets list the 2X/4X timing domain signals that require pull-up/pull-down resistors. The strobe signals require pull-up/pull-downs on the motherboard to ensure that they are at a stable level when no agent is driving the bus.

• AD_STB[1:0] Pull-Up to VDDQ • SB_STB Pull up to VDDQ • AD_STB[1:0]# Pull Down to Ground • SB_STB# Pull Down to Ground

The trace stub to the pull-up/pull-down resistor on 2X/4X timing domain signals should be kept shorter than 0.1 inch to avoid signal reflections from the stub.

Page 106: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

106 Intel® 815E Chipset Platform Design Guide

7.6.2.1 AGP Signal Voltage Tolerance List

The following signals on the AGP interface are 3.3 V tolerant during 1.5 V operation:

• PME# • INTA# • INTB# • GPERR# • GSERR# • CLK • RST

The following signals on the AGP interface are 5 V tolerant (see USB specification):

• USB+ • USB- • OVRCNT#

The following signal is a special AGP signal. It is either grounded or left as a no connect on an AGP card.

• TYPEDET#

Note: All other signals on the AGP interface are in the VDDQ group. They are not 3.3 V tolerant during 1.5 V AGP operation!

7.7 Motherboard / Add-in Card Interoperability There are three AGP connectors: 3.3 V AGP connector, 1.5 V AGP connector, and Universal AGP connector. To maximize add-in flexibility, it is highly advisable to implement the universal connector in systems based on the 815E platform. All add-in cards are either 3.3 V or 1.5 V cards. The 4X transfers at 3.3 V are not allowed due to timings.

Table 26. Connector/Add-in Card Interoperability

Card 1.5V Connector 3.3V Connector Universal Connector

1.5V card Yes No Yes

3.3V card No Yes Yes

Table 27. Voltage/Data Rate Interoperability

Voltage 1X 2X 4X

1.5 V VDDQ Yes Yes Yes

3.3 V VDDQ Yes Yes No

Page 107: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

Intel® 815E Chipset Platform Design Guide 107

7.8 AGP / Display Cache Shared Interface As described earlier, the AGP and display cache interfaces of the 815E chipset platform are multiplexed or shared. In other words, the same component pins (balls) are used for both interfaces, although obviously only one interface can be supported at any given time. As a result, almost all display cache interface signals are mapped onto the new AGP interface. The 815E platform can be configured in either AGP mode or Graphics mode. In the AGP mode, the interface supports a full AGP 4X interface. In the Graphics mode, the interface becomes a display cache interface similar to the Intel® 810E chipset. Note, however, that in the Graphics mode, the display cache is optional. There do not have to be any SDRAM devices connected to the interface. The only dedicated display cache signals are OCLK and RCLK, which need not connect directly to the SDRAM devices. These are not mapped onto existing AGP signals.

7.8.1 GPA Card Considerations

To support the fullest flexibility, the display cache exists on an add-in card (Graphics Performance Accelerator, or GPA) that complies with the AGP connector form factor. If the motherboard designer follows the flexible routing guidelines for the AGP interface detailed in previous sections, the customer can choose to populate the AGP slot in a system based on the 815E chipset with either an AGP graphics card, with a GPA card to enable the highest-possible internal graphics performance, or with nothing to get the lowest-cost internal graphics solution. Some of the GPA/ 815E chipset platform interfacing implications are listed below. For a complete description of the GPA card design, refer to the Graphics Performance Accelerator Card Specification available from Intel.

• A strap is required to determine which frequency to select for display cache operation. This is the L_FSEL pin of the GMCH. The GPA card will pull this signal up or down as appropriate to communicate to the 815E chipset platform the appropriate operating frequency. The 815E chipset platform will sample this pin on the deasserting edge of reset.

• Since current SDRAM technology is always 3.3 V rather than the 1.5V option also supported by AGP, the GPA card should set the TYPEDET# signal correctly to indicate that it requires a 3.3V power supply. Furthermore, the GPA card should have only the 3.3V key and not the 1.5V key, thereby preventing it from being inserted into a 1.5V-only connector.

• The pad buffers on the chip will be the normal AGP buffers and will work for both interfaces.

• In internal graphics mode, the AGPREF signal, which is required for the AGP mode, should remain functional as a reference voltage for sampling 3.3V LMD inputs. The voltage level on AGPREF should remain exactly the same as in the AGP mode, as opposed to the VCC/2 used for previous products.

7.8.1.1 AGP and GPA Mechanical Considerations

The GPA card will be designed with a notch on the PCB to go around the AGP universal retention mechanism. To guarantee that the GPA card will meet all shock and vibration requirements of the system, the AGP universal retention mechanism will be required on all AGP sockets that are to support a GPA card.

Page 108: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

AGP/Display Cache Design Guidelines

R

108 Intel® 815E Chipset Platform Design Guide

7.8.2 Display Cache Clocking

The display cache is clocked source-synchronously from a clock generated by the GMCH. The display cache clocking scheme uses three clock signals.

• LTCLK clocks the SDRAM devices, is muxed with an AGP signal, and should be routed according to the flexible AGP guidelines.

• LOCLK and LRCLK clock the input buffers of the universal platform. LOCLK is an output of the GMCH and is a buffered copy of LTCLK. LOCLK should be connected to LRCLK at the GMCH, with a length of PCB trace to create the appropriate clock skew relationship between the clock input (LRCLK) and the SDRAM capacitor clock input(s).

The guidelines are illustrated in Figure 55.

Figure 55. Display Cache Input Clocking

15 Ω , 1%

15 pF, 5% NPO

82815

LOCLK

LRCLK

0.5"

1.5"

AGP_Display_Cache_Input_clock_815E_B0

The capacitor should be placed as close as possible to the GMCH LRCLK pin. To minimize skew variation, we recommend a 1% series termination resistor and a 5% NPO capacitor, to stabilize the value across temperatures. In addition to the 15 Ω, 1% resistor and the 15 pF, 5% NPO capacitor. The following combination also can be used: 10 Ω, 1% and 22 pF, 5% NPO.

7.9 Designs That Do Not Use the AGP Port Intel 815E chipset platform designs that do not use the AGP port should terminate the AGP pins of the GMCH. Except for the GPAR pin (which requires a 100 kΩ pull down resistor to ground), the pull-up or pull-down resistor value should be 8.2 kΩ. Any external graphics implementation not using the AGP port should terminate the GMCH AGP control and strobe signals as recommended in Section 14.3.2.

Page 109: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

Intel® 815E Chipset Platform Design Guide 109

8 Integrated Graphics Display Output

8.1 Analog RGB/CRT

8.1.1 RAMDAC/Display Interface

Figure 56 shows the interface of the RAMDAC analog current outputs with the display. Each DAC output is doubly terminated with a 75 Ω resistance. One 75 Ω resistance is from the DAC output to the board ground and the other termination resistance exists within the display. The equivalent DC resistance at the output of each DAC output is 37.5 Ω. The output current of each DAC flows into this equivalent resistive load to produce a video voltage without the need for external buffering. There is also an LC pi-filter that is used to reduce high-frequency glitches and noise and to reduce EMI. To maximize performance, the filter impedance, cable impedance, and load impedance should be the same. The LC pi-filter consists of two 3.3 pF capacitors and a ferrite bead with a 75 Ω impedance at 100 MHz. The LC pi-filter is designed to filter glitches produced by the RAMDAC while maintaining adequate edge rates to support high-end display resolutions.

Page 110: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

110 Intel® 815E Chipset Platform Design Guide

Figure 56. Schematic of RAMDAC Video Interface

RAMDAC

VCCDACA1/VCCDACA2 VCCDA Red

GraphicsChip

Pixelclock(fromDPLL)

Cf

Lf

LCFilter

1.85 V boardpower plane

Display PLL powerconnects to this

segmented powerplane 1.85 V board

power plane

1.85 V boardpower plane

Rt D2

D1

C1 C2

FB

Pi filter1.85 V boardpower plane

Rt D2

D1

C1 C2

FB

Pi filter1.85 V boardpower plane

Rt D2

D1

C1 C2

FB

Pi filter

Green

Blue

VSSDACA

Analogpower plane

1.85 V

IREFIWASTE

Ground plane

Rset 1% referencecurrent resistor(metal film)

Videoconnector

Graphics Board

Red

Green

Blue

Coax CableZo = 75 Ω

75 Ω

75 Ω

75 Ω

Display

Termination resistor, R 75 Ω 1% (metal film)

Diodes D1, D2: Schottky diodes

LC filter capacitors, C1, C2: 3.3 pF

Ferrite bead, FB: 7 Ω @ 100 MHz(Recommended part: MurataBLM11B750S)

display_RAMDAC_video_IF

NOTE: Diodes D1, D2 are clamping diodes with low leakage and low capacitive loading. An example is: California Micro Devices PAC DN006 (6 channel ESD protection array).

In addition to the termination resistance and LC pi-filter, there are protection diodes connected to the RAMDAC outputs to help prevent latch-up. The protection diodes must be connected to the same power supply rails as the RAMDAC. An LC filter is recommended for connecting the segmented analog 1.85V power plane of the RAMDAC to the 1.85V board power plane. The LC filter should be designed for a cut-off frequency of 100 kHz.

Page 111: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

Intel® 815E Chipset Platform Design Guide 111

8.1.2 Reference Resistor (Rset) Calculation

The full-swing video output is designed to be 0.7 V, according to the VESA video standard. With an equivalent DC resistance of 37.5 Ω (two 75 Ω resistors in parallel; one 75 Ω termination on the board and one 75 Ω termination within the display), the full-scale output current of a RAMDAC channel is 0.7/37.5 Ω = 18.67 mA. Since the RAMDAC is an 8-bit current-steering DAC, this full-scale current is equivalent 255 I, where I is a unit current. Therefore, the unit current or LSB current of the DAC signals equals 73.2 µA. The reference circuitry generates a voltage across this Rset resistor equal to the bandgap voltage divided by three (i.e., 407.6 mV). The RAMDAC reference current generation circuitry is designed to generate a 32-I reference current using the reference voltage and the Rset value. To generate a 32-I reference current for the RAMDAC, the reference current setting resistor, Rset, is calculated from the following equation:

Rset = VREF / 32*I = 0.4076 V / 32 * 73.2 µA = 174 Ω

8.1.3 RAMDAC Board Design Guidelines

Figure 57 shows a general cross section of a typical four-layer board. The recommended RAMDAC routing for a four-layer board is such that the red, green, and blue video outputs are routed on the top (bottom) layer over (under) a solid ground plane to maximize the noise rejection characteristics of the video outputs. It is essential to prevent toggling signals from being routed next to the video output signals to the VGA connector. A 20 mil spacing between any video route and any other route is recommended.

Figure 57. Cross-Sectional View of a Four-Layer Board

Board Cross Section

Boardcomponents

RAMDAC / PLL circuitry

Graphics chipOne solid, continuous

ground plane

Digital power plane

RAMDAC_board_xsec

Bottom of board Segmented analog powerplane for RAMDAC / PLL

Low-frequencysignal traces

Ground plane

Analog traces

Videoconnector

Top of board

Avoid clock routes orhigh-frequency routes inthe area of the RAMDACoutput signals andreference resistor.

Matching of the video routes (i.e., red, green, blue) from the RAMDAC to the VGA connector is also essential. The routing for these signals should be as similar as possible (i.e., same routing layer(s), same number of vias, same routing length, same bends, and jogs).

Page 112: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

112 Intel® 815E Chipset Platform Design Guide

Figure 58 shows the recommended RAMDAC component placement and routing. The termination resistance can be placed anywhere along the video route from the RAMDAC output to the VGA connector, as long as the trace impedances are designed as indicated in Figure 58. It is advisable to place the pi-filters in close proximity with the VGA connector, to maximize the EMI filtering effectiveness. The LC filter components for the RAMDAC/PLL power plane, the decoupling capacitors, the latch-up protection diodes, and the reference resistor should be placed in close proximity with the respective pins. Figure 59 shows the recommended reference resistor placement and the ground connections.

Figure 58. Recommended RAMDAC Component Placement and Routing

RAMDAC

VCCDACA1/VCCDACA2 VCCDA Red

GraphicsChip

Pixelclock(fromDPLL)

Cf

Lf

LCfilter

1.85 V boardpower plane

Place LC filter components andhigh-frequency decouplingcapacitors as close as possibleto power pins

1.85 V boardpower plane

Green

Blue

VSSDACA

Analogpower plane

1.85 V

IREFIWASTE

Place referenceresistor near IREF pin

Rset

VGA

RAMDAC_comp_placement_routing

1.85 V boardpower plane

RtD2

D1

C1 C2

FB

Pi filter

Red route37.5 Ω route

75 Ω routes

1.85 V boardpower plane

RtD2

D1

C1 C2

FB

Pi filter

Green route37.5 Ω route

75 Ω routes

1.85 V boardpower plane

RtD2

D1

C1 C2

FB

Pi filter

Blue route37.5 Ω route

75 Ω routes

Place diodes close toRGB pins Avoid routing

toggling signals inthis shaded area

Via straight down to the ground plane

- Match the RGB routes- Space between the RGB routes a min. of 20 mils

Place pi filter near VGA connector

NOTE: Diodes D1, D2 are clamping diodes with low leakage and low capacitive loading. An example is:

California Micro Devices PAC DN006 (6 channel ESD protection array).

Page 113: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

Intel® 815E Chipset Platform Design Guide 113

Figure 59. Recommended RAMDAC Reference Resistor Placement and Connections

Graphics Chip IREFball/pin

Rset

Large via or multiple vias straight down to ground plane

Resistor for setting RAMDAC reference current178 Ω, 1%, 1/16 W, SMT, metal film

Short, wide route connecting resistor to IREF pin

Position resistornear IREF pin.

No toggling signalsshould be routednear Rset resistor.

RAMDAC_ref_resistor_place_conn

8.1.4 RAMDAC Layout Recommendations • The primary concern with regard to the RGB signal length is that the RGB routes are matched

and routed with the correct impedance. The impedance should be 37.5 Ω, single-ended trace to the 75-ohm, termination resistor. Routing from the 75 Ω resistor to the video PI-filter and to the VGA connector should be 75 Ω impedance.

• The trace width for the RGB signal should be selected for a 37.5 Ω impedance (single-ended route) to the 75 Ω termination resistor. The 75 Ω termination resistor should be placed near the VGA connector.

• The spacing for each DAC channel routing (i.e., between red & green, green & blue outputs) should be a minimum of 20 mils.

• The space between the RGB signal route and other routes should be a minimum of 20 mils for each DAC route.

• All RGB signals should be referenced to ground. • The trace width for the HSYNC and VSYNC signal routes should be selected for an

approximately 40 Ω impedance. • The spacing between the HSYNC /VSYNC signal routes should be at least 10 mils, preferably

20 mils. • The space between HSYNC/VSYNC signal routes and others routes should be at least 10

mils, preferably 20 mils. • Route the HSYNC and VSYNC over the ground plane, if possible. The HSYNC and VSYNC

signals should not route over or near any clock signals or any other high switching routing.

8.1.5 HSYNC/VSYNC Output Guidelines

The Hsync and Vsync output of the GMCH may exhibit up to 1.26V P-P noise when driven high under high traffic system memory conditions. To minimize this, the following is required.

• Add External Buffers to Hsync and Vsync. Examples include: Series 10 Ω resistor with a 74LVC08

Page 114: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Integrated Graphics Display Output

R

114 Intel® 815E Chipset Platform Design Guide

8.2 Digital Video Out The Digital Video Out (DVO) port is a scaleable, low-voltage interface that ranges from 1.1 V to 1.8 V. This DVO port interfaces with a discrete TV encoder to enable platform support for TV-Out, with a discrete TMDS transmitter to enable platform support for DVI-compliant digital displays, or with an integrated TV encoder and TMDS transmitter.

The GMCH DVO port controls the video front-end devices via an I2 C interface, by means of the LTVDA and LTVCK pins. I2C is a two-wire communications bus/protocol. The protocol and bus are used to collect EDID (extended display identification) from a digital display panel and to detect and configure registers in the TV encoder or TMDS transmitter chips.

8.2.1 DVO Interface Routing Guidelines

Route data signals (LTVDATA[11:0]) with a trace width of 5 mils and a trace spacing of 20 mils. These signals can be routed with a trace width of 5 mils and a trace spacing of 15 mils for navigation around components or mounting holes. To break out of the GMCH, the DVO data signals can be routed with a trace width of 5 mils and a trace spacing of 5 mils. The signals should be separated to a trace width of 5 mils and a trace spacing of 20 mils , within 0.3 inch of the GMCH component. The maximum trace length for the DVO data signals is 7 inches. These signals should each be matched within ±0.1 inch of the LTVCLKOUT[1] and LTVCLKOUT[0] signals.

Route the LTVCLKOUT[1:0] signals 5 mils wide and 20 mils apart. This signal pair should be a minimum of 20 mils from any adjacent signals. The maximum length for LTVCLKOUT[1:0] is 7 inches and the two signals should be the same length.

8.2.2 DVO I2C Interface Considerations

LTVDA and LTVCK should be connected to the TMDS transmitter, TV encoder or integrated TMDS transmitter/TV encoder device, as required by the specifications for those devices. LTVDA and LTVCK also should be connected to the DVI connector as specified by the DVI specification. Pull-up resistors of 4.7 kΩ (or pull-ups with the appropriate value derived from simulation) are required on both LTVDA and LTVCK.

8.2.3 Leaving the DVO Port Unconnected

If the motherboard does not implement any of the possible video devices with the 815E chipset universal platforms DVO port, the following are recommended on the motherboard:

• Pull up LTVDA and LTVCK with 4.7 kΩ resistors at the GMCH. This will prevent the GMCHs DVO controller from confusing noise on these lines with false I2C cycles.

• Route LTVDATA[11:0] and LTVCLKOUT[1:0] out of the BGA to test points for use by automated test equipment (if required). These signals are part of one of the GMCH XOR chains.

Page 115: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Hub Interface

R

Intel® 815E Chipset Platform Design Guide 115

9 Hub Interface The GMCH ball assignment and ICH2 ball assignment have been optimized to simplify hub interface routing. It is recommended that the hub interface signals be routed directly from the GMCH to the ICH2 on the top signal layer. Refer to Figure 60.

The hub interface is divided into two signal groups: data signals and strobe signals.

• Data Signals: HL[10:0]

• Strobe Signals: HL_STB HL_STB#

Note: HL_STB/HL_STB# is a differential strobe pair.

No pull-ups or pull-downs are required on the hub interface. HL11 on the ICH2 should be brought out to a test point for NAND Tree testing. Each signal should be routed such that it meets the guidelines documented for its signal group.

Figure 60. Hub Interface Signal Routing Example

ICH2 GMCH

Clocks

HL_STB

HL_STB#

HL[10:0]

CLK66 GCLK

HL11

hub_link_sig_routing

NAND treetest point

Page 116: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Hub Interface

R

116 Intel® 815E Chipset Platform Design Guide

9.1.1 Data Signals

Hub interface data signals should be routed with a trace width of 5 mils and a trace spacing of 20 mils. These signals can be routed with a trace width of 5 mils and a trace spacing of 15 mils for navigation around components or mounting holes. To break out of the GMCH and the ICH2, the hub interface data signals can be routed with a trace width of 5 mils and a trace spacing of 5 mils. The signals should be separated to a trace width of 5 mils and a trace spacing of 20 mils, within 0.3 inch of the GMCH/ICH2 components.

The maximum trace length for the hub interface data signals is 8 inches. These signals should each be matched within ±0.1 inch of the HL_STB and HL_STB# signals.

9.1.2 Strobe Signals

Due to their differential nature, the hub interface strobe signals should be 5 mils wide and routed 20 mils apart. This strobe pair should be a minimum of 20 mils from any adjacent signals. The maximum length for the strobe signals is 8 inches, and the two strobes should be the same length. Additionally, the trace length for each data signal should be matched to the trace length of the strobes, within ±0.1 inch.

9.1.3 HREF Generation/Distribution

HREF, the hub interface reference voltage, is 0.5 * 1.85 V = 0.92 V ± 2%. It can be generated using a single HREF divider or locally generated dividers (as shown Figure 61 and Figure 62). The resistors should be equal in value and rated at 1% tolerance, to maintain 2% tolerance on 0.92 V. The values of these resistors must be chosen to ensure that the reference voltage tolerance is maintained over the entire input leakage specification. The recommended range for the resistor value is from a minimum of 100 Ω to a maximum of 1 kΩ (300 Ω shown in example).

The single HREF divider should not be located more than 4 inches away from either GMCH or ICH2. If the single HREF divider is located more than 4 inches away, then the locally generated hub interface reference dividers should be used instead.

The reference voltage generated by a single HREF divider should be bypassed to ground at each component with a 0.01 µF capacitor located close to the component HREF pin. If the reference voltage is generated locally, the bypass capacitor must be close to the component HREF pin.

Page 117: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Hub Interface

R

Intel® 815E Chipset Platform Design Guide 117

9.1.4 Compensation

Independent hub interface compensation resistors are used by the GMCH and ICH2 to adjust buffer characteristics to specific board characteristics. Refer to the Intel® 815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet and the Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet for details on compensation. The resistive Compensation (RCOMP) guidelines are as follows:

• RCOMP: Tie the HLCOMP pin of each component to a 40 Ω, 1% or 2% pull-up resistor (to 1.8 V) via a 10 mil-wide, 0.5 inch trace (targeted at a nominal trace impedance of 40 Ω). The GMCH and ICH2 each require its own RCOMP resistor.

Figure 61. Single Hub Interface Reference Divider Circuit

HUBREF HUBREF

GMCH ICH2

hub_IF_ref_div_1_815E_B0

300 Ω

1.85 V

300 Ω

0.01 µF 0.01 µF

0.1 µF

Figure 62. Locally Generated Hub Interface Reference Dividers

HUBREF

ICH2

hub_IF_ref_div_2_B0

0.1 µF

300 Ω

1.85 V

300 Ω0.1 µF

HUBREF

GMCH 300 Ω

1.85 V

300 Ω

Page 118: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Hub Interface

R

118 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 119: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Controller Hub 2 (ICH2)

R

Intel® 815E Chipset Platform Design Guide 119

10 I/O Controller Hub 2 (ICH2)

10.1 Decoupling The ICH2 is capable of generating large current swings when switching between logic high and logic low. This condition could cause the component voltage rails to drop below specified limits. To avoid this type of situation, ensure that the appropriate amount of bulk capacitance is added in parallel to the voltage input pins. It is recommended that the developer use the amount of decoupling capacitors specified in Table 28 to ensure that the component maintains stable supply voltages. The capacitors should be placed as close as possible to the package, without exceeding 400 mils (200 mils nominal).

Note: Routing space around the ICH2 is tight. A few decoupling caps may be placed more than 300 mils away from the package. System designers should simulate the board to ensure that the correct amount decoupling is implemented. Refer to Figure 63 for a layout example, with the decoupling capacitors circled with an arrow showing which power plane/trace they are connected to. Intel recommends that, for prototype board designs, the designer include pads for extra power plane decoupling capacitors.

Table 28. Decoupling Capacitor Recommendation

Power Plane/Pins Decoupling Capacitors Capacitor Value

3.3V core 6 0.1 µF

3.3V standby 1 0.1 µF

Processor interface (1.3 ~ 2.5 V) 1 0.1 µF

1.85V core 2 0.1 µF

1.85V standby 1 0.1 µF

5V reference 1 0.1 µF

5V reference standby 1 0.1 µF

Page 120: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Controller Hub 2 (ICH2)

R

120 Intel® 815E Chipset Platform Design Guide

Figure 63. Intel® ICH2 Decoupling Capacitor Layout

3.3V Core 1.85V Core

1.85V Standby

3.3V Standby 3.3V Core 1.85V Standby

5V Ref decouple_cap_layo

10.2 1.85 V/3.3 V Power Sequencing The ICH2 has two pairs of associated 1.85 V and 3.3 V supplies. These are, VCC1_85, VCC3_3 and VCCSus1_85, VCCSus3_3. These pairs are assumed to power up and power down together. The difference between the two associated supplies must never be greater than 2.0V. The 1.85V supply may come up before the 3.3V supply without violating this rule (though this is generally not practical in a desktop environment, since the 1.85V supply is typically derived from the 3.3V supply by means of a linear regulator).

One serious consequence of violation of the 2V Rule is electrical overstress of oxide layers, resulting in component damage.

The majority of the ICH2 I/O buffers are driven by the 3.3V supplies, but are controlled by logic that is powered by the 1.85V supplies. Thus, another consequence of faulty power sequencing arises if the 3.3V supply comes up first. In this case the I/O buffers will be in an undefined state until the 1.85V logic is powered up. Some signals that are defined as "Input-only" actually have output buffers that are normally disabled, and the ICH2 may unexpectedly drive these signals if the 3.3V supply is active while the 1.85V supply is not.

Figure 64 shows an example power-on sequencing circuit that ensures the 2V Rule is obeyed. This circuit uses a NPN (Q2) and PNP (Q1) transistor to ensure the 1.85V supply tracks the 3.3V supply. The NPN transistor controls the current through PNP from the 3.3V supply into the 1.85V

Page 121: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Controller Hub 2 (ICH2)

R

Intel® 815E Chipset Platform Design Guide 121

power plane by varying the voltage at the base of the PNP transistor. By connecting the emitter of the NPN transistor to the 1.85V plane, current will not flow from the 3.3V supply into 1.85V plane when the 1.85V plane reaches 1.85V.

Figure 64. 1.85V/3.3V Power Sequencing Circuit Example

Q1 PNP

Q2 NPN

220

220

470

+3.3V +1.85V

When analyzing systems that may be "marginally compliant" to the 2V Rule, pay close attention to the behavior of the ICH2's RSMRST# and PWROK signals, since these signals control internal isolation logic between the various power planes:

• RSMRST# controls isolation between the RTC well and the Resume wells.

• PWROK controls isolation between the Resume wells and Main wells

If one of these signals goes high while one of its associated power planes is active and the other is not, a leakage path will exist between the active and inactive power wells. This could result in high, possibly damaging, internal currents.

10.3 Power Sequencing on Wake Events For systems providing functionality with 0.13 micron socket 370 processors, special handling of wake events is required. When a wake event is triggered, the GMCH and the CK815 must not sample BSEL[1:0] until the signal VTTPWRGD is asserted. This is handled by setting up the following sequence of events: 1. Power is not connected to the CK815-compliant clock driver until schematic signal

VTTPWRGD12 is asserted. 2. Clocks to the ICH2 stabilize before the power supply asserts PWROK to the ICH2. There is

no guarantee this will occur as the implementation for the previous step relies on the 12V supply. Thus, it is necessary to gate PWROK to the ICH2 from the power supply while the CK815 is given sufficient time for the clocks to become stable. The amount of time required is a minimum 20 ms.

3. ICH2 takes the GMCH out of reset. 4. GMCH samples BSEL[1:0]. (CK815 will have sampled BSEL[1:0] much earlier.)

Refer to Section 4.3 for full implementation details.

Page 122: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Controller Hub 2 (ICH2)

R

122 Intel® 815E Chipset Platform Design Guide

10.4 Power Plane Splits Figure 65. Power Plane Split Example

pwr_plane_splits

10.5 Power Supply PS_ON Considerations If a pulse on SLP_S3# or SLP_S5# is short enough (~ 10100 mS) such that PS_ON is driven active during the exponential decay of the power rails, a few power supplies may not be designed to handle this short pulse condition. In this case, the power supply will not respond to this event and never power back up. These power supplies would need to be unplugged and re-plugged to bring the system back up. Power supplies not designed to handle this condition must have their power rails decay to a certain voltage level before they can properly respond to PS_ON. This level varies with affected power supply.

The ATX spec does not specify a minimum pulse width on PS_ON de-assertion, which means power supplies must be able to handle any pulse width. This issue can affect any power supply (beyond ATX) with similar PS_ON circuitry. Due to variance in the decay of the core power rails per platform, a single board or chipset silicon fix would be non-deterministic (may not solve the issue in all cases).

The platform designer must ensure that the power supply used with the platform is not affected by this issue.

Page 123: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 123

11 I/O Subsystem This chapter provides guidelines for connecting and routing the IDE, AC 97, USB, IO-APIC, SMBus, PCI, LPC/FWH, and RTC subsystems.

11.1 IDE Interface This section contains guidelines for connecting and routing the ICH2 IDE interface. The ICH2 has two independent IDE channels. This section provides guidelines for IDE connector cabling and motherboard design, including component and resistor placement and signal termination for both IDE channels. The ICH2 has integrated the series resistors that typically have been required on the IDE data signals (PDD[15:0] and SDD[15:0]) running to the two ATA connectors. Intel does not anticipate requiring additional series termination, but OEMs should verify the motherboard signal integrity via simulation. Additional external 0 Ω resistors can be incorporated into the design to address possible noise issues on the motherboard. The additional resistor layout increases flexibility by providing future stuffing options.

The IDE interface can be routed with 5 mil traces on 7 mil spaces and must be less than 8 inches long (from ICH2 to IDE connector). Additionally, the shortest IDE signal (on a given IDE channel) must be less than 0.5 inch shorter than the longest IDE signal (on that channel).

11.1.1 Cabling • Length of cable: Each IDE cable must be equal to or less than 18 inches.

• Capacitance: Less than 30 pF

• Placement: A maximum of 6 inches between drive connectors on the cable. If a single drive is placed on the cable it should be placed at the end of the cable. If a second drive is placed on the same cable it should be placed on the connector next closest to the end of the cable (6 inches away from the end of the cable).

• Grounding: Provide a direct, low-impedance chassis path between the motherboard ground and hard disk drives.

• ICH2 Placement: The ICH2 must be placed at most 8 inches from the ATA connector(s).

11.2 Cable Detection for Ultra ATA/66 and Ultra ATA/100 The ICH2 IDE controller supports PIO, multiword (8237-style) DMA, and Ultra DMA modes 0 through 5. The ICH2 must determine the type of cable present, to configure itself for the fastest possible transfer mode that the hardware can support.

An 80-conductor IDE cable is required for Ultra ATA/66 and Ultra ATA/100. This cable uses the same 40-pin connector as the old 40-pin IDE cable. The wires in the cable alternate: ground, signal, ground, signal etc. All ground wires are tied together on the cable (and they are tied to the ground on the motherboard through the ground pins in the 40-pin connector). This cable conforms

Page 124: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

124 Intel® 815E Chipset Platform Design Guide

to the Small Form Factor Specification SFF-8049, which is obtainable from the Small Form Factor Committee.

To determine whether the ATA/66 or ATA/100 mode can be enabled, the ICH2 requires that the system software attempt to determine the type of cable used in the system. If the system software detects an 80-conductor cable, it may use any Ultra DMA mode up to the highest transfer mode supported by both the chipset and the IDE device. If a 40-conductor cable is detected, the system software must not enable modes faster than Ultra DMA Mode 2 (Ultra ATA/33).

Intel recommends that cable detection be performed using a combination host-side/device-side detection mechanism. Note that host-side detection cannot be implemented on an NLX form factor system, since this configuration does not define interconnect pins for the PDIAG#/CBLID# from the riser (containing the ATA connectors) to the motherboard. These systems must rely on the device-side detection mechanism only.

11.2.1 Combination Host-Side/Device-Side Cable Detection

Host-side detection (described in the ATA/ATAPI-4 Standard, Section 5.2.11) requires the use of two GPI pins (one for each IDE channel). The proper way to connect the PDIAG#/CBLID# signal of the IDE connector to the host is shown in Figure 66. All IDE devices have a 10 kΩ pull-up resistor to 5 V on this signal. Not all GPI and GPIO pins on the ICH2 are 5V tolerant. If non 5V tolerant inputs are used, a resistor divider is required to prevent 5 V on the ICH2 or FWH pins. The proper value of the divider resistor is 10 kΩ (as shown in Figure 66).

Figure 66. Combination Host-Side / Device-Side IDE Cable Detection

80-conductorIDE cable

IDE drive

5 V

ICH2

GPIO

GPIO

Open

IDE drive

5 V

40-conductorcable

IDE drive

5 V

PDIAG#ICH2

GPIO

GPIO

IDE drive

5 V

Resistor required fornon-5V-tolerant GPI.

PDIAG#

PDIAG#PDIAG#

Resistor required fornon-5V-tolerant GPI.

10 kΩ

10 kΩ

To secondaryIDE connector

To secondaryIDE connector

PDIAG#/CBLID#

PDIAG#/CBLID#

10 kΩ

10 kΩ

10 kΩ

10 kΩ

IDE_combo_cable_det

This mechanism allows BIOS, after diagnostics, to sample PDIAG#/CBLID#. If the signal is High, then there is 40-conductor cable in the system and ATA modes 3, 4 and 5 must not be enabled.

Page 125: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 125

If PDIAG#/CBLID# is detected Low, then there may be an 80-conductor cable in the system or there may be a 40-conductor cable and a legacy slave device (Device 1) that does not release the PDIAG#/CBLID# signal as required by the ATA/ATAPI-4 standard. In this case, BIOS should check the Identify Device information in a connected device that supports Ultra DMA modes higher than 2. If ID Word 93, bit 13, is set to 1, then an 80-conductor cable is present. If this bit is set to 0, then a legacy slave (Device 1) is preventing proper cable detection, so BIOS should configure the system as though a 40-conductor cable were present and then notify the user of the problem.

11.2.2 Device-Side Cable Detection

For platforms that must implement device-side detection only (e.g., NLX platforms), a 0.047 µF capacitor is required on the motherboard as shown in Figure 67. This capacitor should not be populated when implementing the recommended combination host-side/device-side cable detection mechanism described previously.

Figure 67. Device-Side IDE Cable Detection

80-conductorIDE cable

IDE drive

5 V

ICH2

Open

IDE drive

5 V

40-conductorcable

IDE drive

5 V

PDIAG#ICH2

IDE drive

5 V

PDIAG#

PDIAG#PDIAG#PDIAG#/CBLID#

PDIAG#/CBLID#

10 kΩ

10 kΩ

10 kΩ

10 kΩ

IDE_dev_cable_det

0.047 µF

0.047 µF

This mechanism creates a resistor-capacitor (RC) time constant. The ATA mode 3, 4 or 5 drive will drive PDIAG#/CBLID# Low and then release it (pulled up through a 10 kΩ resistor). The drive will sample the signal after releasing it. In an 80-conductor cable, PDIAG#/CBLID# is not connected through to the host, so the capacitor has no effect. In a 40-conductor cable, the signal is connected to the host, so the signal will rise more slowly as the capacitor charges. The drive can detect the difference in rise times and will report the cable type to the BIOS when it sends the IDENTIFY_DEVICE packet during system boot, as described in the ATA/66 specification.

Page 126: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

126 Intel® 815E Chipset Platform Design Guide

11.2.3 Primary IDE Connector Requirements

Figure 68. Connection Requirements for Primary IDE Connector

PCIRST# *

PDD[15:0]

PDA[2:0]PDCS1#PDCS3#PDIOR#PDIOW#PDDREQ

PIORDY

IRQ14

PDDACK#

GPIOx

ICH2

Primary IDEConnector

IDE_primary_conn_require

Reset#

PDIAG# / CBLID#

N.C. Pins 32 & 34

CSEL

* Due to ringing, PCIRST# must be buffered.

3.3 V3.3 V

4.7 kΩ 8.210 kΩ

10 kΩ(needed only for

non-5V-tolerant GPI)

2247 ΩPCIRST_BUF#

NOTES: 1. 22 Ω to 47 Ω series resistors are required on RESET#. The correct value should be determined for

each unique motherboard design, based on signal quality. 2. An 8.2 kΩ to 10 kΩ pull-up resistor is required on IRQ14 and IRQ15 to VCC3. 3. A 4.7 kΩ pull-up resistor to VCC3 is required on PIORDY and SIORDY. 4. Series resistors can be placed on the control and data lines to improve signal quality. The resistors are

placed as close as possible to the connector. Values are determined for each unique motherboard design.

5. The 10 kΩ resistor to ground on the PDIAG#/CBLID# signal is now required on the Primary Connector. This change is to prevent the GPI pin from floating if a device is not present on the IDE interface.

Page 127: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 127

11.2.4 Secondary IDE Connector Requirements

Figure 69. Connection Requirements for Secondary IDE Connector

PCIRST# *

SDD[15:0]

SDA[2:0]SDCS1#SDCS3#SDIOR#SDIOW#SDDREQ

SIORDY

IRQ15

SDDACK#

GPIOy

ICH2

Secondary IDEConnector

IDE_secondary_conn_require

Reset#

PDIAG# / CBLID#

N.C. Pins 32 & 34

CSEL

* Due to ringing, PCIRST# must be buffered.

3.3 V3.3 V

4.7 kΩ 8.210 kΩ

10 kΩ(needed only for

non-5V-tolerant GPI)

2247 ΩPCIRST_BUF#

NOTES: 1. 22 Ω to 47 Ω series resistors are required on RESET#. The correct value should be determined for

each unique motherboard design, based on signal quality. 2. An 8.2 kΩ to 10 kΩ pull-up resistor is required on IRQ14 and IRQ15 to VCC3. 3. A 4.7 kΩ pull-up resistor to VCC3 is required on PIORDY and SIORDY 4. Series resistors can be placed on the control and data lines to improve signal quality. The resistors are

placed as close as possible to the connector. Values are determined for each unique motherboard design.

5. The 10 kΩ resistor to ground on the PDIAG#/CBLID# signal is now required on the Primary Connector. This change is to prevent the GPI pin from floating if a device is not present on the IDE interface.

Page 128: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

128 Intel® 815E Chipset Platform Design Guide

11.3 AC ’97 The ICH2 implements an AC 97 2.1-compliant digital controller. Any codec attached to the ICH2 AC-link must be AC 97 2.1 compliant, as well. Contact your codec IHV for information on 2.1-compliant products. For information on the AC ’97 2.1 Specification, see Section 1.2, “Reference Documents”.

The AC-link is a bidirectional, serial PCM digital stream. It handles multiple input and output data streams, as well as control register accesses, by employing a time-division-multiplexed (TDM) scheme. The AC-link architecture enables data transfer through individual frames transmitted serially. Each frame is divided into 12 outgoing and 12 incoming data streams, or slots. The architecture of the ICH2 AC-link allows a maximum of two codecs to be connected. Figure 70 shows a two-codec topology of the AC-link for the ICH2.

Figure 70. Intel® ICH2 AC ’97– Codec Connection

AC '97 2.1controller section

of ICH2

Digital AC '972.1 controller

Primary codec

Secondary codec

AC / MC

AC / MC / AMC

ICH2_AC97_codec_conn

SDIN 0

SDIN 1

RESET#

SDOUT

SYNC

BIT_CLK

Intel has developed an advanced common connector for both AC 97 as well as networking options. This is known as the Communications and Network Riser (CNR). Refer to Section 11.3.1.

The AC 97 interface can be routed using 5 mil traces with 5-mil space between the traces. Maximum length between ICH2 to CODEC/CNR is 14 inches in a tee topology. This assumes that a CNR riser card implements its audio solution with a maximum trace length of 4 inches for the ACLINK. Trace impedance should be Z0 = 60 Ω ± 15%.

Clocking is provided from the primary codec on the link via BITCLK, and it is derived from a 24.576 MHz crystal or oscillator. Refer to the primary codec vendor for crystal or oscillator requirements. BITCLK is a 12.288 MHz clock driven by the primary codec to the digital

Page 129: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 129

controller (ICH2) and any other codec present. That clock is used as the timebase for latching and driving data.

The ICH2 supports wake-on-ring from S1-S5 via the AC-link. The codec asserts SDATAIN to wake the system. To provide wake capability and/or caller ID, standby power must be provided to the modem codec.

The ICH2 has weak pull-downs/pull-ups that are enabled only when the AC-Link Shut-off bit in the ICH2 is set. This keeps the link from floating when the AC-link is off or when there are no codecs present.

If the Shut-off bit is not set, it means that there is a codec on the link. Therefore, BITCLK and AC_SDOUT will be driven by the codec and ICH2, respectively. However, AC_SDIN0 and AC_SDIN1 may not be driven. If the link is enabled, it may be assumed that there is at least one codec. If there is one or no codec onboard, then the unused AC_SDIN pin(s) should have a weak (10 kΩ) pull-down to keep it from floating.

11.3.1 Communications Network Riser (CNR)

For related documents on the Communication Network Riser, refer to the Communication Network Riser Specification, Revision 1.1 (See Section 1.2, Reference Documents). The Communication and Networking Riser (CNR) Specification defines a hardware-scalable Original Equipment Manufacturer (OEM) motherboard riser and interface. This interface supports multi-channel audio, a V.90 analog modem, phone-line based networking, and 10/100 Ethernet based networking. The CNR specification defines the interface that should be configured before system shipment. Standard I/O expansion slots, such as those supported by the PCI bus architecture, are intended to continue serving as the upgrade medium. The CNR mechanically shares a PCI slot. Unlike in the case of the AMR, the system designer will not sacrifice a PCI slot after deciding not to include a CNR in a particular build. It is required that the CNR A0-A2 pins be set to a unique address, so that the CNR EEPROM can be accessed.

The Figure 71 indicates the interface for the CNR connector. The Platform LAN Connection (PLC) can either be an 82562EH or 82562ET component. Refer to the CNR specification for additional information.

Figure 71. CNR Interface

Communication andnetworking riser

(up to 2 AC '97 codecsand 1 PLC device)

AC '97 I/F

LAN I/F

USB

SMBus

Power

Reserved

Core logiccontroller

IO_subsys_CNR_IF

CNR connector

Page 130: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

130 Intel® 815E Chipset Platform Design Guide

11.3.2 AC ’97 Audio Codec Detect Circuit and Configuration Options

The following provides general circuits to implement a number of different codec configurations. For Intel recommended codec configurations, refer to the Intel® White Paper Recommendations for ICHx/AC ’97 Audio (Motherboard and Communication and Network Riser).

To support more than two channels of audio output, the ICH2 allows for a configuration where two audio codecs work concurrently to provide surround capabilities. To maintain data-on-demand capabilities, the ICH2 AC 97 controller, when configured for 4 or 6 channels, will wait for all the appropriate slot request bits to be set before sending data in the SDATA_OUT slots. This allows for simple FIFO synchronization of the attached codecs. It is assumed that both codecs will be programmed to the same sample rate, and that the codecs have identical (or at least compatible) FIFO depth requirements. It is recommended that the codecs be provided by the same vendor, upon the certification of their interoperability in an audio channel configuration.

The following circuits (Figure 72, Figure 73, Figure 74, and Figure 75) show the adaptability of a system with the modification of RA and RB combined with some basic glue logic to support multiple codec configurations. This also provides a mechanism to make sure that only two codecs are enabled in a given configuration and allows the configuration of the link to be determined by the BIOS so that the correct PnP IDs can be loaded.

Figure 72. CDC_DN_ENAB# Support Circuitry for a Single Codec on Motherboard

Codec A

RESET#

SDATA_IN

Codec C

RESET#

SDATA_INAC97_RESET#

Vcc

CDC_DN_ENAB#

CNR BoardMotherboard

RA10kohms

RB1kohmsTo General

Purpose Input

From AC '97Controller

CNR Connector

To AC '97Digital

Controller

SDATA_IN0

SDATA_IN1

Codec D

RESET#

SDATA_IN

As shown in Figure 72, when a single codec is located on the motherboard, the resistor RA and the circuitry (AND and NOT gates) shown inside the dashed box must be implemented, on the motherboard. This circuitry is required to disable the motherboard codec when a CNR is installed which contains two AC 97 codecs (or a single AC 97 codec which must be the primary codec on the AC-Link).

By installing resistor RB (1 kΩ) on the CNR, the codec on the motherboard becomes disabled (held in reset) and the codec(s) on the CNR take control of the AC-Link. One possible example of

Page 131: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 131

using this architecture is a system integrator installing an audio plus modem CNR in a system already containing an audio codec on the motherboard. The audio codec on the motherboard would then be disabled, allowing all of the codecs on the CNR to be used.

The architecture shown in Figure 73 has some unique features. These include the possibility of the CNR being used as an upgrade to the existing audio features of the motherboard (by simply changing the value of resistor RB on the CNR to 100 kΩ). An example of one such upgrade is increasing from two-channel to four or six-channel audio.

Both Figure 73 and Figure 74 show a switch on the CNR board. This is necessary to connect the CNR board codec to the proper SDATA_INn line as to not conflict with the motherboard codec(s).

Figure 73. CDC_DN_ENAB# Support Circuitry for Multi-Channel Audio Upgrade

PrimaryAudioCodec

RESET#SDATA_IN

AudioCodecRESET#

ID0#SDATA_IN

AC97_RESET#

CDC_DN_ENAB#

CNR BoardMotherboard

RA10kohms

To GeneralPurpose Input

From AC '97Controller

CNR Connector

SDATA_IN0

SDATA_IN1To AC '97

DigitalController

Vcc

RB100kohms

NOTE: Figure 74 shows the circuitry required on the motherboard to support a two-codec down configuration. This circuitry disables the codec on a single codec CNR. Notice that in this configuration the resistor, RB, has been changed to 100 kΩ.

Figure 74. CDC_DN_ENAB# Support Circuitry for Two-Codecs on Motherboard / One-Codec on CNR

PrimaryAudioCodec

RESET#SDATA_IN

AudioCodecRESET#

ID0#SDATA_INAC97_RESET#

CDC_DN_ENAB#

CNR BoardMotherboard

RA10kohms

To GeneralPurpose Input

From AC '97Controller

CNR Connector

SDATA_IN0

SDATA_IN1To AC '97

DigitalController

SecondaryCodec

RESET#SDATA_IN

Vcc

RB100kohms

Page 132: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

132 Intel® 815E Chipset Platform Design Guide

Figure 75 shows the case of two-codecs down and a dual-codec CNR. In this case, both codecs on the motherboard are disabled (while both on CNR are active) by RA being 10 kΩ and RB being 1 kΩ.

Figure 75. CDC_DN_ENAB# Support for Two-Codecs on Motherboard / Two-Codecs on CNR

Codec A

RESET#

SDATA_IN

Codec C

RESET#

SDATA_INAC97_RESET#

Vcc

CDC_DN_ENAB#

CNR BoardMotherboard

RA10kohms

RB1kohmsTo General

Purpose Input

From AC '97Controller

CNR Connector

To AC '97Digital

Controller

SDATA_IN0

SDATA_IN1

Codec D

RESET#

SDATA_IN

Codec B

RESET#SDATA_IN

NOTES: 1. While it is possible to disable down codecs, as shown in Figure 72 and Figure 75, it is recommended

against for reasons cited in the ICHx/AC '97 White Paper, including avoidance of shipping redundant and/or non-functional audio jacks.

2. All CNR designs include resistor RB. The value of RB is either 1 kΩ or 100 kΩ, depending on the intended functionality of the CNR (whether or not it intends to be the primary/controlling codec).

3. Any CNR with two codecs must implement RB with value 1 kΩ. If there is one codec, use a 100 kΩ pull-up resistor. A CNR with zero codecs must not stuff RB. If implemented, RB must be connected to the same power well as the codec so that it is valid whenever the codec has power.

4. A motherboard with one or more codecs down must implement RA with a value of 10 kΩ. 5. The CDC_DN_ENAB# signal must be run to a GPI so that the BIOS can sense the state of the signal.

CDC_DN_ENAB# is required to be connected to a GPI; a connection to a GPIO is strongly recommended for testing purposes.

Table 29. Signal Descriptions

Signal Description

CDC_DN_ENAB# When low, indicates that the codec on the motherboard is enabled and primary on the AC 97 Interface. When high, indicates that the motherboard codec(s) must be removed from the AC 97 Interface (held in reset), because the CNR codec(s) will be the primary device(s) on the AC 97 Interface.

AC97_RESET# Reset signal from the AC 97 Digital Controller (ICH2).

SDATA_Inn AC 97 serial data from an AC 97-compliant codec to an AC 97-compliant controller (i.e., the ICH2).

Page 133: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 133

11.3.2.1 Valid Codec Configurations

Table 30. Codec Configurations

Valid Codec Configurations Invalid Codec Configurations

AC(Primary) MC(Primary) + X(any other type of codec)

MC(Primary) AMC(Primary) + AMC(Secondary)

AMC(Primary) AMC(Primary) + MC(Secondary)

AC(Primary) + MC(Secondary)

AC(Primary) + AC(Secondary)

AC(Primary) + AMC(Secondary)

11.3.3 SPKR Pin Considerations

The effective impedance of the speaker and codec circuitry on the SPKR signal line must be greater than 50 kΩ. Failure to due so will cause the TCO Timer Reboot function to be erroneously disabled. SPKR is used as both the output signal to the system speaker and as a functional strap. The strap function enables or disables the TCO Timer Reboot function based on the state of the SPKR pin on the rising edge of POWEROK. When enabled, the ICH2 sends an SMI# to the processor upon a TCO timer timeout. The status of this strap is readable via the NO_REBOOT bit (bit 1, D31: F0, Offset D4h). The SPKR signal has a weak integrated pull up resistor (the resistor is only enabled during boot/reset). Therefore its default state when the pin is a no connect is a logical one or enabled. To disable the feature, a jumper can be populated to pull the signal line low (see Figure 76). The value of the pull-down must be such that the voltage divider caused by the pull down and integrated pull up resistors will be read as logic low. When the jumper is not populated, a low can still be read on the signal line if the effective impedance due to the speaker and codec circuit is equal to or lower than the integrated pull up resistor. It is therefore strongly recommended that the effective impedance be greater than 50 kΩ and the pull-down resistor be less than 7.3 kΩ.

Figure 76. Example Speaker Circuit

Stuff Jumper ToDisable TimeoutFeature.

Effective ImpedanceDue To Speaker andCodec Circuit.Reff > 50 KΩ

ICH2

Integrated Pull-Up18-42 KΩ

Spkr_Ckt_815E_B0

R < 7.3 KΩ

3.3V

Page 134: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

134 Intel® 815E Chipset Platform Design Guide

11.3.4 AC ’97 Routing

To ensure the maximum performance of the codec, proper component placement and routing techniques are required. These techniques include properly isolating the codec, associated audio circuitry, analog power supplies, and analog ground planes, from the rest of the motherboard. This includes plane splits and proper routing of signals not associated with the audio section. Contact your vendor for device-specific recommendations.

The basic recommendations are as follows:

• Special consideration must be given for the ground return paths for the analog signals. • Digital signals routed in the vicinity of the analog audio signals must not cross the power

plane split lines. Analog and digital signals should be located as far as possible from each other.

• Partition the board with all analog components grouped together in one area and all digital components in another.

• Separate analog and digital ground planes should be provided, with the digital components over the digital ground plane, and the analog components, including the analog power regulators, over the analog ground plane. The split between planes must be a minimum of 0.05 inches wide.

• Keep digital signal traces, especially the clock, as far as possible from the analog input and voltage reference pins.

• Do not completely isolate the analog/audio ground plane from the rest of the board ground plane. There should be a single point (0.25 inches to 0.5 inches wide) where the analog/isolated ground plane connects to the main ground plane. The split between planes must be a minimum of 0.05 inches wide.

• Any signals entering or leaving the analog area must cross the ground split in the area where the analog ground is attached to the main motherboard ground. That is, no signal should cross the split/gap between the ground planes, which would cause a ground loop, thereby greatly increasing EMI emissions and degrading the analog and digital signal quality.

• Analog power and signal traces should be routed over the analog ground plane. • Digital power and signal traces should be routed over the digital ground plane. • Bypassing and decoupling capacitors should be close to the IC pins, or positioned for the

shortest connections to pins, with wide traces to reduce impedance. • All resistors in the signal path or on the voltage reference should be metal film. Carbon

resistors can be used for DC voltages and the power supply path, where the voltage coefficient, temperature coefficient, and noise are not factors.

• Regions between analog signal traces should be filled with copper, which should be electrically attached to the analog ground plane. Regions between digital signal traces should be filled with copper, which should be electrically attached to the digital ground plane.

• Locate the crystal or oscillator close to the codec.

Clocking is provided from the primary codec on the link via BITCLK, and it is derived from a 24.576 MHz crystal or oscillator. Refer to the primary codec vendor for the crystal or oscillator requirements. BITCLK is a 12.288 MHz clock driven by the primary codec to the digital controller (ICH2) and by any other codec present. The clock is used as the time base for latching and driving data.

Page 135: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 135

11.3.5 Motherboard Implementation

The following design considerations are provided for the implementation of an ICH2 platform using AC 97. These design guidelines have been developed to ensure maximum flexibility for board designers, while reducing the risk of board-related issues. These recommendations are not the only implementation or a complete checklist, but they are based on the ICH2 platform.

• Components such as FET switches, buffers or logic states should not be implemented on the AC-link signals, except for AC_RST#. Doing so would potentially interfere with timing margins and signal integrity.

• The ICH2 supports wake-on-ring from S1S4 states via the AC-link. The codec asserts SDATAIN to wake the system. To provide wake capability and/or caller ID, standby power must be provided to the modem codec. If no codec is attached to the link, internal pull-downs will prevent the inputs from floating, so external resistors are not required. The ICH2 does not wake from the S5 state via the AC-link.

• PC_BEEP should be routed through the audio codec. Care should be taken to avoid the introduction of a pop when powering the mixer up or down.

11.4 USB

11.4.1 Using Native USB Interface

The general guidelines for the USB interface are as follows: • Unused USB ports should be terminated with 15 kΩ pull-down resistors on both P+/P- data

lines. • 15 Ω series resistors should be placed as close as possible to the ICH2 (<1 inch). These series

resistors are required for source termination of the reflected signal. • An optional 47 pF cap may be placed as close to the USB connector as possible on the USB

data lines (P0+/-, P1+/-, P2+/-, P3+/-). This cap can be used for signal quality (rise/fall time) and to help minimize EMI radiation.

• 15 kΩ ± 5% pull-down resistors should be placed on the USB side of the series resistors on the USB data lines (P0± P3±), and they are REQUIRED for signal termination by the USB specification. The stub should be as short as possible.

• The trace impedance for the P0±P3± signals should be 45 Ω (to ground) for each USB signal P+ or P-. When the stack-up recommended in Section 2.1 is used, the USB requires 9-mil traces. The impedance is 90 Ω between the differential signal pairs P+ and P-, to match the 90 Ω USB twisted-pair cable impedance. Note that the twisted-pairs characteristic impedance of 90 Ω is the series impedance of both wires, resulting in an individual wire presenting a 45 Ω impedance. The trace impedance can be controlled by carefully selecting the trace width, trace distance from power or ground planes, and physical proximity of nearby traces.

• USB data lines must be routed as critical signals. The P+/P- signal pair must be routed together, parallel to each other on the same layer, and not parallel with other non-USB signal traces to minimize crosstalk. Doubling the space from the P+/P- signal pair to adjacent signal traces will help to prevent crosstalk. Do not worry about crosstalk between the two P+/P- signal traces. The P+/P- signal traces must also be the same length. This will minimize the effect of common mode current on EMI. Lastly, do not route over plane splits.

Page 136: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

136 Intel® 815E Chipset Platform Design Guide

Figure 77 illustrates the recommended USB schematic.

Figure 77. USB Data Signals

1 5 k

1 5 k

1 5 o h m

1 5 o h m

IC H 2

P +

P -

US

B C

onne

ctor

< 1 "

< 1 "

9 0 o h m

4 5 o h m

4 5 o h m

D r iv e r

D r iv e r

U S B T w is te d P a ir C a b leT ra n s m is s io n L in e

M o th e rb o a rd T ra c e

M o th e rb o a rd T ra c e

O p t io n a l 4 7 p f

O p t io n a l 4 7 p f

The recommended USB trace characteristics are:

• Impedance Z0 = 45.4 Ω

• Line Delay = 160.2 ps

• Capacitance = 3.5 pF

• Inductance = 7.3 nH

• Res @ 20° C = 53.9 mΩ

11.4.2 Disabling the Native USB Interface of Intel® ICH2

The ICH2 native USB interface can be disabled. This can be done when an external PCI based USB controller is being implemented in the platform. To disable the native USB Interface, ensure the differential pairs are pulled down thru 15 kΩ resistors, ensure the OC[3:0]# signals are de-asserted by pulling them up weakly to VCC3SBY, and that both function 2 & 4 are disabled via the D31:F0;FUNC_DIS register. Ensure that the 48 MHz USB clock is connected to the ICH2 and is kept running. This clock must be maintained even though the internal USB functions are disabled.

Page 137: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 137

11.5 IOAPIC Design Recommendation Systems not using the IOAPIC should comply with the following recommendations:

• On the ICH2: Tie PICCLK directly to ground. Tie PICD0, PICD1 to ground through a 10 kΩ resistor.

• On the processor: PICCLK requires special implementation for universal motherboard designs. See

Section 4.2.9. Tie PICD0 to 2.5 V through 10 kΩ resistors. Tie PICD1 to 2.5 V through 10 kΩ resistors.

11.5.1 PIRQ Routing Example

PCI interrupt request signals E-H are new to the ICH2. These signals have been added to lower the latency caused by having multiple devices on one Interrupt line. With these new signals, each PCI slot can have an individual PCI interrupt request line (assuming that the system has four PCI slots). Table 31 shows how the ICH2 uses the PCI IRQ when the I/O APIC is active.

Table 31. I/O APIC Interrupt Inputs 16 thru 23 Usage

No IOAPIC INTIN PIN Function in Intel® ICH2 Using the PCI IRQ in I/O APIC

1 IOAPIC INTIN PIN 16 (PIRQA)

2 IOAPIC INTIN PIN 17 (PIRQB) AC 97, Modem and SMBUS

3 IOAPIC INTIN PIN 18 (PIRQC)

4 IOAPIC INTIN PIN 19 (PIRQD) USB Controller #1

5 IOAPIC INTIN PIN 20 (PIRQE) Internal LAN Device

6 IOAPIC INTIN PIN 21 (PIRQF)

7 IOAPIC INTIN PIN 22 (PIRQG)

8 IOAPIC INTIN PIN 23 (PIRQH) USB Controller #2 (starting from Intel® ICH2 B0 stepping)

Interrupts B, D, E and H service devices internal to the ICH2. Interrupts A, C, F, and G are unused and can be used by PCI slots. Figure 78 shows an example of IRQ line routing to the PCI slots.

Page 138: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

138 Intel® 815E Chipset Platform Design Guide

Figure 78. Example PIRQ Routing

ICH2

PIRQA#PIRQB#PIRQC#PIRQD#

PIRQE#PIRQF#PIRQG#PIRQH#

INTA

INTB

INTC

INTD

INTA

INTB

INTC

INTD

INTA

INTB

INTC

INTD

INTA

INTB

INTC

INTD

Slot 1PCI Device 0

(AD16 to IDSEL)

Slot 3PCI Device 6

(AD22 to IDSEL)

Slot 4PCI Device C

(AD28 to IDSEL)

Slot 2PCI Device 5

(AD21 to IDSEL)

The PCI IRQ Routing shown in Figure 78 allows the ICH2 internal functions to have a dedicated IRQ (assuming add-in cards are single function devices and use INTA). If a P2P bridge card or a multifunction device uses more than one INTn# pin on the ICH2 PCI Bus, the ICH2 internal functions will start sharing IRQs. It is up to the board designer to route these signals in a way that will prove the most efficient for their particular system. A PCI slot can be routed to share interrupts with any of the ICH2s internal device/functions.

11.6 SMBus/SMLink Interface The SMBus interface on the ICH2 is the same as that on the ICH. It uses two signals, SMBCLK and SMBDATA, to send and receive data from components residing on the bus. These signals are used exclusively by the SMBus host controller. The SMBus host controller resides inside the ICH2.

The ICH2 incorporates a new SMLink interface supporting AOL*, AOL2*, and slave functionality. It uses two signals, SMLINK[1:0]. SMLINK[0] corresponds to an SMBus clock signal, and SMLINK[1] corresponds to an SMBus data signal. These signals are part of the SMB slave interface.

For Alert on LAN (AOL) functionality, the ICH2 transmits heartbeat and event messages over the interface. When the 82562EM LAN connect component is used, the ICH2s integrated LAN controller claims the SMLink heartbeat and event messages and sends them out over the network. An external, AOL2-enabled LAN controller will connect to the SMLink signals, to receive heartbeat and event messages as well to as access the ICH2 SMBus slave interface. The slave interface function allows an external microcontroller to perform various functions. For example, the slave write interface can reset or wake a system, generate SMI# or interrupts, and send a message. The slave read interface can read the system power state, read the watchdog timer status, and read system status bits.

Both the SMBus host controller and the SMBus slave interface obey the SMBus protocol, so the two interfaces can be externally wire-ORed together to allow an external management ASIC to access targets on the SMBus as well as the ICH2 slave interface. This is performed by connecting SMLink[0] to SMBCLK and SMLink[1] to SMBDATA, as shown in Figure 79. Since the SMBus

Page 139: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 139

and SMLINK are pulled up to VCCSUS3_3, system designers must ensure that they implement proper isolation for any devices that may be powered down while VCCSUS3_3 is still active (i.e., thermal sensors).

Figure 79. SMBus/SMLink Interface

82801BA

Host Controller andSlave Interface

SMBus SMBCLK

SPD Data

Temperature onThermal Sensor

NetworkInterface

Card on PCI

Microcontroller

82850

MotherboardLAN Controller

Wire OR(Optional)

SMLink0

SMLink1

SMLink

SMBDATA

smbus-link

Note: Intel does not support external access to the ICH2s integrated LAN controller via the SMLink interface. Also, Intel does not support access to the ICH2s SMBus slave interface by the ICH2s SMBus host controller. Table 32 describes the pull-up requirements for different implementations of the SMBus and SMLink signals.

Table 32. Pull-Up Requirements for SMBus and SMLink

SMBus / SMLink Use Implementation

Alert-on-LAN* signals 4.7 kΩ pull-up resistors to 3.3 VSB are required.

GPIOs Pull-up resistors to 3.3 VSB and the signals must be allowed to change states on power-up. (For example, on power-up the Intel® ICH2 will drive heartbeat messages until the BIOS programs these signals as GPIOs.) The value of the pull-up resistors depends on the loading on the GPIO signal.

Not Used 4.7 kΩ pull-up resistors to 3.3 VSB are required.

11.6.1 SMBus Architecture & Design Considerations

There are several possibilities for designing an SMBus using the ICH2. Designs can be grouped into three major categories based on the power supply source for the SMBus microcontrollers. This includes two unified designs, where all devices are powered by either VCCCORE or VCC_Suspend, and a mixed design where some devices are powered by each of the two supplies.

Primary considerations in choosing a design are based on:

• Whether there are there devices that must run in STR?

• Amount of VCC_Suspend current available, i.e. minimizing load of VCC_Suspend

Page 140: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

140 Intel® 815E Chipset Platform Design Guide

11.6.1.1 General Design Issues and Notes

Regardless of the architecture used, there are some general considerations.

• The pull-up resistor size for the SMBus data and clock signals is dependent on the number of devices present on the bus. A typical value is 8.2 kΩ. This should prevent the SMBus signals from floating, which could cause leakage in the ICH2 and other devices.

• SDRAM DIMMs have their SPD device powered by the same power plane as that used for the DRAM array. Thus, in a system where STR is supported, the SPD device must be powered by VCC_Suspend. In a system not supporting STR, this DIMM can be powered by the core supply.

• RIMM memory modules have a separate power source from the RDRAM array for the SPD device. If this SPD device needs to operate in STR, then it should be connected to the VCC_Suspend supply.

• The ICH2 does not run SMBus cycles while in STR.

• SMBus devices that can operate in STR must be powered by the VCC_Suspend supply.

11.6.1.1.1 The Unified VCC_Suspend Architecture

In this design all SMBus devices are powered by the VCC_Suspend supply. Consideration must be made to provide enough VCC_Suspend current while in STR.

Figure 80. Unified VCC_Suspend Architecture

ICH2

SMBusDevices

SMBus

VCCsus

vcccore_arch_1

VCCsus VCCsus

11.6.1.1.2 The Unified VCCCORE Architecture

In this design, all SMBUS devices are powered by the VCCCORE supply. This architecture allows none of the devices to operate in STR, but minimizes the load on VCC_Suspend (VCCsus).

Page 141: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 141

Figure 81. Unified VCCCORE Architecture

ICH2

SMBusDevices

SMBus

VCCsus

VCCCORE VCCCORE

vcccore_arch

NOTES: 1. The SMBus device needs to be back-drive safe while its supply (VCCCORE) is off and VCC_Suspend is

still powered. 2. In suspended modes where VCCCORE is OFF and VCC_Suspend is on, the VCCCORE node will be very

near ground. In this case the input leakage of the ICH will be approximately 10 uA.

11.6.1.1.3 Mixed Architecture

This design allows for SMBus devices to communicate while in STR, yet minimizes VCC_Suspend (VCCsus) leakage by keeping non-essential devices on the core supply. This is accomplished by the use of a bus switch to isolate the devices powered by the core and suspend supplies (see Figure 82).

Figure 82. Mixed VCC_Suspend/VCCCORE Architecture

ICH2

ASICsRuningin STR

SMBus

VCCsus

vcccore_arch_switch

SMBusDevices

CPUASIC

VCCCORE

CLKBF

VCCCORE

BusSwitch

VCCsus

VCCsus VCCsus

SMBus

OE#SLP_S3#

VCCsus

Added Considerations for Mixed Architecture • The bus switch must be powered by VCC_Suspend (VCCsus)

• If there are 5V SMBus devices used, then an added level translator must be used to separate those devices driving 5V from those driving 3V signal levels.

• Devices that are powered by the VCC_Suspend well must not drive into other devices that are powered off. This is accomplished with the bus switch.

Page 142: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

142 Intel® 815E Chipset Platform Design Guide

11.7 PCI The ICH2 provides a PCI Bus interface compliant with the PCI Local Bus Specification, Revision 2.2. The implementation is optimized for high-performance data streaming when the ICH2 is acting as either the target or the initiator on the PCI bus. For more information on the PCI Bus interface, refer to the PCI Local Bus Specification, Revision 2.2.

The ICH2 supports six PCI Bus masters (excluding the ICH2), by providing six REQ#/GNT# pairs. In addition, the ICH2 supports two PC/PCI REQ#/GNT# pairs, one of which is multiplexed with a PCI REQ#/GNT# pair.

Figure 83. PCI Bus Layout Example

IO_subsys_PCI_layout

ICH2

11.8 RTC The ICH2 contains a real-time clock (RTC) with 256 bytes of battery-backed SRAM. The internal RTC module provides two key functions: keeping the date and time and storing system data in its RAM when the system is powered down. This section will present the recommended implementation for the RTC circuit for the ICH2.

11.8.1 RTC Crystal

The ICH2 RTC module requires an external oscillating source of 32.768 kHz connected on the RTCX1 and RTCX2 pins. Figure 84 shows the external circuitry that comprises the oscillator of the ICH2 RTC.

Page 143: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 143

Figure 84. External Circuitry for the Intel® ICH2 RTC

32768 HzXtal

C10.047uF

C2 1

C3 1

R110MΩΩΩΩ

R210MΩΩΩΩ

VCCRTC 2

RTCX2 3

RTCX1 4

VBIAS 5

VSS 6

VCC3_3SBY

VBAT_RTC

1.0uF

1kΩΩΩΩ

1kΩΩΩΩ

NOTES: 1. The exact capacitor value must be based on the crystal makers recommendation. (The typical values

for C2 and C3 are 18 pF with CLOAD = 12.5 pF.) 2. VccRTC: Power for RTC well 3. RTCX2: Crystal input 2 Connected to the 32.768 kHz crystal. 4. RTCX1: Crystal input 1 Connected to the 32.768 kHz crystal. 5. VBIAS: RTC BIAS voltage This pin is used to provide a reference voltage. This DC voltage sets a

current that is mirrored throughout the oscillator and buffer circuitry. 6. VSS: Ground

11.8.2 External Capacitors

To maintain RTC accuracy the external capacitor C1 must be 0.047 µF. The external capacitor values for C2 and C3 should be chosen to provide the manufacturer-specified load capacitance (Cload) for the crystal, when combined with the parasitic capacitance of the trace, socket (if used), and package. When the external capacitor values are combined with the capacitance of the trace, socket, and package, the closer the capacitor value can be matched to the actual load capacitance of the crystal used, the more accurate the RTC.

The following equation can be used to choose the external capacitance values (C2 and C3):

Cload = (C2 * C3) / (C2 + C3) + Cparasitic

C3 can be chosen such that C3 > C2. Then C2 can be trimmed to obtain 32.768 kHz.

11.8.3 RTC Layout Considerations • Keep the RTC lead lengths as short as possible. Approximately 0.25 inch is sufficient. • Minimize the capacitance between Xin and Xout in the routing. • Put a ground plane under the XTAL components. • Do not route switching signals under the external components (unless on the other side of the

board). • The oscillator VCC should be clean. Use a filter, such as an RC low-pass or a ferrite inductor.

Page 144: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

144 Intel® 815E Chipset Platform Design Guide

11.8.4 RTC External Battery Connection

The RTC requires an external battery connection to maintain its functionality and its RAM while the ICH2 is not powered by the system.

Example batteries include the Duracell* 2032, 2025 or 2016 (or equivalent), which give many years of operation. Batteries are rated by storage capacity. The battery life can be calculated by dividing the capacity by the average current required. For example, if the battery storage capacity is 170 mAh (assumed usable) and the average current required is 3 µA, the battery life will be at least:

170,000 µAh / 3 µA = 56,666 h = 6.4 years

The voltage of the battery can affect the RTC accuracy. In general, when the battery voltage decays, the RTC accuracy also decreases. High accuracy can be obtained when the RTC voltage is within the range 3.0 V to 3.3 V.

The battery must be connected to the ICH2 via an isolation Schottky diode circuit. The Schottky diode circuit allows the ICH2 RTC well to be powered by the battery when system power is unavailable, but by system power when it is available. So, the diodes are set to be reverse-biased when system power is unavailable. Figure 85 shows an example of the used diode circuitry.

Figure 85. Diode Circuit to Connect RTC External Battery

VCC3_3SBY

VccRTC

1.0 µF

1 kΩ

RTC_ext_batt_diode_circ

-+

A standby power supply should be used in a desktop system, to provide continuous power to the RTC when available, which will significantly increase the RTC battery life and, thereby, the RTC accuracy.

Page 145: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 145

11.8.5 RTC External RTCRST Circuit

The ICH2 RTC requires some additional external circuitry. The RTCRST# signal is used to reset the RTC well. The external capacitor and the external resistor between RTCRST# and the RTC battery (Vbat) were selected to create an RC time delay, such that RTCRST# will go High some time after the battery voltage is valid. The RC time delay should be within the range of 1020 ms. When RTCRST# is asserted, bit 2 (RTC_PWR_STS) in the GEN_PMCON_3 (General PM Configuration 3) register is set to 1 and remains set until cleared by software. As a result, when the system boots, the BIOS knows that the RTC battery has been removed.

Figure 86. RTCRST External Circuit for Intel® ICH2 RTC

VCC3_3SBY

Vcc RTC1.0 µF

1 kΩ

2.2 µF

8.2 kΩRTCRST#

RTCRSTcircuit

Diode /battery circuit

RTC_RTCRESET_ext_circ

This RTCRST# circuit is combined with the diode circuit (see Figure 86), which allows the RTC well to be powered by the battery when system power is unavailable. Figure 86shows an example of this circuitry when used in conjunction with the external diode circuit.

11.8.6 Power-Well Isolation Control

All RTC-well inputs (RSMRST#, RTCRST#, INTRUDER#) must be either pulled up to VCCRTC or pulled down to ground while in G3 state. RTCRST# when configured as shown in Figure 86 meets this requirement. RSMRST# should have a weak external pull-down to ground and INTRUDER# should have a weak external pull-up to VCCRTC. This will prevent these nodes from floating in G3, and correspondingly will prevent ICCRTC leakage that can cause excessive coin-cell drain. The PWROK input signal should also be configured with an external weak pull-down.

Page 146: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

146 Intel® 815E Chipset Platform Design Guide

The circuit shown in the figure below should be implemented to control well isolation between the 3.3V resume and RTC power-wells. Failure to implement this circuit may result in excessive droop on the VCCRTC node during Sx-to-G3 power state transitions (removal of AC power).

Figure 87. RTC – Power-well Isolation Control

RSMRST#ICH2

from Glue Chipor other source

RSMRST#

2.2k

10kBAV99iP/N 305901-001

BAV99iP/N 305901-001

empty

MMBT3906iP/N 101421-602

empty

11.8.7 RTC Routing Guidelines • All RTC OSC signals (RTCX1, RTCX2, VBIAS) should all be routed with trace lengths less

than 1 inch. The shorter, the better.

• Minimize the capacitance between RTCX1 and RTCX2 in the routing. (Optimally, there would be a ground line between them.)

• Put a ground plane under all external RTC circuitry.

• Do not route any switching signals under the external components (unless on the other side of the ground plane).

11.8.8 VBIAS DC Voltage and Noise Measurements • All RTC OSC signals (RTCX1, RTCX2, VBIAS) should all be routed with trace lengths less

than 1 inch. The shorter, the better.

• Steady-state VBIAS is a DC voltage of about 0.38 V ± .06 V.

Page 147: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 147

• When the battery is inserted, VBIAS will be kicked to about 0.71.0 V, but it will return to its DC value within a few ms.

• Noise on VBIAS must be kept to a minimum (200 mV or less).

• VBIAS is very sensitive and cannot be directly probed, but it can be probed through a .01 µF capacitor.

• Excessive noise on VBIAS can cause the ICH2 internal oscillator to misbehave or even stop completely.

• To minimize VBIAS noise, it is necessary to implement the routing guidelines described previously as well as the required external RTC circuitry, as described in the Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet.

11.9 LAN Layout Guidelines The ICH2 provides several options for integrated LAN capability. The platform supports several components, depending on the target market. These guidelines use the 82562ET to refer to both the 82562ET and 82562EM. The 82562EM is specified in those cases where there is a difference.

Table 33. LAN Connect

LAN Connect Component Connection Features

Intel® 82562EM Advanced 10/100 Ethernet AOL* & Ethernet 10/100 connection

Intel® 82562ET 10/100 Ethernet Ethernet 10/100 connection

Intel® 82562EH 1 Mb HomePNA* LAN 1 Mb HomePNA connection

Intel developed a dual footprint for 82562ET and 82562EH, to minimize the required number of board builds. A single layout with the specified dual footprint allows the OEM to install the appropriate LAN connect component to satisfy market demand. Design guidelines are provided for each required interface and connection. Refer Figure 88 and table for the corresponding section of the design guide.

Page 148: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

148 Intel® 815E Chipset Platform Design Guide

Figure 88. Intel® ICH2 / LAN Connect Section

ich2-lan_conn

Dual Footprint

82562EH/82562ETICH2Magnetics

ModuleConnector

A

B

D

C

Refer to 82562EH/82562ET Section

11.9.1 Intel® ICH2 – LAN Interconnect Guidelines

This section contains the guidelines for the design of motherboards and riser cards that comply with LAN connect. It should not be considered a specification, and the system designer must ensure through simulations or other techniques that the system meets the specified timings. Special care must be taken to match the LAN_CLK traces with those of the other signals, as follows. The following guidelines are for the ICH2-to-LAN component interface. The following signal lines are used on this interface:

• LAN_CLK

• LAN_RSTSYNC

• LAN_RXD[2:0]

• LAN_TXD[2:0]

This interface supports both 82562EH and 82562ET/82562EM components. Both components share signal lines LAN_CLK, LAN_RSTSYNC, LAN_RXD[0], and LAN_TXD[0]. Signal lines LAN_RXD[2:1] and LAN_TXD[2:1] are not connected when 82562EH is installed. The AC characteristics for this interface are found in the Intel® 82801BA I/O Controller Hub (ICH2) and Intel® 82801BAM I/O Controller Hub (ICH2-M) Datasheet (document number: 290687). Dual footprint guidelines are found in Section 11.9.6.

Page 149: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 149

11.9.1.1 Bus Topologies

The LAN connect interface can be configured in several topologies:

• Direct point-to-point connection between the ICH2 and the LAN component

• Dual footprint

• LOM/CNR implementation

11.9.1.2 Point-to-Point Interconnect

The following guidelines are for a single-solution motherboard. Either 82562EH, 82562ET or CNR is installed.

Figure 89. Single-Solution Interconnect

lan_p2p

ICH2Platform LAN

Connect(PLC)

LAN_TXD[2:0]

LAN_RXD[2:0]

LAN_RSTSYNC

LAN_CLK

L

Table 34. Single-Solution Interconnect Length Requirements (See Figure 89)

Configuration L Comment

Intel® 82562EH 4.5 to 10 Signal lines LAN_RXD[2:1] and LAN_TXD[2:1] are not connected.

Intel® 82562ET 3.5 to 10

Intel® 82562EM 4.5 to 8.5

CNR 3 to 9 The trace length from the connector to LOM should be 0.5 to 3.0

Page 150: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

150 Intel® 815E Chipset Platform Design Guide

11.9.1.3 LOM/CNR Interconnect

The following guidelines allow for an all-inclusive motherboard solution. This layout combines the LOM, dual-footprint, and CNR solutions. The resistor pack ensures that either a CNR option or a LAN on Motherboard option can be implemented at one time, as shown in Figure 90, which shows the recommended trace routing lengths.

Figure 90. LOM/CNR Interconnect

lom-cnr_conn

ICH2 Res.Pack

CNR PLC Card

B

A PLC

C D

Table 35. LOM/CNR Length Requirements (See Figure 90)

Configuration A B C D

Intel® 82562EH 0.5 to 6.0 4.0 to (10.0 A)

Intel® 82562ET 0.5 to 7.0 3.0 to (10.0 A)

Dual footprint 0.5 to 6.5 3.5 to (10.0 A)

Intel® 82562ET/EH card*

0.5 to 6.5 2.5 to (9 A) 0.5 to 3.0

NOTE: The total trace length should not exceed 13 inches.

Additional guidelines for this configuration are as follows:

• Stubs due to the resistor pack should not be present on the interface.

• The resistor pack value can be 0 Ω or 22 Ω.

• LAN on Motherboard PLC can be a dual-footprint configuration.

11.9.1.4 Signal Routing and Layout

LAN connect signals must be carefully routed on the motherboard to meet the timing and signal quality requirements of this interface specification. Following are general guidelines that should be followed. It is recommended that the board designer simulate the board routing, to verify that the specifications are met for flight times and skews due to trace mismatch and crosstalk. On the motherboard, the length of each data trace is either equal in length to the LAN_CLK trace or up to 0.5 inch shorter than the LAN_CLK trace. (LAN_CLK should always be the longest motherboard trace in each group.) The trace spacing, unless specified otherwise, is 5:10.

Page 151: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 151

Figure 91. LAN_CLK Routing Example

LAN_CLK

LAN_RXD0

11.9.1.5 Crosstalk Consideration

Noise due to crosstalk must be carefully minimized. Crosstalk is the main cause of timing skews and is the largest part of the tRMATCH skew parameter.

11.9.1.6 Impedances

Motherboard impedances should be controlled to minimize the impact of any mismatch between the motherboard and the add-in card. An impedance of 60 Ω ± 15% is strongly recommended. Otherwise, signal integrity requirements may be violated.

11.9.1.7 Line Termination

Line termination mechanisms are not specified for the LAN connect interface. Slew-rate-controlled output buffers achieve acceptable signal integrity by controlling signal reflection, over/undershoot, and ringback. A 33 Ω series resistor can be installed at the driver side of the interface, if the developer has concerns about over/undershoot. Note that the receiver must allow for any drive strength and board impedance characteristic within the specified ranges.

Page 152: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

152 Intel® 815E Chipset Platform Design Guide

11.9.2 General LAN Routing Guidelines and Considerations

11.9.2.1 General Trace Routing Considerations

Trace routing considerations are important to minimize the effects of crosstalk and propagation delays on sections of the board where high-speed signals exist. Signal traces should be kept as short as possible to decrease interference from other signals, including those propagated through power and ground planes.

Observe the following suggestions to help optimize board performance:

• The maximum mismatch between the clock trace length and the length of any data trace is 0.5 inch.

• Maintain constant symmetry and spacing between the traces within a differential pair.

• Keep the signal trace lengths of a differential pair equal to each other.

• Keep the total length of each differential pair under 4 inches. (Many customer designs with differential traces longer than 5 inches have had one or more of the following issues: IEEE phy conformance failures, excessive EMI, and/or degraded receive BER.)

• Do not route the transmit differential traces closer than 100 mils to the receive differential traces.

• Do not route any other signal traces both parallel to the differential traces, and closer than 100 mils to the differential traces (300 mils recommended).

• Keep to 7 mils the maximum separation between differential pairs.

• For high-speed signals, the number of corners and vias should be kept to a minimum. If a 90° bend is required, it is recommended to use two 45° bends instead. Refer to Figure 92.

• Traces should be routed away from board edges by a distance greater than the trace height above the ground plane. This allows the field around the trace to couple more easily to the ground plane rather than to adjacent wires or boards.

• Do not route traces and vias under crystals or oscillators. This will prevent coupling to or from the clock. And as a general rule, place traces from clocks and drives at a minimum distance from apertures, by a distance exceeding the largest aperture dimension.

Page 153: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 153

Figure 92. Trace Routing

45 degreesTrace

45degrees

11.9.2.1.1 Trace Geometry and Length

The key factors in controlling trace EMI radiation are the trace length and the ratio of trace width to trace height above the ground plane. To minimize trace inductance, high-speed signals and signal layers close to a ground or power plane should be as short and wide as practical. Ideally, this ratio of trace width to height above the ground plane is between 1:1 and 3:1. To maintain trace impedance, the width of the trace should be modified when changing from one board layer to another, if the two layers are not equidistant from the power or ground plane. Differential trace impedances should be controlled to ~100 Ω. It is necessary to compensate for trace-to-trace edge coupling, which can lower the differential impedance by 10 Ω, when the traces within a pair are closer than 0.030 inch (edge to edge).

Traces between decoupling and I/O filter capacitors should be as short and wide as practical. Long-and-thin traces are more inductive and would reduce the intended effect of the decoupling capacitors. For similar reasons, traces to I/O signals and signal terminations should be as short as possible. Vias to the decoupling capacitors should have diameters sufficiently large to decrease series inductance. Additionally, the PLC should not be closer than one inch to the connector/magnetics/edge of the board.

11.9.2.1.2 Signal Isolation

Comply with the following rules for signal isolation:

• Separate and group signals by function on separate layers if possible. Maintain a gap of 100 mils between all differential pairs (Phoneline and Ethernet) and other nets, but group associated differential pairs together.

Note: Over the length of the trace run, each differential pair should be at least 0.3 inch away from any parallel signal trace.

Page 154: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

154 Intel® 815E Chipset Platform Design Guide

• Physically group together all components associated with one clock trace, to reduce trace length and radiation.

• Isolate I/O signals from high-speed signals to minimize crosstalk, which can increase EMI emission and susceptibility to EMI from other signals.

• Avoid routing high-speed LAN or Phoneline traces near other high-frequency signals associated with a video controller, cache controller, processor or other similar device.

11.9.2.2 Power and Ground Connections

Comply with the following rules and guidelines for power and ground connections:

• All VCC pins should be connected to the same power supply.

• All VSS pins should be connected to the same ground plane.

• Four to six decoupling capacitors, including two 4.7 µF capacitors are recommended.

• Place decoupling as close as possible to power pins.

11.9.2.2.1 General Power and Ground Plane Considerations

To properly implement the common-mode choke functionality of the magnetics module, the chassis or output ground (secondary side of transformer) should be physically separated from the digital or input ground (primary side) by at least 100 mils.

Figure 93. Ground Plane Separation

GND_Plane_Separ

Separate Chassis Ground Plane

0.01" minimum separation

Magnetics Module

Separate Chassis Ground Plane Ground plane

Good grounding requires minimizing inductance levels in the interconnections. Keeping ground returns short, signal loop areas small, and power inputs bypassed to signal return significantly reduces EMI radiation.

Comply with the following rules to help reduce circuit inductance in both backplanes and motherboards:

• Route traces over a continuous plane with no interruptions (i.e., do not route over a split plane). If there are vacant areas on a ground or power plane, avoid routing signals over the vacant area. This will increase inductance and EMI radiation levels.

• To reduce coupling, separate noisy digital grounds from analog grounds. • Noisy digital grounds may affect sensitive DC subsystems.

Page 155: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 155

• All ground vias should be connected to every ground plane, and every power via should be connected to all power planes at equal potential. This helps reduce circuit inductance.

• Physically locate grounds between a signal path and its return. This minimizes the loop area. • Avoid fast rise/fall times as much as possible. Signals with fast rise and fall times contain

many high-frequency harmonics, which can radiate EMI. • The ground plane beneath the filter/transformer module should be split. The RJ45 and/or

RJ11 connector side of the transformer module should have chassis ground beneath it. Splitting the ground planes beneath the transformer minimizes noise coupling between the primary and secondary sides of the transformer and between adjacent coils in the transformer. There should not be a power plane under the magnetics module.

• Create a spark gap between pins 2 through 5 of the Phoneline connector(s) and shield ground of 1.6mm (59.0 mil). This is a critical requirement needed to past FCC part 68 testing for Phoneline connection. Note that for worldwide certification a trench of 2.5 mm is required. In North America, the spacing requirement is 1.6mm. However, home networking can be used in other parts of the world, including Europe, where some Nordic countries require the 2.5 mm spacing.

11.9.2.3 A 4-Layer Board Design

Top-Layer Routing

Sensitive analog signals are routed completely on the top layer without the use of vias. This allows tight control of signal integrity and removes any impedance inconsistencies due to layer changes.

Ground Plane

A layout split (100 mils) of the ground plane under the magnetics module between the primary and secondary side of the module is recommended. It is also recommended to minimize the digital noise injected into the 82562 common ground plane. Suggestions include optimizing decoupling on neighboring noisy digital components, isolating the 82562 digital ground using a ground cutout, etc.

Power Plane

Physically separate digital and analog power planes must be provided to prevent digital switching noise from being coupled into the analog power supply planes VDD_A. Analog power may be a metal fill island, separated from digital power, and better filtered than digital power.

Bottom-Layer Routing

Digital high-speed signals, which include all LAN interconnect interface signals, are routed on the bottom layer.

Page 156: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

156 Intel® 815E Chipset Platform Design Guide

11.9.2.4 Common Physical Layout Issues

Common physical layer design and layout mistakes in LAN On Motherboard designs are as follows: 1. Unequal length of the two traces within a differential pair. Inequalities create common-mode

noise and distort the transmit or receive waveforms. 2. Lack of symmetry between the two traces within a differential pair. (For each component

and/or via that one trace encounters, the other trace must encounter the same component or a via at the same distance from the PLC.) Asymmetry can create common-mode noise, and distort the waveforms.

3. Excessive distance between the PLC and the magnetics or between the magnetics and the RJ-45/11 connector. Beyond a total distance of about 4 inches, it can become extremely difficult to design a spec-compliant LAN product. Long traces on FR4 (fiberglass epoxy substrate) will attenuate the analog signals. Also any impedance mismatch in the traces will be aggravated if they are longer (see #9 below). The magnetics should be as close to the connector as possible (<= 1 inch).

4. Routing any other trace parallel to and close to one of the differential traces. Crosstalk on the receive channel will induce degraded long-cable BER. When crosstalk gets onto the transmit channel, it can cause excessive emissions (below the FCC standard) and can cause poor transmit BER on long cables. Other signals should be kept at least 0.3 inch from the differential traces.

5. Routing the transmit differential traces next to the receive differential traces. The transmit trace closest to one of the receive traces will put more crosstalk onto the closest receive trace, which can greatly degrade the receiver's BER over long cables. After exiting the PLC, the transmit traces should be kept 0.3 inch or more away from the nearest receive trace. In the vicinities where the traces enter or exit the magnetics, the RJ-45/11 and the PLC are the only possible exceptions.

6. Use of an inferior magnetics module. The magnetics modules used by Intel have been fully tested for IEEE PLC conformance, long-cable BER problems, and emissions and immunity. (Inferior magnetics modules often have less common-mode rejection and/or no auto-transformer in the transmit channel.)

7. Another common mistake is using an 82555 or 82558 physical layer schematic in a PLC design. The transmit terminations and decoupling are different, and there also are differences in the receive circuit. Use the appropriate reference schematic or application notes.

8. Not using (or incorrectly using) the termination circuits for the unused pins at the RJ-45/11 and for the wire-side center-taps of the magnetics modules. These unused RJ pins and wire-side center-taps must be correctly referenced to chassis ground via the proper value resistor and capacitor or termination plane. If these are not terminated properly, there can be emission (FCC) problems, IEEE conformance issues, and long-cable noise (BER) problems. The application notes contain schematics that illustrate the proper termination for these unused RJ pins and the magnetics center-taps.

9. Incorrect differential trace impedances. It is important to have ~100 Ω impedance between the two traces within a differential pair. This becomes even more important as the differential traces become longer. It is very common to see customer designs that have differential trace impedances between 75 Ω and 85 Ω, even when the designers think they have designed for 100 Ω. (To calculate the differential impedance, many impedance calculators only multiply the single-ended impedance by two. This does not take into account edge-to-edge capacitive coupling between the two traces. When the two traces within a differential pair are kept close (see Note) to each other, the edge coupling can lower the effective differential impedance by

Page 157: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 157

5 Ω to 20 Ω. A 10 Ω to 15 Ω drop in impedance is common.) Short traces will have fewer problems if the differential impedance is a little off.

10. Another common problem is to use a too-large capacitor between the transmit traces and/or too much capacitance from the magnetics transmit center-tap (on the 82562ET side of the magnetics) to ground. Using capacitors with capacitances exceeding a few pF in either of these locations can slow the 100 Mbps rise and fall times so much that they fail the IEEE rise time and fall time specs, which will cause the return loss to fail at higher frequencies and will degrade the transmit BER performance. Caution should be exercised if a cap is put in either of these locations. If a cap is used, it should almost certainly be less than 22 pF. (Reasonably good success has been achieved by using 6 pF to 12 pF values in past designs.) Unless there is some overshoot in the 100 Mbps mode, these caps are not necessary.

Note: It is important to keep the two traces within a differential pair close to each other. Keeping them close helps to make them more immune to crosstalk and other sources of common-mode noise. This also means lower emissions (i.e., FCC compliance) from the transmit traces, and better receive BER for the receive traces. Close should be considered to be less than 0.030 inch between the two traces within a differential pair. 0.007 inch trace-to-trace spacing is recommended.

11.9.3 Intel® 82562EH Home/PNA* Guidelines

For correct LAN performance, designers must follow the general guidelines outlined in Section 11.9.2. Additional guidelines for implementing an 82562EH Home/PNA* LAN connect component are as follows are provided in the following subsections.

11.9.3.1 Power and Ground Connections

Obey the following rule for power and ground connections:

• For best performance, place decoupling capacitors on the backside of the PCB, directly under the 82562EH, with equal distance from both pins of the capacitor to power/ground.

The analog power supply pins for 82562EH (VCCA, VSSA) should be isolated from the digital VCC and VSS through the use of ferrite beads. In addition, adequate filtering and decoupling capacitors should be provided between VCC and VSS as well as the VCCA and VSSA power supplies.

11.9.3.2 Guidelines for Intel® 82562EH Component Placement

Component placement can affect the signal quality, emissions, and temperature of a board design. This section discusses guidelines for component placement.

Careful component placement can:

• Decrease potential problems directly related to electromagnetic interference (EMI), which could result in failure to meet FCC specifications.

• Simplify the task of routing traces. To some extent, component orientation will affect the complexity of trace routing. The overall objective is to minimize turns and crossovers between traces.

Note: It is important to minimize the space needed for the HomePNA LAN interface, because all other interfaces will compete for physical space on a motherboard near the connector edge. As with

Page 158: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

158 Intel® 815E Chipset Platform Design Guide

most subsystems, the HomePNA LAN circuits must be as close as possible to the connector. Thus, it is imperative that all designs be optimized to fit in a very small space.

11.9.3.3 Crystals and Oscillators

To minimize the effects of EMI, clock sources should not be placed near I/O ports or board edges. Radiation from these devices may be coupled onto the I/O ports or out of the system chassis. Crystals should also be kept away from the HomePNA magnetics module to prevent communication interference. If they exist, the crystals retaining straps should be grounded to prevent the possibility of radiation from the crystal case, and the crystal should lie flat against the PC board to provide better coupling of the electromagnetic fields to the board.

For noise-free and stable operation, place the crystal and associated discrete components as close as possible to the 82562EH. Minimize the length and do not route any noisy signals in this area.

11.9.3.4 Phoneline HPNA Termination

The transmit/receive differential signal pair is terminated with a pair of 51.1 Ω (1%) resistors. This parallel termination should be placed close to the 82562EH. The center, common point between the 51.1 Ω resistors is connected to a voltage-divider network. The opposite end of one 806 Ω resistor is tied to VCCA (3.3V), and the opposite end of the other 806 ohm resistor and the cap are connected to ground. The termination is shown in Figure 94.

Figure 94. Intel® 82562EH Termination

123456

Tab

Tab

123456

Tab

Tab

8Phone / modem

Shield ground

Line 8

7

7

LAN_82562EH_term

1500 pF 1500 pF

6.8 µH 6.8 µH

6.8 µH 6.8 µH

0

T10

9

1

23

B6008

rx_tx_p

rx_tx_n

0.022 µF

51.1 Ω

51.1 Ω

806 Ω

806 Ω

A+3.3 V

Tip

Ring

The filter and magnetics component T1 integrates the required filter network, high-voltage impulse protection, and transformer to support the HomePNA LAN interface.

Page 159: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 159

One RJ-11 jack (labeled LINE in Figure 94) allows the node to be connected to the Phoneline, and the second jack (labeled PHONE in the previous figure) allows other down-line devices to be connected at the same time. This second connector is not required by the HomePNA. However, typical PCI adapters and PC motherboard implementations are likely to include it for user convenience.

A low-pass filter, setup in-line with the second RJ-11 jack, also is recommended by the HomePNA to minimize interference between the HomeRun connection and a POTs voice or modem connection on the second jack. This restricts of the type of devices connected to the second jack as the pass-band of this filter is set approximately at 1.1 MHz. Refer to the HomePNA website (www.homepna.org) for up-to-date information and recommendations regarding the use of this low-pass filter to meet HomePNA certifications.

11.9.3.5 Critical Dimensions

There are three dimensions to consider during layout. Distance B from the line RJ11 connector to the magnetics module, distance C from the phone RJ11 to the LPF (if implemented), and distance A from 82562EH to the magnetics module (see Figure 95).

Figure 95. Critical Dimensions for Component Placement

Critical_place

ICH2 82562ET MagneticsModule

LineRJ11

BA

EEPROM

LPF PhoneRJ11

C

Table 36. Critical Dimensions for Component Placement (Refer to Figure 95)

Distance Priority Guideline

B 1 < 1 inch

A 2 < 1 inch

C 3 < 1 inch

Page 160: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

160 Intel® 815E Chipset Platform Design Guide

11.9.3.5.1 Distance from Magnetics Module to Line RJ11 (Distance B)

This distance B should be given highest priority and should be less then 1 inch. Regarding trace symmetry, route differential pairs with consistent separation and with exactly the same lengths and physical dimensions.

Asymmetrical and unequally long differential pairs contribute to common-mode noise. This can degrade the receive circuit performance and contribute to emissions radiated from the transmit side.

11.9.3.5.2 Distance from Intel® 82562EH to Magnetics Module (Distance A)

Due to the high speed of signals present, distance A between the 82562EH and the magnetics should also be less than 1 inch, but should be second priority relative to distance from connects to the magnetics module.

Generally speaking, any section of trace intended for use with high-speed signals should be subject to proper termination practices. Proper signal termination can reduce reflections caused by impedance mismatches between the device and traces route. The reflections of a signal may have a high-frequency component that may contribute more EMI than the original signal itself.

11.9.3.5.3 Distance from LPF to Phone RJ11 (Distance C)

This distance C should be less then 1 inch. Regarding trace symmetry, route differential pairs with consistent separation and with exactly the same lengths and physical dimensions.

Asymmetrical and unequally long differential pairs contribute to common-mode noise. This can degrade the receive circuit performance and contribute to emissions radiated from the transmit side.

11.9.4 Intel® 82562ET / Intel® 82562EM Guidelines

For correct LAN performance, designers must follow the general guidelines outlined in Section 11.9.2. Additional guidelines for implementing an 82562ET or 82562EM LAN connect component are provided in the following subsections. For related documents, see Section 1.2, “Reference Documents”.

11.9.4.1 Guidelines for Intel® 82562ET / Intel® 82562EM Component Placement

Component placement can affect the signal quality, emissions, and temperature of a board design. This section provides guidelines for component placement.

Careful component placement can:

• Decrease potential problems directly related to electromagnetic interference (EMI), which could result in failure to meet FCC and IEEE test specifications.

• Simplify the task of routing traces. To some extent, component orientation will affect the complexity of trace routing. The overall objective is to minimize turns and crossovers between traces.

Page 161: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 161

It is important to minimize the space needed for the Ethernet LAN interface, because all other interfaces will compete for physical space on a motherboard near the connector edge. As with most subsystems, the Ethernet LAN circuits must be as close as possible to the connector. Thus, it is imperative that all designs be optimized to fit in a very small space. In addition, the 82562ET or 82562EM should be placed more than 1.5 inches away from any board edge to minimize the potential for EMI radiation problems.

11.9.4.2 Crystals and Oscillators

To minimize the effects of EMI, clock sources should not be placed near I/O ports or board edges. Radiation from these devices may be coupled onto the I/O ports or out of the system chassis. Crystals should also be kept away from the Ethernet magnetics module to prevent interference with communication. If they exist, the retaining straps of the crystal should be grounded to prevent possible radiation from the crystal case. Also, the crystal should lie flat against the PC board to provide better coupling of the electromagnetic fields to the board.

For noise-free and stable operation, place the crystal and associated discrete components as close as possible to the 82562ET or 82562EM. Keep the trace length as short as possible and do not route any noisy signals in this area.

11.9.4.3 Intel® 82562ET / Intel® 82562EM Termination Resistors

The 100 Ω 1% resistor used to terminate the differential transmit pairs (TDP/TDN) and the 120 Ω 1% receive differential pairs (RDP/RDN) should be placed as close as possible to the LAN connect component (82562ET or 82562EM). This is due to the fact that these resistors terminate the entire impedance seen at the termination source (i.e., 82562ET), including the wire impedance reflected through the transformer.

Figure 96. Intel® 82562ET/Intel® 82562EM Termination

xxET-xxEM_Term

82562ET MagneticsModule

RJ45

Place termination resistors asclose to 82562ET as possible.

LAN ConnetInterface

Page 162: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

162 Intel® 815E Chipset Platform Design Guide

11.9.4.4 Critical Dimensions

There are two dimensions to consider during layout. Distance B from the line RJ45 connector to the magnetics module and distance A from the 82562ET or 82562EM to the magnetics module. The combined total distances A and B must not exceed 4 inches (preferably, less than 2 inches) (see Figure 97).

Figure 97. Critical Dimensions for Component Placement

82562ET

BA

ICH2

EEPROM

MagneticsModule

LineRJ45

LAN_crit_dim_comp_place2

Table 37. Critical Dimensions for Component Placement (see Figure 97)

Distance Priority Guideline

A 1 < 1 inch

B 2 < 1 inch

11.9.4.4.1 Distance from Magnetics Module to RJ45

The distance A in Figure 97 should be given the highest priority in board layout. The separation between the magnetics module and the RJ45 connector should be kept less than 1 inch. The following trace characteristics are important and should be observed:

• Differential impedance: The differential impedance should be 100 Ω. The single-ended trace impedance will be approximately 50 Ω. However, the differential impedance can also be affected by the spacing between the traces.

• Trace Symmetry: Differential pairs (e.g., TDP and TDN) should be routed with consistent separation and with exactly the same lengths and physical dimensions (e.g., width).

Caution: Asymmetric and unequal length traces in the differential pairs contribute to common-mode noise. This can degrade the receive circuits performance and contribute to emissions radiated from the transmit circuit. If the 82562ET must be placed farther than a couple of inches from the RJ45 connector, distance B can be sacrificed. It should be a priority to keep the total distance between the 82562ET and RJ-45 as short as possible.

Page 163: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 163

Note: The measured trace impedance for layout designs targeting 100 Ω often result in lower actual impedance. OEMs should verify actual trace impedance and adjust their layouts accordingly. If the actual impedance is consistently low, a target of 105110 Ω should compensate for second-order effects.

11.9.4.4.2 Distance from Intel® 82562ET to Magnetics Module

Distance B should also be designed to be less than 1 inch between devices. The high-speed nature of the signals propagating through these traces requires that the distance between these components be closely observed. In general, any section of traces intended for use with high-speed signals should be subject to proper termination practices. Proper termination of signals can reduce reflections caused by impedance mismatches between device and traces. The reflections of a signal may have a high-frequency component that contributes more EMI than the original signal itself. For this reason, these traces should be designed to a 100 Ω differential value. These traces should also be symmetric and of equal length within each differential pair.

11.9.4.5 Reducing Circuit Inductance

The following guidelines show how to reduce circuit inductance in both backplanes and motherboards. Traces should be routed over a continuous ground plane with no interruptions. If there are vacant areas on a ground or power plane, the signal conductors should not cross the vacant area. This increases inductance and associated radiated noise levels. Noisy logic grounds should be separated from analog signal grounds to reduce coupling. Noisy logic grounds can sometimes affect sensitive DC subsystems, such as analog-to-digital conversion, operational amplifiers, etc. All ground vias should be connected to every ground plane. Similarly, every power via should be connected to all power planes at equal potential. This helps reduce circuit inductance. Another recommendation is to physically locate grounds so as to minimize the loop area between a signal path and its return path. Rise and fall times should be as slow as possible. Because signals with fast rise and fall times contain many high-frequency harmonics, that can radiate significantly. The most sensitive signal returns closest to the chassis ground should be connected together. This results in a smaller loop area and reduces the likelihood of crosstalk. The effect of different configurations on the amount of crosstalk can be studied using electronics modeling software.

Terminating Unused Connections

In Ethernet designs, it is common practice to terminate to ground both unused connections on the RJ-45 connector and the magnetics module. Depending on the overall shielding and grounding design, this may be done to the chassis ground, signal ground or a termination plane. Care must be taken when using various grounding methods to ensure that emission requirements are met. The method most often implemented is called the Bob Smith termination. In this method, a floating termination plane is cut out of a power plane layer. This floating plane acts as a plate of a capacitor with an adjacent ground plane. The signals can be routed through 75 Ω resistors to the plane. Stray energy on unused pins is then carried to the plane.

Page 164: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

164 Intel® 815E Chipset Platform Design Guide

Termination Plane Capacitance

The recommended minimum termination plane capacitance is 1500 pF. This helps reduce the amount of crosstalk on the differential pairs (TDP/TDN and RDP/RDN) from the unused pairs of the RJ45. Pads may be placed for an additional capacitance to chassis ground, which may be required if the termplane capacitance is not large enough to pass EFT (electrical fast transient) testing. If a discrete capacitor is used, it should be rated for at least 1000 Vac, to satisfy the EFT requirements.

Figure 98. Termination Plane

N/C

RJ-45

Magnetics Module

RDP

RDN

TDP

TDN

Termination Plane

Additional capacitance that may needto be added for EFT testing

term_plane

11.9.5 Intel® 82562ET/82562EM Disable Guidelines

To disable the 82562ET/ 82562EM, the device must be isolated (disabled) prior to reset (RSM_PWROK) being asserted. Using a GPIO, such as GPO28 to be LAN_Enable (enabled high), LAN will default to enabled on initial power-up and after an AC power loss. The circuit shown in Figure 99 allows this behavior. BIOS can disable the LAN microcontroller by controlling the GPIO.

Page 165: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 165

Figure 99. Intel® 82562ET/82562EM Disable Circuit

RSM_PW ROK

GPIO_LAN_ENABLE10 KΩ

10 KΩ

Lan_Disable2_815E_B0

V_3P3_STBY

MMBT3906

8256ET/EM_Disable

There are 4 pins that are used to put the 82562ET controller in different operating states: Test_En, Isol_Tck, Isol_Ti, and Isol_Tex. Table 38 describes the operational/disable features for this design.

The four control signals shown in the Table 38 should be configured as follows: Test_En should be pulled-down thru a 100 Ω resistor. The remaining three control signals should each be connected thru 100 Ω series resistors to the common node 82562ET_Disable of the disable circuit.

Table 38. Intel® 82562ET Operating States

Test_En Isol_Tck Isol_Ti Isol_Tex State

0 0 0 0 Enabled

0 1 1 1 Disabled with Clock (low power)

1 1 1 1 Disabled without Clock (lowest power)

11.9.6 Intel® 82562ET / Intel® 82562EH Dual Footprint Guidelines

These guidelines characterize the proper layout for a dual-footprint solution. This configuration enables the developer to install either the 82562EH or the 82562ET/82562EM components, while using only one motherboard design. The following guidelines are for the 82562ET/ 82562EH dual-footprint option. The guidelines called out in Sections 11.9.1 through 11.9.4 apply to this configuration. The dual footprint for this particular solution uses a SSOP footprint for 82562ET and a TQFP footprint for 82562EH. The combined footprint for this configuration is shown in Figure 100 and Figure 101.

Page 166: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

166 Intel® 815E Chipset Platform Design Guide

Figure 100. Dual-Footprint LAN Connect Interface

dual_ft_lan_conn

ICH2

LAN_TXD[2:0]

LAN_RXD[2:0]

LAN_RSTSYNC

LAN_CLK

L

82562ET

SSOP

Stub

82562EHTQFP

Figure 101. Dual-Footprint Analog Interface

dual_ft_AN_conn

MagneticsModule

TDP

RJ45

82562EH/82562ET

TDN

RDP

RDN

RJ11

TXP

TXN

Tip

Ring82562EHConfig.

82562ETConfig.

The following are additional guidelines for this configuration:

• L = 3.5 inches to 10 inches

• Stub < 0.5 inch

• Either 82562EH or 82562ET/82562EM can be installed, but not both.

• Intel 82562ET pins 28,29, and 30 overlap with 82562EH pins 17,18, and 19.

• Overlapping pins are tied to ground.

• No other signal pads should overlap or touch.

• Signal lines LAN_CLK, LAN_RSTSYNC, LAN_RXD[0], LAN_TXD[0], RDP, RDN, RXP/Ring, and RXN/Tip are shared by the 82562EH and 82562ET configurations.

• No stubs should be present when 82562ET is installed.

• Packages used for the dual footprint are TQFP for 82562EH and SSOP for 82562ET.

• A 22 Ω resistor can be placed at the driving side of the signal line to improve signal quality on the LAN connect interface.

• Resistor should be placed as close as possible to the component.

• Use components that can satisfy both the 82562ET and 82562EH configurations (i.e., magnetics module).

Page 167: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

Intel® 815E Chipset Platform Design Guide 167

• Install components for either the 82562ET or the 82562EH configuration. Only one configuration can be installed at a time.

• Route shared signal lines such that stubs are not present or are kept to a minimum.

• Stubs may occur on shared signal lines (i.e., RDP and RDN). These stubs are due to traces routed to an uninstalled component.

• Use 0 Ω resistors to connect and disconnect circuitry not shared by both configurations. Place resistor pads along the signal line to reduce stub lengths.

• Traces from magnetics to connector must be shared and not stubbed. An RJ-11 connector that fits into the RJ-45 slot is available. Any amount of stubbing will destroy both HomePNA* and Ethernet performance.

• Place at least bulk capacitor (4.7 µF or greater) on each side of the component.

• Place decoupling capacitors (0.1 µF) as close to the component as possible.

11.10 LPC/FWH The following subsections provide general guidelines for compatibility and design recommendations for supporting the FWH device. The majority of the changes will be incorporated in the BIOS.

11.10.1 In-Circuit FWH Programming

All cycles destined for the FWH will appear on the PCI. The ICH2 hub interface-to-PCI Bridge puts all processor boot cycles out on the PCI (before sending them out on the FWH interface). If the ICH2 is set for subtractive decode, these boot cycles can be accepted by a positive decode agent on PCI. This enables booting from a PCI card that positively decodes these memory cycles. To boot from a PCI card, it is necessary to keep the ICH2 in the subtractive decode mode. If a PCI boot card is inserted and the ICH2 is programmed for positive decode, two devices will positively decode the same cycle. In systems with the Intel® 82380AB (ISA bridge), it is also necessary to keep the NOGO signal asserted when booting from a PCI ROM. Note that it is not possible to boot from a ROM behind the 82380AB. Once you have booted from the PCI card, you potentially could program the FWH in circuit and program the ICH2 CMOS.

11.10.2 FWH VPP Design Guidelines

The VPP pin on the FWH is used for programming the flash cells. The FWH supports a VPP of 3.3 V or 12 V. If VPP is 12 V, the flash cells will program about 50% faster than at 3.3 V. However, the FWH only supports 12 V VPP for 80 hours. The 12 V VPP would be useful in a programmer environment that is typically an event that occurs very infrequently (much less than 80 hours). The VPP pin must be tied to 3.3 V on the motherboard.

In some instances, it is desirable to program the FWH during assembly with the device soldered down on the board. To decrease programming time it becomes necessary to apply 12 V to the VPP pin. The following circuit will allow testers to put 12 V on the VPP pin while keeping this voltage separated from the 3.3 V plane to which the rest of the power pins are connected. This circuit also allows the board to operate with 3.3 V on this pin during normal operation.

Page 168: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

I/O Subsystem

R

168 Intel® 815E Chipset Platform Design Guide

Figure 102. FWH VPP Isolation Circuitry

1K

FET

12V3.3V

VPP

11.10.3 FWH Decoupling

A 0.1 µF capacitor should be placed between the VCC supply pins and the VSS ground pins to decouple high frequency noise, which may affect the programmability of the device. Additionally, a 4.7 µF capacitor should be placed between the VCC supply pins and the VSS ground pin to decouple low frequency noise. The capacitors should be placed no further than 390 mils from the VCC supply pins.

Page 169: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

Intel® 815E Chipset Platform Design Guide 169

12 Clocking For an 815E universal platform, there are two clock specifications. One is for a 2-DIMM solution, and the other is for a 3-DIMM solution. In both specifications only single-ended clocking is supported. Intel 815E universal socket 370 platforms using a 0.13 micron socket 370 processor cannot implement differential clocking.

12.1 2-DIMM Clocking Table 39 shows the characteristics of the clock generator for a 2-DIMM solution.

Table 39. Intel® CK815 (2-DIMM) Clocks

Number Clock Frequency

3 processor clocks 66/100/133 MHz

9 SDRAM clocks 100/133 MHz

7 PCI clocks 33 MHz

2 APIC clocks 16.67/33 MHz

2 48 MHz clocks 48 MHz

3 3V, 66 MHz clocks 66 MHz

1 REF clock 14.31818 MHz

The following bullets list the features of the CK815 clock generator in a 2-DIMM solution:

• Nine copies of 100/133 MHz SDRAM clocks (3.3 V) [SDRAM07, DClk]

• Seven copies of PCI clock (33 MHz ) (3.3 V)

• Two copies of APIC clock at 33 MHz, synchronous to processor clock (2.5 V)

• One copy of 48 MHz USB clock (3.3 V) (non-SSC) (type 3 buffer)

• One copy of 48 MHz DOT clock (3.3 V) (non-SSC) (see DOT details)

• Three copies of 3V, 66 MHz clock (3.3 V)

• One copy of REF clock at 14.31818 MHz (3.3 V)

• Ref. 14.31818 MHz xtal oscillator input

• Power-down pin

• Spread-spectrum support

• I2C support for turning off unused clocks

Page 170: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

170 Intel® 815E Chipset Platform Design Guide

Figure 103 shows the 815E chipset platform clock architecture for a 2-DIMM solution.

Figure 103. Platform Clock Architecture for a 2-DIMM Solution

GMCH

CPU 2_ITPAPIC 0CPU 1CPU 0

2.5 V

Clock Synthesizer

PW RDW N#SEL1SEL0

SDataSClk

SDRAM(0)SDRAM(1)SDRAM(2)SDRAM(3)

SDRAM(4)SDRAM(5)SDRAM(6)SDRAM(7)

DCLK

3V66 0

DOT

3V66 1

REF

PCI 0 / ICH

USB

3.3 V

APIC 12.5 V

PCI 1

PCI 2PCI 3PCI 4PCI 5PCI 6PCI 7

3.3 V

52555049

322928

3031

46454342

40393736

34

7

26

8

1

11

25

54

12

131516181920

MainMemory2 DIMMs

AGP

Data

Address

Control

Host unit

GraphicsMemory

unit

Hub I/F

Dot clock

ITP Processor

I/O Controller Hub 32.768 kHz

SIO

PCI total of 6devices (µATX)5 slots + 1 down

clk_arch_2DIMM

14.318 MHz

Page 171: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

Intel® 815E Chipset Platform Design Guide 171

12.2 3-DIMM Clocking Table 40 shows the characteristics of the clock generator for a 3-DIMM solution.

Table 40. Intel® CK815 (3-DIMM) Clocks

Number Clock Frequency

2 processor clocks 66/100/133 MHz

13 SDRAM clocks 100/133 MHz

2 PCI clocks 33 MHz

1 APIC clocks 33 MHz

2 48 MHz clocks 48 MHz

3 3V, 66 MHz clocks 66 MHz

1 REF clock 14.31818 MHz

The following bullets list the features of the CK815 clock generator in a 3-DIMM solution:

• Thirteen copies of SDRAM clocks

• Two copies of PCI clock

• One copy of APIC clock

• One copy of 48 MHz USB clock (3.3 V) (non-SSC) (type 3 buffer)

• One copy of 48 MHz DOT clock (3.3 V) (non-SSC) (see DOT details)

• Three copies of 3V, 66 MHz clock (3.3 V)

• One copy of ref. clock at 14.31818 MHz (3.3 V)

• Ref. 14.31818 MHz xtal oscillator input

• Spread-spectrum support

• I2C support for turning off unused clocks

Page 172: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

172 Intel® 815E Chipset Platform Design Guide

Figure 104 shows the 815E chipset platform clock architecture for a 3-DIMM solution.

Figure 104. Platform Clock Architecture for a 3-DIMM Solution

GMCH

APICCPU 1CPU 0

2.5 V

CK 815 3D

3V66 AGP

SDRAM(0)SDRAM(1)SDRAM(2)SDRAM(3)

SDRAM(4)SDRAM(5)SDRAM(6)SDRAM(7)

SDRAM(8)SDRAM(9)

SDRAM(10)SDRAM(11)

SDRAM(12)

3V66 03V66 1

DOT

USB

REF 0 14.3 MHz

PCI 0 / ICHPCI 1

15354

12

51504746

45424138

29

10

26

4

1516

Main Memory3 DIMMs

AGP /local memory

Host I/F

AGIP /local

memory

GFXDotCLK

Hub I/F66/266

Processor

I/O Controller Hub

SIO

PCI 1 tozero delay

Systemmemory

clk_arch_3DIMM

37363332

1127

PCI slots/ down

Page 173: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

Intel® 815E Chipset Platform Design Guide 173

12.3 Clock Routing Guidelines This section presents the generic clock routing guidelines for both 2-DIMM and 3-DIMM boards. For 3-DIMM boards, additional analysis must be performed by the motherboard designer to ensure that the clocks generated by the external PCI clock buffer meet the PCI specifications for clock skew at the receiver, when compared with the PCI clock at the ICH2.

Figure 105. Clock Routing Topologies

CK815 Section 1 Section 2

Layout 133 Ω

Connector

CK815 Section 1 Section 2

Layout 333 Ω

CK815 Section 1 Section 333 Ω

Section 0

Processor

GMCH

CK815 Section 1 Section 2

Layout 433 Ω

CK815 Section 1 Section 2

Layout 222 Ω

Section 322 pF10 pF

CK815 Section 1 Section 2

Layout 510 Ω

Connector

clk_routing_topo

22 pF

Page 174: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

174 Intel® 815E Chipset Platform Design Guide

Table 41. Simulated Clock Routing Solution Space

Destination Topology from Previous Figure

Section 0 Length

Section 1 Length

Section 2 Length

Section 3 Length

SDRAM MCLK Layout 5 N/A < 0.5 A1 N/A

GMCH SCLK3 Layout 2 N/A < 0.5=L1 A + 3.5 L1 0.5

Processor BCLK < 0.5

GMCH HCLK

Layout 3 < 0.1

<0.5

A + 5.2 A + 8

GMCH HUBCLK Layout 4 N/A <0.5 A + 8 N/A

ICH2 HUBCLK Layout 4 N/A <0.5 A + 8 N/A

ICH2 PCICLK Layout 4 N/A <0.5 A + 8 N/A

AGP CLK Layout 4 N/A <0.5 A + 3" to

A + 4"

N/A

PCI down2 Layout 4 N/A <0.5 A + 8.5 to

A + 14

N/A

PCI slot2 Layout 1 N/A <0.5 A + 5 to

A + 11

NOTES: 1. Length A has been simulated up to 6 inches. The length must be matched between SDRAM MCLK

lines by ±100 mils. 2. All PCI clocks must be within 6 inches of the ICH2 PCICLK route length. Routing on PCI add-in cards

must be included in this length. In the presented solution space, ICH2 PCICLK was considered to be the shortest in the 6 inches trace routing range, and other clocks were adjusted from there. The system designer may choose to alter the relationship of PCI device and slot clocks, as long as all PCI clock lengths are within 6 inches. Note that the ICH2 PCICLK length is fixed to meet the skew requirements of ICH2 PCICLK to ICH2 HUBCLK.

3. 22 pF Load cap should be placed 0.5 inch from GMCH Pin.

General Clock Layout Guidelines • All clocks should be routed 5 mils wide with 15 mil spacing to any other signals.

• It is recommended to place capacitor sites within 0.5 inch of the receiver of all clocks. They are useful in system debug and AC tuning.

• Series resistor for clock guidelines: 22 Ω for GMCH SCLK and SDRAM clocks. All other clocks use 33 Ω.

• Each DIMM clock should be matched within ±10 mils.

Page 175: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

Intel® 815E Chipset Platform Design Guide 175

Clock Decoupling

Several general layout guidelines should be followed when laying out the power planes for the CK815 clock generator, as follows:

• Isolate power planes to the each of the clock groups.

• Place local decoupling as close as possible to power pins, and connect with short, wide traces and copper.

• Connect pins to appropriate power plane with power vias (larger than signal vias).

• Bulk decoupling should be connected to a plane with 2 or more power vias.

• Minimize clock signal routing over plane splits.

• Do not route any signals underneath the clock generator on the component side of the board.

• An example signal via is a 14 mil finished hole with a 24 mil to 26 mil path. An example power via is an 18 mil finished hole with a 33 mil to 38 mil path. For large decoupling or power planes with large current transients, a larger power via is recommended.

12.4 Clock Driver Frequency Strapping A CK815-compliant clock driver device uses two of its pins to determine whether processor clock outputs should run at 133 MHz, 100 MHz or 66 MHz. The pin names are SEL0 and REF0. In addition, a third strapping pin is defined (SEL1), which must be pulled High for normal clock driver operation.

SEL0 and REF0 are driven by either the processor, which depends on the processor populated in the 370-pin socket, or pull-up resistors on the motherboard. While SEL0 is a pure input to a CK815-compliant clock driver, REF0 is also the 14 MHz output that drives the ICH2 and other devices on the platform. In addition to sampling BSEL[1:0] at reset, CK815-compliant clock drivers are configured by the BIOS via a two-wire interface to drive SDRAM clock outputs at either 100 MHz (default) or 133 MHz (if all system requirements are met).

Page 176: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

176 Intel® 815E Chipset Platform Design Guide

12.5 Clock Skew Assumptions The clock skew assumptions in are used in the system clock simulations.

Table 42. Simulated Clock Skew Assumptions

Skew Relationships Target Tolerance (±) Notes

HCLK @ GMCH to HCLK @ processor 0 ns 150 ps Assumes ganged clock outputs will allow max of 50 ps skew

HCLK @ GMCH to SCLK @ GMCH 0 ns 600 ps 500 ps pin-to-pin skew

100 ps board/package skew

SCLK @ GMCH to SCLK @ SDRAM 0 ns 630 ps 250 ps pin-to-pin skew

380 ps board + DIMM variation

HLCLK @ GMCH to SCLK @ GMCH 0 ns 900 ps • 500 ps pin-to-pin skew • 400 ps board/package

skew

HLCLK @ GMCH to HCLK @ GMCH 0 ns 700 ps • 500 ps pin-to-pin skew • 200 ps board/package

skew

HLCLK @ GMCH to HLCLK @ ICH 0 ns 375 ps • 175 ps pin-to-pin skew • 200 ps board/package

skew

HLCLK @ ICH to PCICLK @ ICH 0 ns 900 ps • 500ps pin-to-pin skew • 400 ps board/package

skew

PCICLK @ ICH to PCICLK @ other PCI devices

0 ns 2.0-ns window • 500 ps pin-to-pin skew • 1.5 ns board/add-in skew

HLCLK @ GMCH to AGPCLK @ connector • Total electrical length of AGP connector + add-in card is 750 ps (according to AGP2.0 spec and AGP design guide 1.0).

• Motherboard clock routing must account for this additional electrical length. Therefore, AGPCLK routed to the connector must be shorter than HLCLK to the GMCH, to account for this additional 750 ps.

Page 177: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

Intel® 815E Chipset Platform Design Guide 177

12.6 Intel® CK815 Power Gating on Wake Events For systems providing functionality with the 0.13 micron socket 370 processors, special handling of wake events is required. When a wake event is triggered, the GMCH and the CK815 must not sample BSEL[1:0] until the signal VTTPWRGD is asserted. This is handled by setting up the following sequence of events: 1. Power is not connected to the CK815-compliant clock driver until schematic signal

VTTPWRGD12 is asserted. 2. Clocks to the ICH2 stabilize before the power supply asserts PWROK to the ICH2. There is

no guarantee this will occur as the implementation for the previous step relies on the 12V supply. Thus it is necessary to gate PWROK to the ICH2 from the power supply while the CK815 is given sufficient time for the clocks to become stable. The amount of time required is a minimum 20 ms.

3. ICH2 takes the GMCH out of reset. 4. GMCH samples BSEL[1:0]. CK815 will have sampled BSEL[1:0] much earlier.

Refer to Section 4.3 for full implementation details.

Page 178: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Clocking

R

178 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 179: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 179

13 Power Delivery This chapter contains power delivery guidelines. Table 43 provides definitions fro power delivery terms used in this chapter.

Table 43. Power Delivery Definitions

Term Description

Suspend-To-RAM (STR):

In the STR state, the system state is stored in main memory and all unnecessary system logic is turned off. Only main memory and logic required to wake the system remain powered. This state is used in the Customer Reference Board (CRB) to satisfy the S3 ACPI power management state.

Full-power operation: During full-power operation, all components on the motherboard remain powered. Note that full-power operation includes both the full-on operating state and the S1 (processor stop-grant state) state.

Suspend operation: During suspend operation, power is removed from some components on the motherboard. The CRB supports two suspend states: Suspend-to-RAM (S3) and Soft-off (S5).

Power rails: An ATX power supply has 6 power rails: +5V, 5V, +12V, 12V, +3.3V, 5VSB. In addition to these power rails, several other power rails are created with voltage regulators on the CRB.

Core power rail: A power rail that is only on during full-power operation. These power rails are on when the PSON signal is asserted to the ATX power supply. The core power rails that are distributed directly from the ATX power supply are: ±5V, ±12V and +3.3V.

Standby power rail: A power rail that in on during suspend operation (these rails are also on during full-power operation). These rails are on at all times (when the power supply is plugged into AC power). The only standby power rail that is distributed directly from the ATX power supply is: 5VSB (5V Standby). There are other standby rails that are created with voltage regulators on the motherboard.

Derived power rail: A derived power rail is any power rail that is generated from another power rail. For example, 3.3VSB is usually derived (on the motherboard) from 5VSB using a voltage regulator (on the CRB, 3.3VSB is derived from 5V_DUAL).

Dual power rail: A dual power rail is derived from different rails at different times (depending on the power state of the system). Usually, a dual power rail is derived from a standby supply during suspend operation and derived from a core supply during full-power operation. Note that the voltage on a dual power rail may be misleading.

Figure 106 shows the power delivery architecture for an example system based on the 815E platform. This power delivery architecture supports the Instantly Available PC Design Guidelines via the suspend-to-RAM (STR) state. During STR, only the necessary devices are powered. These devices include: main memory, the ICH2 resume well, PCI wake devices (via 3.3 Vaux), AC 97, and optionally USB. (USB can be powered only if sufficient standby power is available.) To ensure that enough power is available during STR, a thorough power budget should be completed. The power requirements should include each devices power requirements, both in suspend and in full-power. The power requirements should be compared with the power budget

Page 180: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

180 Intel® 815E Chipset Platform Design Guide

supplied by the power supply. Due to the requirements of main memory and the PCI 3.3 Vaux (and possibly other devices in the system), it is necessary to create a dual power rail.

The solutions in this design guide are only examples. Many power distribution methods achieve the similar results. When deviating from these examples, it is critical to consider the effect of a change.

Figure 106. Power Delivery Map

1 Refer to Processor Datasheet for Voltage ToleranceSpecifications.

Core: VCC_VID: 2.0V15.6A S0, S1

Intel® 815B ChipsetPlatform Power Map

VTT: 1.25 V1

2.7 A S0, S1

VRM 8.5

ProcessorFan

-12 VSerial xceivers-5: 5 V ± 0.25 V30 mA S0, S1

Serial xceivers-12: 12 V ± 1.2 V22 mA S0, S1

Serial xceivers-N12: -12 V ± 1.2 V28 mA S0, S1

Serial ports

VTT regulator

Display cache: 3.3 V ± 0.3 V960 mA S0, S1

USB cable power: 5 V ± 0.25 V2 A S0, S1; 1 mA S3, S5

CK815-3.3: 3.3 V ± 0.165 V280 mA S0, S1

CK815-2.5: 2.5 V ± 0.125 V100 mA S0, S1

CLK

2.5 V regulator

1.8 V regulator

AC'97

3.3 VSB regulator

ATX P/Swith 720 mA

5 VSB± 5%

12 V± 5%

3.3 V± 5%

5 V± 5%

-12 V± 10%

LPC super I/O: 3.3V ±0.3V50 mA S0, S1

PS/2 keyboard/mouse 5 V ± 0.5 V1 A S0, S1

Super I/O

3 DIMM slots: 3.3 VSB ± 0.3 V7.2 A S0, S1; 96 mA S3

(3) PCI 3.3 Vaux: 3.3 VSB ± 0.3 V1.125 A S0, S1; 60 mA S3, S5

82559 LAN down 3.3 VSB ± 0.3 V195 mA S0,S1; 120 mA S3, S5

PCI

5 V dualswitch

5V_D

UAL

GMCH: 3.3 VSB ± 0.165 V110 mA S3, S5

GMCH core: 1.8 V ± 3%1.40 A S0, S1

GMCH: 3.3 V ± 0.165 V1.40 A S0, S1

FWH core: 3.3 V ± 0.3 V67 mA S0, S1

ICH2 CMOS: 1.5 V ± 0.15 V250 mA S0, S1

ICH2 core: 3.3 V ± 0.3 V300 mA S0, S1

ICH2 hub I/O: 1.8 V ± 0.09 V55 mA S0, S1

pwr_del_map

AC'97 3.3 VSB: 3.3 VSB ± 0.165 V1.0A S0, S1; 375 mA S3, S5

AC'97 12V: 12 V ± 0.6 V 500 mA S0, S1

AC'97 -12 V: -12 V ± 1.2 V100 mA S0, S1

AC'97 5 V: 5 V ± 0.25 V1.00 A S0, S1

AC'97 5 VSB: 5 VSB ± 0.25 V500 mA S0, S1, S3, S5

AC'97 3.3 V: 3.3 V ± 0.165 V1.00 A S0,S1

Core: VCC_VID: 1.5 V 1

28.5 A S0, S1

Core: VCC_VID: 1.75 V1

22.6 A S0, S1

VDDQ regulator GMCH VDDQ2.3 A S0, S1

Intel® 815B chipset

VCC 3.3 V: 3.3 V ± 0.165 V15 mA S0, S1

VTT: 1.5 V1

2.7 A S0, S1

Notes:Shaded regulators / components are ON in S3 and S5.KB / mouse will not support STR.Total max. power dissipation for GMCH = 4 W.Total max. power dissipation for AC'97 = 15 W.

3 V dualswitch

3V_D

UAL

5 mA S0; 2mA S1; 1.8mA S3, S4, S5ICH2 resume: 1.8 VSB +0.1V/-0.2V

ICH2 resume: 3.3 VSB ± 0.3 V1.5 mA S0, S1; 300 µA S3, S5

ICH2 RTC: 3.3 VSB ± 0.3 V5 µA S0, S1, S3, S5

1.8 VSB regulator

1.5 V regulator

In addition to the power planes provided by the ATX power supply, an instantly available 815 universal platform (using Suspend-to-RAM) requires 6 power planes to be generated on the board. The requirements for each power plane are documented in this section. In addition to on-board voltage regulators, the CRB will have a 5V Dual Switch.

Page 181: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 181

5V Dual Switch

This switch will power the 5V Dual plane from the 5V core ATX supply during full-power operation. During Suspend-to-RAM, the 5V Dual plane will be powered from the 5V Standby power supply. Note: the voltage on the 5V Dual plane is not 5V! There is a resistive drop through the 5V Dual Switch that must be considered. Therefore, NO COMPONENTS should be connected directly to the 5V Dual plane. On the CRB, the only devices connected to the 5V Dual plane are voltage regulators (to regulate to lower voltages).

Note: This switch is not required in an 815 universal platform that does not support Suspend-to-RAM (STR).

VTT

This power plane is used to power the AGTL/AGTL+ termination resistors. Refer to the latest revisions of:

• Pentium III processor (CPUID=068xh) and Celeron processor (CPUID=068xh) datasheets

Note: This regulator is required in ALL designs.

1.85V

The 1.85V plane powers the GMCH core and the ICH2 hub interface I/O buffers. This power plane has a total power requirement of approximately 1.7A. The 1.85V plane should be decoupled with a 0.1 µF and a 0.01 µF chip capacitor at each corner of the GMCH, and with a single 1 µF and 0.1 µF capacitor at the ICH2.

Note: Note: This regulator is required in ALL designs.

VDDQ

The VDDQ plane is used to power the GMCH AGP interface and the graphics component AGP interface. Refer to the AGP Interface Specification Revision 2.0 (http://www.agpforum.org) and ECR#43 and ECR#44 for specific VDDQ delivery requirements.

For the consideration of component long-term reliability, the following power sequence is strongly recommended while the AGP interface of GMCH is running at 3.3V. If the AGP interface is running at 1.5V, the following power sequence recommendation is no longer applicable. The power sequence recommendations are:

• During the power-up sequence, the 1.85V must ramp up to 1.0V BEFORE 3.3V ramps up to 2.2V

• During the power-down sequence, the 1.85V CAN NOT ramp below 1.0V BEFORE 3.3V ramps below 2.2V

• The same power sequence recommendation also applies to the entrance and exit of S3 state, since MCH power is compete off during the S3 state.

Refer to Section 13.3.2 for more information on the power ramp sequence requirement between 3.3V and 1.85V. System designers need to be aware of this requirement while designing the

Page 182: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

182 Intel® 815E Chipset Platform Design Guide

voltage regulators and selecting the power supply. For further details on the voltage sequencing requirements, refer to the Intel® 815 Chipset Family: 82815 Graphics and Memory Controller Hub (GMCH) for use with the Universal Socket 370 Datasheet.

Note: This regulator is required in all designs (unless the design does not support 1.5V AGP, and therefore does not support 4X AGP).

3.3VSB

The 3.3VSB plane powers the I/O buffers in the resume well of the ICH2 and the PCI 3.3Vaux suspend power pins. The 3.3Vaux requirement state that during suspend, the system must deliver 375 mA to each wake-enabled card and 20 mA to each non wake-enabled card. During full-power operation, the system must be able to supply 375 mA to EACH card. Therefore, the total current requirement is:

• Full-power Operation: 375 mA * number of PCI slots

• Suspend Operation: 375+20 mA* (number of PCI slots 1)

In addition to the PCI 3.3Vaux, the ICH2 suspend well power requirements must be considered as shown in Figure 106.

Note: This regulator is required in all designs.

1.85VSB

The 1.85VSB plane powers the logic to the resume well of the ICH2. This should not be used for VCMOS.

VCMOS

The VCMOS plane is used to power the processor CMOS signals. In non-universal socket 370 platforms, the 1.5V plane used by VTT also provided VCMOS. Given that VTT can be either 1.25V or 1.5V in a universal socket 370 platform, it is necessary to provide VCMOS as its own separate plane.

13.1 Thermal Design Power The Thermal Design power (TDP) is defined as the estimated maximum possible expected power generated in a component by a realistic application. It is based on extrapolations in both hardware and software technology over the life of the product. It does not represent the expected power generated by a power virus.

The TDP of the GMCH component is 5.1W.

The TDP of the ICH2 is 1.5 W ±15%.

Page 183: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 183

13.1.1 Pull-Up and Pull-Down Resistor Values

The pull-up and pull-down values are system dependent. The appropriate value for a system can be determined from an AC/DC analysis of the pull-up voltage used, the current drive capability of the output driver, the input leakage currents of all devices on the signal net, the pull-up voltage tolerance, the pull-up/pull-down resistor tolerance, the input high-voltage/low-voltage specifications, the input timing specifications (RC rise time), etc. Analysis should be performed to determine the minimum/maximum values usable on an individual signal. Engineering judgment should be used to determine the optimal value. This determination can include cost concerns, commonality considerations, manufacturing issues, specifications, and other considerations.

A simplistic DC calculation for a pull-up value is:

RMAX = (VCCPU MIN - VIH MIN) / ILEAKAGE MAX

RMIN = (VCCPU MAX - VIL MAX) / IOL MAX

Since ILEAKAGE MAX is normally very small, RMAX may not be meaningful. RMAX also is determined by the maximum allowable rise time. The following calculation allows for t, the maximum allowable rise time, and C, the total load capacitance in the circuit, including the input capacitance of the devices to be driven, the output capacitance of the driver, and the line capacitance. This calculation yields the largest pull-up resistor allowable to meet the rise time t.

RMAX = -t / (C * In(1-(VIH MIN / VCCPU MIN) ) )

Figure 107. Pull-Up Resistor Example

Vccpu m in.

Rmax

VIH m in.ILeakage max.

Vccpu max.

Rmin

VIL max.IOL max.

PW R_Pullup_Res_815E_B0

13.2 ATX Power Supply PWRGOOD Requirements The PWROK signal must be glitch free for proper power management operation. The ICH2 sets the PWROK_FLR bit (ICH2 GEN_PMCON_2, General PM Configuration 2 Register, PM-dev31: function 0, bit 0, at offset A2h). If this bit is set upon resume from S3 power-down, the system will reboot and control of the system will not be given to the program running when entering the S3 state. System designers should insure that PWROK signal designs are glitch free.

Page 184: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

184 Intel® 815E Chipset Platform Design Guide

13.3 Power Management Signals • A power button is required by the ACPI specification.

• PWRBTN# is connected to the front panel on/off power button. The ICH2 integrates 16 ms debouncing logic on this pin.

• AC power loss circuitry has been integrated into the ICH2 to detect power failure.

• It is recommended that the ATXPWROK signal from the power supply connector be routed through a Schmitt trigger to square-off and maintain its signal integrity. It should not be connected directly to logic on the board.

• PWROK logic from the power supply connector can be powered from the core voltage supply.

• RSMRST# logic should be powered by a standby supply, while making sure that the input to the ICH2 is at the 3V level. The RSMST# signal requires a minimum time delay of 1 ms from the rising edge of the standby power supply voltage. A Schmitt trigger circuit is recommended to drive the RSMRST# signal. To provide the required rise time, the 1 ms delay should be placed before the Schmitt trigger circuit. The reference design implements a 20 ms delay at the input of the Schmitt trigger to ensure that the Schmitt trigger inverters have sufficiently powered up before switching the input. Also ensure that voltage on RSMRST# does not exceed VCC(RTC).

• It is recommended that 3.3V logic be used to drive RSMRST# to alleviate rise time problems when using a resistor divider from VCC5.

• The PWROK signal to the chipset is a 3V signal.

• The core well power valid to PWROK asserted at the chipset is a minimum of 1 ms.

• PWROK to the chipset must be deasserted after RSMRST#.

• PWRGOOD signal to processor is driven with an open-collector buffer pulled up to 2.5 V, using a 330 Ω resistor. It also has a 1.8 KΩ pull-down to ground.

• RI# can be connected to the serial port if this feature is used. To implement ring indicate as a wake event, the RS232 transceiver driving the RI# signal must be powered when the ICH2 suspend well is powered. This can be achieved with a serial port transceiver powered from the standby well that implements a shutdown feature.

• SLP_S3# from the ICH2 must be inverted and then connected to PSON of the power supply connector to control the state of the core well during sleep states.

• For an ATX power supply, when PSON is Low, the core wells are turned on. When PSON is high, the core wells from the power supply are turned off.

Page 185: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 185

13.3.1 Power Button Implementation

The following items should be considered when implementing a power management model for a desktop system. The power states are as follows:

• S1 Stop Grant (processor context not lost)

• S3 - STR (Suspend to RAM)

• S4 - STD (Suspend to Disk)

• S5 - Soft-off

Note the following: 1. Wake: Pressing the power button wakes the computer from S1S5. 2. Sleep: Pressing the power button signals software/firmware in the following manner:

a. If SCI is enabled, the power button will generate an SCI to the OS. 1. The OS will implement the power button policy to allow orderly shutdowns. 2. Do not override this with additional hardware.

b. If SCI is not enabled: 1. Enable the power button to generate an SMI and go directly to soft-off or a

supported sleep state. 2. Poll the power button status bit during POST while SMIs are not loaded and go

directly to soft-off if it gets set. 3. Always install an SMI handler for the power button that operates until ACPI is

enabled. 3. Emergency Override: Pressing the power button for 4 seconds goes directly to S5.

a. This is only to be used in EMERGENCIES when system is not responding. b. This will cause the user data to be lost in most cases.

4. Do not promote pressing the power button for 4 seconds as the normal mechanism to power the machine off. This violates ACPI.

5. To be compliant with the latest PC9x specification, machines must appear to the user to be off when in the S1S4 sleeping states. This includes: a. All lights, except a power state light, must be off. b. The system must be inaudible: silent or stopped fan, drives off.

Note: Contact Microsoft for the latest information concerning PC9x and Microsoft Logo programs.

Page 186: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

186 Intel® 815E Chipset Platform Design Guide

13.3.2 1.85 V/3.3 V Power Sequencing

The ICH2 has two pairs of associated 1.85V and 3.3V supplies. These are VCC1_85, VCC3_3 and VCCSus1_85, VCCSus3_3. These pairs are assumed to power up and power down together. The difference between the two associated supplies must never be greater than 2.0V. The 1.85V supply may come up before the 3.3V supply without violating this rule (though this is generally not practical in a desktop environment, since the 1.85V supply is typically derived from the 3.3V supply by means of a linear regulator).

One serious consequence of violation of the 2V Rule is electrical overstress of oxide layers, resulting in component damage.

The majority of the ICH2 I/O buffers are driven by the 3.3V supplies, but are controlled by logic that is powered by the 1.85V supplies. Thus, another consequence of faulty power sequencing arises if the 3.3V supply comes up first. In this case the I/O buffers will be in an undefined state until the 1.85V logic is powered up. Some signals that are defined as "Input-only" actually have output buffers that are normally disabled, and the ICH2 may unexpectedly drive these signals if the 3.3V supply is active while the 1.85V supply is not.

Figure 108 shows an example power-on sequencing circuit that ensures the 2V Rule is obeyed. This circuit uses a NPN (Q2) and PNP (Q1) transistor to ensure the 1.85V supply tracks the 3.3V supply. The NPN transistor controls the current through PNP from the 3.3V supply into the 1.85V power plane by varying the voltage at the base of the PNP transistor. By connecting the emitter of the NPN transistor to the 1.85V plane, current will not flow from the 3.3V supply into 1.85V plane when the 1.85V plane reaches 1.85V.

Figure 108. Example 1.85 V/3.3 V Power Sequencing Circuit

Q1 PNP

Q2 NPN

220

220

470

+3.3V +1.85V

When analyzing systems that may be "marginally compliant" to the 2V Rule, pay close attention to the behavior of the ICH2's RSMRST# and PWROK signals, since these signals control internal isolation logic between the various power planes:

• RSMRST# controls isolation between the RTC well and the Resume wells.

• PWROK controls isolation between the Resume wells and Main wells

Page 187: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 187

If one of these signals goes high while one of its associated power planes is active and the other is not, a leakage path will exist between the active and inactive power wells. This could result in high, possibly damaging, internal currents.

13.3.3 3.3V/V5REF Sequencing

V5REF is the reference voltage for 5V tolerance on inputs to the ICH2. V5REF must be powered up before Vcc3_3, or after Vcc3_3 within 0.7V. Also, V5REF must power down after Vcc3_3, or before Vcc3_3 within 0 .7V. The rule must be followed in order to ensure the safety of the ICH2. If the rule is violated, internal diodes will attempt to draw power sufficient to damage the diodes from the Vcc3_3 rail. Figure 109 shows a sample implementation of how to satisfy the V5REF/3.3V sequencing rule.

This rule also applies to the stand-by rails. However, in most platforms the VccSus3_3 rail is derived from the VccSus5 and therefore, the VccSus3_3 rail will always come up after the VccSus5 rail. As a result, V5REF_Sus will always be powered up before VccSus3_3. In platforms that do not derive the VccSus3_3 rail from the VccSus5 rail, this rule must be comprehended in the platform design.

As an additional consideration, during suspend the only signals that are 5V tolerant are USB pins (both over-current and data lines). If USB is not implemented in the system then V5REF_SUS can be connected to the VccSus3_3 rail. Otherwise when USB is supported, V5REF_SUS must be connected to 5V_AUX, which remains powered during S5.

Figure 109. 3.3V/V5REF Sequencing Circuitry

Vcc Supply(3.3 V)

1 KΩ

5V Supply

1 µF

To System VREF To System

3.3V_5V_Seq_Ckt_815E_B0

Page 188: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

188 Intel® 815E Chipset Platform Design Guide

13.4 Power Plane Splits

Figure 110. Power Plane Split Example

pwr_plane_splits

Page 189: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

Intel® 815E Chipset Platform Design Guide 189

13.5 Glue Chip 3 (Intel® ICH2 Glue Chip) To reduce the component count and BOM cost of the ICH2 platform, Intel has developed an ASIC component that integrates miscellaneous platform logic into a single chip. The Glue Chip 3 is designed to integrate some or all of the following functions into a single device. By integrating much of the required glue logic into a single device, overall board cost can be reduced.

Features • PWROK signal generation

• Control circuitry for Suspend To RAM

• Power Supply power up circuitry

• RSMRST# generation

• Backfeed cutoff circuit for suspend to RAM

• 5V reference generation

• Flash FLUSH# / INIT# circuit

• HD single color LED driver

• IDE reset signal generation/PCIRST# buffers

• Voltage translation for Audio MIDI signal

• Audio-disable circuit

• Voltage translation for DDC to monitor

• Tri-state buffers for test

More information regarding this component is available from the following vendors.

Vendor Contact Contact Information

Fujitsu Microelectronics

Customer Response Center 3545 North 1st Street, M/S 104 San Jose, CA 95134-1804 phone: 1-800-866-8600 fax: 1-408-922-9179 email: [email protected]

Mitel Semiconductor Greg Kizik Regional Business Manager

1735 Technology Drive Suite 240 San Jose, CA 95110 phone: 408-451-4723 fax: 408-451-4710 e-mail: [email protected] http://www.mitelsemi.com

Page 190: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Power Delivery

R

190 Intel® 815E Chipset Platform Design Guide

This page is intentionally left blank.

Page 191: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 191

14 System Design Checklist

14.1 Design Review Checklist This checklist highlights design considerations that should be reviewed prior to manufacturing a motherboard that implements an 815E chipset platform for use with the universal socket 370 platform. This is not a complete list and does not guarantee that a design will function properly.

The following set of tables provides design considerations for the various portions of a design. Each table describes one of those portions and is titled accordingly. Contact your Intel Field Representative in the event of questions or issues regarding the interpretation of the information in these tables.

14.2 Processor Checklist

14.2.1 GTL Checklist Checklist Items Recommendations

A[35:3]# 1 • Connect A[31:3]# to GMCH. Leave A[35:32]# as No Connect (not supported by chipset).

BNR#, BPRI#, DBSY#, DEFER#, DRDY#, D[63:0]#, HIT#, HITM#, LOCK#, REQ[4:0]#, RS[2:0]#, TRDY#

• Connect to GMCH.

ADS# • Resistor site for 56 Ω pull-up to VTT placed within 150 mils of GMCH for debug purpose. Connect to GMCH.

BREQ[0]# (BR0#) • 33 Ω pull-down resistor to ground

RESET# (AH4) • Terminate to VTT through 86 Ω resistor, decoupled through 22 Ω resistor in series with 10 pF capacitor to ground. Connect to GMCH. For ITP, also connect to ITP pin 2 (RESET#) with 240 Ω series resistor.

RESET2# (X4) • 1 kΩ series resistor to RESET#.

Page 192: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

192 Intel® 815E Chipset Platform Design Guide

14.2.2 CMOS Checklist Checklist Items Recommendations

IERR# • 150 Ω pull-up resistor to VCCCMOS if tied to custom logic, or leave as No Connect (not used by chipset)

PREQ# • 200300 Ω pull-up resistor to VCCCMOS / Connect to ITP or else leave as No Connect.

THERMTRIP# • See Section 5.3.1.

A20M#, IGNNE#, INIT#, INTR, NMI, SLP#, SMI#, STPCLK#

• Connect to Intel® ICH2. External pull-ups are not needed.

FERR# • Requires 150 Ω pull-up to VCCCMOS/Connect to ICH2.

FLUSH# • Requires 150 Ω pull-up to VCCCMOS. (Not used by chipset.)

PWRGOOD • 330 Ω pull-up to VCC2_5 /1.8 kΩ pull-down resistor to ground /Connect to POWERGOOD logic.

14.2.3 TAP Checklist for 370-Pin Socket Processors Checklist Items Recommendations

TCK • 39 Ω pull-down resistor to ground / Connect to ITP.

TMS • 39 Ω pull-up resistor to VCMOS / Connect to ITP

TDI • 200330 Ω pull-up resistor to VCMOS / Connect to ITP.

TDO • 150 Ω pull-up resistor to VCMOS / Connect to ITP.

TRST# • 500-680 Ω pull-down resistor to ground / Connect to ITP.

PRDY# • Pull-up resistor that matches GTL characteristic impedance to VTT / 240 Ω series resistor to ITP.

Note: Resistors need to be placed within 1inch of the TAP connector.

Page 193: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 193

14.2.4 Miscellaneous Checklist for 370-Pin Socket Processors Checklist Items Recommendations

BCLK • Connect to clock generator. / 2233 Ω series resistor (though OEM needs to simulate based on driver characteristics). To reduce pin-to-pin skew, tie host clock outputs together at the clock driver then route to the GMCH and processor.

BSEL0 • Case 1 (66/100/133 MHz support): 1 kΩ pull-up resistor to 3.3 V. Connect to CK815 SEL0 input. Connect to GMCH LMD29 pin via 10 kΩ series resistor.

• Case 2 (100/133 MHz support): 1 kΩ pull-up resistor to 3.3 V. Connect to PWRGOOD logic such that a logic Low on BSEL0 negates PWRGOOD.

BSEL1 • 1 kΩ pull-up resistor to 3.3 V. Connect to CK815 REF pin via 10 kΩ series resistor. Connect to GMCH LMD13 pin via 10 kΩ series resistor.

CLKREF • Connect to divider on VCC2.5 or VCC3.3 to create 1.25V reference with a 4.7 µF decoupling capacitor. Resistor divider must be created from 1% tolerance resistors. Do not use VTT as source voltage for this reference!

CPUPRES# • Tie to ground. Leave as No Connect or connect to PWRGOOD logic to gate system from powering on if no processor is present. If used, 1 kΩ to 10 kΩ pull-up resistor to VCCCMOS.

DYN_OE • 1 kΩ pull-up resistor to VTT.

PICCLK • See Section 11.5.

PICD[1:0] • 150 Ω pull-up resistor to VCCCMOS/Connect to ICH2.

PLL1, PLL2 • Low-pass filter on VCCCORE provided on motherboard. Typically a 4.7 µH inductor in series with VCCCORE is connected to PLL1, and then through a series 33 µF capacitor to PLL2.

RTTCTRL (S35) • 56 Ω ± 1% pull-down resistor to ground.

SLEWCTRL (E27) • 110 Ω ± 1% pull-down resistor to ground.

STPCLK# (AG35) • Connect to ICH2.

THERMDN, THERMDP

• No Connect if not used. Otherwise, connect to thermal sensor using vendor guidelines.

VCC2.5 • No connect for Intel® Pentium® III processors

GTL_REF/ CMOSREF (AK22)

• Connect to a 1.0V voltage divider derived from VCCCMOS. See Section 4.2.7.

VCCCORE • 16 ea. (min.) 4.7 µF in 1206 package all placed within the PGA370 socket cavity.

• 8 ea. (min.) 1 µF in 0612 package placed in the PGA370 socket cavity.

VID[25mV, 3:0] • Connect to on-board VR or VRM. 25mV should connect to VID25mV. For on-board VR, 10 kΩ pull-up resistor to power solution-compatible voltage is required (usually pulled up to input voltage of the VR). Some of these solutions have internal pull-ups. Optional override (jumpers, ASIC, etc.) could be used. May also connect to system monitoring device.

VTTPWRGD • Pull up to VTT through 1 kΩ resistor and connect to VTTPWRGD circuitry.

Page 194: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

194 Intel® 815E Chipset Platform Design Guide

Checklist Items Recommendations

VREF[6:0] • Connect to VREF voltage divider made up of 75 Ω and 150 Ω 1% resistors connected to VTT. Processor VREF must be able to be separate from chipset VREF.

• Decoupling Guidelines:

• 4 ea. (min.) 0.1 µF in 0603 package placed within 500 mils of VREF pins

VTT • Connect AH20, AK16, AL13, AL21, AN11, AN15, G35, G37, AD36, AB36, X34, AA33, AA35, AN21, E23, S33, S37, U35, and U37 to VRM regulators compliant with Intel® VRM guidelines for 0.13 micron processors.. Provide high- and low-frequency decoupling.

• Decoupling Guidelines:

• 20 ea (min.) 0.1 µF in 0603 package placed as near the VTT processor pins as possible.

• 4 ea (min.) 0.47 µF in 0612 package

NO CONNECTS • The following pins must be left as no-connects: A29, A31, A33, AC37, AK24, AK30, AL1, AL11, AM2, AN13, AN23, B36, C29, C31, C33, C35, E21, E29, E31, E35, E37, F10, G33, L33, N33, N35, Q33, Q35, Q37, R2, V4, W35, X2, Y1, Z36.

AJ3 • See Chapter 4.

EDGCTRL (AG1) • See Section 4.2.4.

DETECT (AF36) • See Section 4.2.4.

NCHCTRL (N37) • 14 Ω pull-up resistor to VTT.

14.3 GMCH Checklist

14.3.1 AGP Interface 1X Mode Checklist Checklist Items Recommendations

RBF#, WBF#, PIPE#, GREQ#, GGNT#, GPAR, GFRAME#, GIRDY#, GTRDY#, GSTOP#, GDEVSEL#, GPERR#, GSERR#, ADSTB0, ADSTB1, SBSTB

• Pull up to VDDQ through 8.2 kΩ

ADSTB0#, ADSTB1#, SBSTB#

• Pull down to ground through 8.2 kΩ

PME# • Connect to PCI connector 0 device Ah. / Connect to PCI connector 1 device Bh. / Connect to Intel 82559 LAN (if implemented).

TYPEDET# • Connect to AGP voltage regulator circuitry / AGP reference circuitry.

PIRQ#A, PIRQ#B • Pull up to 5 V through 2.7 kΩ. / Follow ref. schematics (other device connections).

Page 195: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 195

14.3.2 Designs That Do Not Use the AGP Port

Any external graphics implementation not using the AGP port should terminate the GMCH AGP control and strobe signals in the following way:

Table 44. Recommendations for Unused AGP Port

Signal Pull up / Pull Down

FRAME# Pull-up to +VDDQ

TRDY# Pull-up to +VDDQ

IRDY# Pull-up to +VDDQ

DEVSEL# Pull-up to +VDDQ

STOP# Pull-up to +VDDQ

SERR# Pull-up to +VDDQ

PERR# Pull-up to +VDDQ

RBF# Pull-up to +VDDQ

WBF# Pull-up to +VDDQ

INTA# Pull-up to +VDDQ

INTB# Pull-up to +VDDQ

PIPE# Pull-up to +VDDQ

REQ# Pull-up to +VDDQ

GNT# Pull-up to +VDDQ

GPAR Pull-down to Ground using a 100 kΩ resistor

AD_STB[1:0] Pull-up to +VDDQ

SB_STB Pull-up to +VDDQ

AD_STB[1:0]# Pull-down to Ground

SB_STB# Pull-down to Ground

ST[2:0] Pull-up to +VDDQ

14.3.3 System Memory Interface Checklist Checklist Items Recommendations

SMAA12 • Connect GMCH through 10 kΩ resistor to transistor junction as per Chapter 4 for systems supporting the universal PGA370 design.

SMAA9 • Connect 10 kΩ to ground.

Page 196: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

196 Intel® 815E Chipset Platform Design Guide

14.3.4 Hub Interface Checklist Checklist Items Recommendations

HUBREF • Connect to HUBREF generation circuitry.

HL_COMP • Pull up to VCC1.85 through 40 Ω (both GMCH and Intel® ICH2 side).

14.3.5 Digital Video Output Port Checklist Checklist Items Recommendations

DVI Input Reference Circuit

• See reference schematics in the documentation of the third party vendor of the device of choice in your design. The Third-Party Vendor information is a part of this design guide and its associated design guide updates.

14.4 Intel® ICH2 Checklist

14.4.1 PCI Interface Checklist Items Recommendations

All • All inputs to the Intel® ICH2 must not be left floating. Many GPIO signals are fixed inputs that must be pulled up to different sources. See Section 0 for recommendations.

PERR#, SERR# PLOCK#, STOP# DEVSEL#, TRDY# IRDY#, FRAME# REQ[4:0] #, GPIO[1:0], THRM#

• These signals require a pull-up resistor. Recommend an 8.2 kΩ pull-up resistor to VCC3.3 or a 2.7 kΩ ohm pull-up resistor to VCC5. See PCI 2.2 Component Specification for pull-up recommendations for VCC3.3 and VCC5.

PCIRST# • The PCIRST# signal should be buffered to form the IDERST# signal.

• 33 Ω series resistor to IDE connectors.

PCIGNT# • No external pull-up resistors are required on PCI GNT signals. However, if external pull-up resistors are implemented they must be pulled up to VCC3.3.

PME# • No extra pull-up resistors This signal has an integrated pull-up resistor of 24 kΩ.

SERIRQ • External weak (8.2 kΩ) pull-up resistor to VCC3.3 is recommended.

GNT[A]#, /GPIO[16], GNT[B]/ GNT[5]#/ GPIO[17]

• No extra pull-up needed. These signals have integrated pull-ups of 24 kΩ.

• GNT[A] has an added strap function of top block swap. The signal is sampled on the rising edge of PWROK. Default value is high or disabled due to pull-up. A Jumper to a pull-down resistor can be added to manually enable the function.

Page 197: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 197

14.4.2 Hub Interface Checklist Items Recommendations

HL11 • No pull-up resistor required. Use a no-stuff or a test point to put the Intel® ICH2 into NAND chain mode testing

HL_COMP • Tie the COMP pin to a 40Ω 1% or 2% (or 39 Ω 1%) pull-up resistor (to VCC1.85) via a 10 mil wide, very short (~0.5 inch) trace. ZCOMP No longer supported.

14.4.3 LAN Interface Checklist Items Recommendations

LAN_CLK • Connect to LAN_CLK on Platform LAN Connect Device.

LAN_RXD[2:0] • Connect to LAN_RXD on Platform LAN Connect Device. Intel® ICH2 contains integrated 9 kΩ pull-up resistors on interface.

LAN_TXD[2:0]

LAN_RSTSYNC

• Connect to LAN_TXD on Platform LAN Connect Device.

NOTES: 1. LAN connect interface can be left NC if not used. Input buffers internally terminated. 2. In the event of EMI problems during emissions testing (FCC Classifications) you may need to place a

decoupling cap (~470 pF) on each of the 4 LED pins. Reduces emissions attributed to LAN subsystem.

14.4.4 EEPROM Interface Checklist Items Recommendations

EE_DOUT • Prototype Boards should include a placeholder for a pull-down resistor on this signal line, but do not populate the resistor. Connect to EE_DIN of EEPROM or CNR Connector.

• Connected to EEPROM data input signal (input from EEPROM perspective and output from Intel® ICH2 perspective).

EE_DIN • No extra circuitry required. Connect to EE_DOUT of EEPROM or CNR Connector. ICH2 contains an integrated pull-up resistor for this signal.

• Connected to EEPROM data output signal (output from EEPROM perspective and input from ICH2 perspective).

14.4.5 FWH/LPC Interface Checklist Items Recommendations

FWH[3:0]/ LAD[3:0]

LDRQ[1:0]

• No extra pull-ups required. Intel® ICH2 Integrates 24 kΩ pull-up resistors on these signal lines.

Page 198: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

198 Intel® 815E Chipset Platform Design Guide

14.4.6 Interrupt Interface Checklist Items Recommendations

PIRQ#[D:A] • These signals require a pull-up resistor. The recommendation is a 2.7 kΩ pull-up resistor to VCC5 or 8.2 kΩ to VCC3.3.

• In Non-APIC Mode the PIRQx# signals can be routed to interrupts 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 or 15 as described in the Intel® ICH2 datasheet. Each PIRQx# line has a separate Route Control Register.

• In APIC mode, these signals are connected to the internal I/O APIC in the following fashion: PIRQ[A]# is connected to IRQ16, PIRQ[B]# to IRQ17, PIRQ[C]# to IRQ18, and PIRQ[D]# to IRQ19.

PIRQ#[G:F]/ GPIO[4:3] • These signals require a pull-up resistor. Recommend a 2.7 kΩ pull-up resistor to VCC5 or 8.2 kΩ to VCC3.3.

• In Non-APIC Mode the PIRQx# signals can be routed to interrupts 3, 4, 5, 6, 7, 9, 10, 11, 12, 14 or 15 as described in the ICH2 datasheet. Each PIRQx# line has a separate Route Control Register.

• In APIC mode, these signals are connected to the internal I/O APIC in the following fashion: PIRQ[E]# is connected to IRQ20, PIRQ[F]# to IRQ21, PIRQ[G]# to IRQ22, and PIRQ[H]# to IRQ23.

PIRQ#[H]

PIRQ#[E]

• These signals require a pull-up resistor. Recommend a 2.7 kΩ pull-up resistor to VCC5 or 8.2 kΩ to VCC3.3.

• Since PIRQ[H]# and PIRQ[E]# are used internally for LAN and USB controllers, they cannot be used as GPIO(s) pin.

APIC • If the APIC is used: 150 Ω pull-up resistors on APICD[0:1] Connect APICCLK to CK133 with a 2033 Ω series termination resistor.

• If the APIC is not used on UP systems: The APICCLK can either be tied to GND or connected to CK133, but not

left floating. Pull APICD[0:1] to GND through 10 kΩ pull-down resistors. Use pull-downs for each APIC signal. Do not share resistor to pull signals

up.

Page 199: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 199

14.4.7 GPIO Checklist Checklist Items Recommendations

All • Ensure ALL unconnected signals are OUTPUTS ONLY!

GPIO[7:0] • These pins are in the Main Power Well. Pull-ups must use the VCC3.3 plane. Unused core well inputs must either be pulled up to VCC3.3 or be pulled down. Inputs must not be allowed to float. These signals are 5V tolerant.

• GPIO[1:0] can be used as REQ[A:B]#. GPIO[1] can also be used as PCI REQ[5]#.

GPIO[8], [13:11]- • These pins are in the Resume Power Well. Pull-ups must use the VCCSUS3.3 plane. These are the only GPI signals in the resume well with associated status bits in the GPE1_STS register. Unused resume well inputs must be pulled up to VCCSUS3.3. These signals are not 5V tolerant.

• These are the only GPIs that can be used as ACPI compliant wake events.

GPIO[23:16] • Fixed as output only. Can be left NC. In Main Power Well. GPIO22 is open drain.

GPIO[24,25,27,28] • These I/O pins can be NC. These pins are in the resume power well.

14.4.8 USB Checklist Items Recommendations

USBP[3:0]P

USBP[3:0]N

• See Figure 111 for circuitry needed on each differential Pair.

VCC USB (Cable power) • It should be powered from the 5V core instead of the 5V standby, unless adequate standby power is available.

Voltage drop considerations

• The resistive component of the fuses, ferrite beads and traces must be considered when choosing components, and power and GND trace widths. Minimize the resistance between the VCC5 power supply and the USB ports to prevent voltage drop.

• Sufficient bypass capacitance should be located near the USB receptacles to minimize the voltage drop that occurs during the hot plugging a new device. For more information, see the USB specification.

Fuse • A fuse larger than 1A can be chosen to minimize the voltage drop.

Page 200: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

200 Intel® 815E Chipset Platform Design Guide

Figure 111. USB Data Line Schematic

15 kΩ

15 kΩ

15 Ω

15 Ω

ICH2

P+

P-

< 1"

< 1"

45 Ω

45 Ω

Driver

Driver

Transmission line

Motherboard trace

Motherboard trace

usb_data_line_schem

USB

con

nect

or

90 Ω

USB twisted-pair cable

Optional47 pf

Optional47 pf

14.4.9 Power Management Checklist Items Recommendations

THRM# • Connect to temperature Sensor. Pull-up if not used.

SLP_S3#

SLP_S5#

• No pull-up/down resistors needed. Signals driven by Intel® ICH2.

PWROK • This signal should be connected to power monitoring logic, and should go high no sooner than 10 ms after both VCC3_3 and VCC1_8 have reached their nominal voltages. For systems implementing the universal PGA370 design, this signal must be connected to the gating circuit found in Section 4.

PWRBTN# • No extra pull-up resistors. This signal has an integrated pull-up of 24 kΩ.

RI# • RI# does not have an internal pull-up. Recommend an 8.2 kΩ pull-up resistor to Resume well

• If this signal is enabled as a wake event, it is important to keep this signal powered during the power loss event. If this signal goes low (active), when power returns the RI_STS bit will be set and the system will interpret that as a wake event.

RSMRST# • Connect to power monitoring logic, and should go high no sooner than 10 ms after both VccSUS3_3 and VccSus1_8 have reached their nominal voltages. Requires weak pull-down. Also requires well isolation control as directed in Section 11.8.6

Page 201: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 201

14.4.10 Processor Signals Checklist Items Recommendations

A20M#, CPUSLP#, IGNNE#, INIT#, INTR, NMI, SMI#, STPCLK#

• Internal circuitry has been added to the Intel® ICH2, external pull-up resistors are not needed.

FERR# • Requires Weak external pull-up resistor to VCCCMOS.

RCIN#

A20GATE

• Pull-up signals to VCC3.3 through a 10 kΩ resistor.

CPUPWRGD • Connect to the processors CPUPWRGD input. Requires weak external pull-up resistor.

14.4.11 System Management Checklist Items Recommendations

SMBDATA

SMBCLK

• Requires external pull-up resistors. See SMBus Architecture and Design Consideration section to determine the appropriate power well to use to tie the pull-up resistors. (Core well, suspend well, or a combination.)

• Value of pull-up resistors determined by line load. Typical value used is 8.2 kΩ.

SMBALERT#/ GPIO[11]

• See GPIO section if SMBALERT# not implemented

SMLINK[1:0] • Requires external pull-up resistors. See SMBus Architecture and Design Consideration section to determine the appropriate power well to use to tie the pull-up resistors. (Core well, suspend well, or a combination.)

• Value of pull-up resistors determined by line load. Typical value used is 8.2 kΩ.

INTRUDER# • Pull signal to VCCRTC (VBAT), if not needed.

14.4.12 RTC Checklist Items Recommendations

VBIAS • The VBIAS pin of the Intel® ICH2 is connected to a .047 µF capacitor. See Figure 112

RTCX1

RTCX2

• Connect a 32.768 kHz crystal oscillator across these pins with a 10 MΩ resistor and use 18 pF decoupling capacitors (assuming crystal with CLOAD = 12.5 pF) at each signal.

• The ICH2 implements a new internal oscillator circuit as compared with the PIIX4 to reduce power consumption. The external circuitry shown in Figure 112 below will be required to maintain the accuracy of the RTC.

• The circuitry is required since the new RTC oscillator is sensitive to step voltage changes in VCCRTC and VBIAS. A negative step on power supply of more than 100 mV will temporarily shut off the oscillator for hundreds of milliseconds.

• RTCX1 may optionally be driven by an external oscillator instead of a crystal. These signals are 1.85V only, and must not be driven by a 3.3V source.

RTCRST# • Ensure 10 ms20 ms RC delay (8.2 K and 2.2 µF) See Figure 85

SUSCLK • To assist in RTC circuit debug, route SUSCLK to a test point if it is unused.

Page 202: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

202 Intel® 815E Chipset Platform Design Guide

Figure 112. Intel® ICH2 Oscillator Circuitry

32768 HzXtal

C10.047uF

C2 1

C3 1

R110MΩΩΩΩ

R210MΩΩΩΩ

VCCRTC 2

RTCX2 3

RTCX1 4

VBIAS 5

VSS 6

VCC3_3SBY

VBAT_RTC

1.0uF

1kΩΩΩΩ

1kΩΩΩΩ

NOTE: Capacitors C2 and C3 are crystal dependent

14.4.13 AC ’97 Checklist Items Recommendations

AC_BITCLK • No extra pull-down resistors required.

• When nothing is connected to the link, BIOS must set a shut off bit for the internal keeper resistors to be enabled. At that point, you do not need pull-ups/pull-downs on any of the link signals.

AC_SYNC • No extra pull-down resistors required. Some implementations add termination for signal integrity. Platform specific.

AC_SDOUT • Requires a jumper to 8.2 kΩ pull-up resistor. Should not be stuffed for default operation.

• This pin has a weak internal pull-down. To properly detect a safe_mode condition a strong pull-up will be required to over-ride this internal pull-down.

AC_SDIN[1], AC_SDIN[0]

• Requires pads for weak 10 kΩ pull-downs. Stuff resistor for unused AC_SDIN signal or AC_SDIN signal going to the CNR connector.

• AC_SDIN[1:0] are inputs to an internal OR gate. If a pin is left floating, the output of the OR gate will be erroneous.

• If there is no codec on the system board, then both AC_SDIN[1:0] should be pull-down externally with resisters to ground.

CDC_DN_ENAB# • If the primary codec is down on the motherboard, this signal must be low to indicate the motherboard codec is active and controlling the AC 97 interface.

Page 203: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 203

14.4.14 Miscellaneous Signals Checklist Items Recommendations

SPKR • No extra pull-up resistors. Has integrated pull-up of between 18 kΩ and 42 kΩ. The integrated pull-up is only enabled at boot/reset for strapping functions; at all other times, the pull-up is disabled.

• A low effective impedance may cause the TCO Timer Reboot function to be erroneously disabled.

• Effective Impedance due Speaker and Codec circuitry must be greater than 50 kΩ or a means to isolate the resistive load from the signal while PWROK is low be found. See Figure 113.

TP[0] • Requires external pull-up resistor to VCCSUS3.3

FS[0] • Rout to a test point. Intel® ICH2 contains an integrated pull-up for this signal. Test point used for manufacturing appears in XOR tree.

Figure 113. SPKR Circuitry

Stuff Jumper ToDisable TimeoutFeature.

Effective ImpedanceDue To Speaker andCodec Circuit.Reff > 50 KΩ

ICH2

Integrated Pull-Up18-42 KΩ

Spkr_Ckt_815E_B0

R < 7.3 KΩ

3.3V

Page 204: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

204 Intel® 815E Chipset Platform Design Guide

14.4.15 Power Checklist Items Recommendations

V_CPU_IO[1:0] • The power pins should be connected to the proper power plane for the processor's CMOS Compatibility Signals. Use one 0.1 µF decoupling capacitor.

VCCRTC • No clear CMOS jumper on VCCRTC. Use a jumper on RTCRST# or a GPI, or use a safemode strapping for Clear CMOS

VCC3.3 • Requires six 0.1 µF decoupling capacitor

VCCSus3.3 • Requires one 0.1 µF decoupling capacitor.

VCC1.85 • Requires two 0.1 µF decoupling capacitor s.

VCCSus1.85 • Requires one 0.1 µF decoupling capacitor.

V5_REF SUS • Requires one 0.1 µF decoupling capacitor.

• V5REF_SUS affects 5V-tolerance for all USB pins and can be connected to VccSUS3_3 if Intel® ICH2 USB is not supported in the platform. If USB is supported, V5REF_SUS must be connected to 5V_AUX, which remains powered during S5.

V5_REF • V5REF is the reference voltage for 5V tolerant inputs in the ICH2. Tie to pins VREF[2:1]. V5REF must power up before or simultaneous to VCC3_3. It must power down after or simultaneous to VCC3_3. Refer to Figure 114 for an example circuit schematic that may be used to ensure the proper V5REF sequencing.

VCMOS • VCMOS power source must supply 1.5 V and be generated by circuitry on the motherboard. Do not connect to VTT. See Appendix A: Customer Reference Board CRB).

Figure 114. V5REF Circuitry

Vcc Supply(3.3 V)

1 KΩ

5V Supply

1 µF

To System VREF To System

3.3V_5V_Seq_Ckt_815E_B0

Page 205: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 205

14.4.16 IDE Checklist Checklist Items Recommendations

PDD[15:0], SDD[15:0]

• No extra series termination resistors or other pull-ups/pull-downs are required. These signals have integrated series resistors. Note that simulation data indicates that the integrated series termination resistors can range from 31 Ω to 43 Ω.

• PDD7/SDD7 does not require a 10 kΩ pull-down resistor. Refer to ATA ATAPI-4 specification.

PDIOW#, PDIOR#, PDDACK#, PDA[2:0], PDCS1#, PDCS3#, SDIOW#, SDIOR#, SDDACK#, SDA[2:0], SDCS1#, SDCS3#

• No extra series termination resistors. Pads for series resistors can be implemented should the system designer have signal integrity concerns. These signals have integrated series resistors. Note that simulation data indicates that the integrated series termination resistors can range from 31 Ω to 43 Ω.

PDREQ

SDREQ

• No extra series termination resistors. No pull-down resistors needed.

• These signals have integrated series resistors in the Intel® ICH2. These signals have integrated pull-down resistors in the ICH2.

PIORDY

SIORDY

• No extra series termination resistors. These signals have integrated series resistors in the ICH2. Pull-up to VCC3.3 via a 4.7 kΩ resistor.

IRQ14, IRQ15 • Recommend 8.2 kΩ10 kΩ pull-up resistors to VCC3.3.

• No extra series termination resistors.

IDERST# • The PCIRST# signal should be buffered to form the IDERST# signal. A 33 Ω series termination resistor is recommended on this signal.

Cable Detect: • Host Side/Device Side Detection: Connect IDE pin PDIAG/CBLID to an ICH2 GPIO pin. Connect a 10 kΩ

resistor to GND on the signal line. The 10 kΩ resistor to GND prevents GPI from floating if no devices are present on either IDE interface. Allows use of 3.3V and 5V tolerant GPIOs.

• Device Side Detection: Connect a 0.047 µF capacitor from IDE pin PDIAG/CBLID to GND. No ICH2

connection. Note that all ATA66/ATA100 drives will have the capability to detect cables

NOTE: The maximum trace length from the ICH2 to the ATA connector is 8 inches.

Page 206: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

206 Intel® 815E Chipset Platform Design Guide

Figure 115. Host/Device Side Detection Circuitry

80-conductorIDE cable

IDE drive

5 V

ICH2

GPIO

GPIO

Open

IDE drive

5 V

40-conductorcable

IDE drive

5 V

PDIAG#ICH2

GPIO

GPIO

IDE drive

5 V

PDIAG#

PDIAG#PDIAG#

10 kΩ

10 kΩ

To secondaryIDE connector

To secondaryIDE connector

PDIAG#/CBLID#

PDIAG#/CBLID#

10 kΩ

10 kΩ

10 kΩ

10 kΩ

IDE_combo_cable_det

Figure 116. Device Side Only Cable Detection

80-conductorIDE cable

IDE drive

5 V

ICH2

Open

IDE drive

5 V

40-conductorcable

IDE drive

5 V

PDIAG#ICH2

IDE drive

5 V

PDIAG#

PDIAG#PDIAG#PDIAG#/CBLID#

PDIAG#/CBLID#

10 kΩ

10 kΩ

10 kΩ

10 kΩ

IDE_dev_cable_det

0.047 µF

0.047 µF

Page 207: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 207

14.5 LPC Checklist

Checklist Items Recommendations

RCIN#/KBRST# • Pull up through 8.2 kΩ resistor to VCC3_3.

LPC_PME# • Pull up through 8.2 kΩ resistor to VCC3_3. Do not connect LPC PME# to PCI PME#. If the design requires the Super I/O to support wake from any suspend state, connect Super I/O LPC_PME# to a resume well GPI on the Intel® ICH2.

J1BUTTON1, J2BUTTON2, J2BUTTON1, J2BUTTON2

• Connect through 1 kΩ series resistor / decouple through 1000 pF capacitor to GND, followed by 4.7 kΩ pull-up to VCC5 / decouple through 470 pF capacitor to GND.

JOY1X, JOY2X, JOY1Y, JOY2Y

• Connect through 1 kΩ series resistor / decouple through 22 pF capacitor to GND, followed by 4.7 kΩ pull-up to VCC5 / decouple through 470 pF capacitor to GND.

A20GATE • Pull up through 8.2 kΩ resistor to VCC3_3.

CASEOPEN# • Pull up through 10 MΩ resistor to VCCRTC / connect to switch to GND.

KEYLOCK# • Pull up through 10 kΩ resistor to VCC5.

MCLK, MDAT, KCLK, KDAT

• Pull up through 4.7 kΩ resistor to VCC5_Dual.

MIDI_IN, MIDI_OUT • Pull up through 4.7 kΩ resistor to VCC5, followed by 47 Ω series resistor / decouple through a 470 pF capacitor to GND.

RI#1, CTS#0, RXD1, RXD0, RI#0, DCD#1, DSR#1, DSR#0, DTR#1, DTR#0, DCD#0, RTS#1, RTS#0, CTS#1, TXD1, TXD0

• Decoupled using 100 pF capacitor to GND.

SERIRQ Pull up through 8.2 kΩ resistor to VCC3_3.

LFRAME# No required pull-up resistor

LDRQ#0 No required pull-up resistor

Page 208: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

208 Intel® 815E Chipset Platform Design Guide

14.6 System Checklist Checklist Items Recommendations

KEYLOCK# • Pull up through 10 kΩ resistor to VCC3_3.

PBTN_IN • Connects to PBSwitch and PBin.

PWRLED • Pull up through a 220 Ω resistor to VCC5.

R_IRTX • Signal IRTX after it is pulled down through 4.7 kΩ resistor to GND and passes through 82 Ω resistor.

IRRX • Pull up to 100 kΩ resistor to VCC3_3.

• When signal is input for SI/O decouple through 470 pF capacitor to GND

IRTX • Pull down through 4.7 kΩ to GND.

• Signal passes through 82 Ω resistor.

• When signal is input to SI/O decouple through 470 pF capacitor to GND

FP_PD • Decouple through a 470 pF capacitor To GND.

• Pull up 470 Ω to VCC5.

PWM1, PWM2 • Pull up through a 4.7 kΩ resistor to VCC3_3.

14.7 FWH Checklist Checklist Items Recommendations

No floating inputs • Unused FGPI pins must be tied to a valid logic level.

WP#, TBL# • Connect to Intel® ICH2.

VPP • Pulled up to VCC3_3 and decoupled with a 0.1 µF capacitor to GND.

FGPI0, FGPI1, FGPI2, FPGI3, FPGI4, IC

• Pull down through a 8.2 kΩ resistor to GND.

INIT# • FWH INIT# must be connected to processor INIT#.

RST# • FWH RST# must be connected to PCIRST#.

ID[3:0] • For a system with only one FWH device, tie ID[3:0] to ground.

NOTE: These recommendations are only valid for the Intel® Firmware Hub.

Page 209: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

Intel® 815E Chipset Platform Design Guide 209

14.8 Clock Synthesizer Checklist Checklist Items Recommendations

REFCLK • Connects to R-RefCLK, USB_CLK, SIO_CLK14, and ICHCLK14.

ICH_3V66/3V66_0, DOTCLK

• Passes through 33 Ω resistor.

• When signal is input for Intel® ICH, it is pulled down through a 18 pF capacitor to GND.

DCLK/DCLK_WR • Passes through 33 Ω resistor.

• When signal is input for GMCH, it is pulled down through a 22 pF capacitor to GND.

CPUHCLK/CPU_0_1 • Passes through 33 Ω resistor.

• When signal is input for 370PGA, decouple through a 18 pF capacitor to GND.

R_REFCLK • REFCLK passed through 10 kΩ resistor.

• When signal is input for 370PGA, pull up through 1 kΩ resistor to VCC3_3 and pass through 10 kΩ resistor.

USB_CLK, ICH_CLK14 • REFCLK passed through 10 Ω resistor.

XTAL_IN, XTAL_OUT • Passes through 14.318 MHz oscillator.

• Pulled down through 18 pF capacitor to GND.

SEL1_PU • Pulled up via MEMV3 circuitry through 8.2 kΩ resistor.

FREQSEL • Connected to clock frequency selection circuitry through 10 kΩ resistor. (See CRB schematic, page 4.)

L_VCC2_5 • Connects to VDD2_5[01] through ferrite bead to VCC2_5.

GMCHHCLK/CPU_1, ITPCLK/CPU_2, PCI_0/PCLK_OICH, PCI_1/PCLK_1, PCI_2/PCLK_2, PCI_3/PCLK_3, PCI_4/PCLK_4, PCI_5/PCLK_5, PCI_6/PCLK_6, APICCLK_CPU/APIC_0, APICCLK)ICH/APIC_1, USBCLK/USB_0, GMCH_3V66/3V66_1, AGPCLK_CONN

• Passes through 33 Ω resistor.

MEMCLK0/DRAM_0, MEMCLK1/DRAM_1, MEMCLK2/DRAM_2, MEMCLK3/DRAM_3, MEMCLK4/DRAM_4, MEMCLK5/DRAM_5, MEMCLK6/DRAM_6, MEMCLK7/DRAM_7

Pass through 10 Ω resistor.

SCLK Pass through 22 Ω resistor.

VCC3.3 Connected to VTTPWRGD gating circuit according to information in Section 4.3.1 for systems supporting the universal PGA370 design.

Page 210: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

System Design Checklist

R

210 Intel® 815E Chipset Platform Design Guide

14.9 System Memory Checklist Checklist Items Recommendations

SM_CSA#[0:3, SM_CSB#[3:0, SMAA[11:8,3:0], SM_MD[0:63], SM_CKE[0:3], S_DQM[0:7]

• Connect from GMCH to DIMM0, DIMM1.

SM_MAA[7:4], SM_MAB[7:4]#

• Connect from GMCH to DIMM0, DIMM1 through 10 Ω resistors.

SM_CAS# • Connected to R_REFCLK through 10 kΩ resistor.

SM_RAS# • Jumpered to GND through 10 kΩ resistor.

SM_WE# • Connected to R_BSEL0# through 10 kΩ resistor.

CKE[50] (For 3-DIMM implementation)

• When implementing a 3-DIMM configuration, all six CKE signals on the GMCH are used. (0,1 for DIMM0; 2, 3 for DIMM1; 4,5 for DIMM2)

REGE • Connect to GND (since this Intel® 815E chipset platform does not support registered DIMMs).

WP (Pin 81 on the DIMMS)

• Add a 4.7 kΩ pull-up resistor to 3.3 V. This recommendation write-protects the DIMMs EEPROM.

SRCOMP • Needs a 40 Ω resistor pulled up to 3.3 V standby.

14.10 Power Delivery Checklist Checklist Items Recommendations

All voltage regulator components meet maximum current requirements.

• Consider all loads on a regulator, including other regulators.

All regulator components meet thermal requirements.

• Ensure the voltage regulator components and dissipate the required amount of heat.

VCC1_8 pins • These power pins must be supplied by a 1.85 V source and be between (1.795 V to 1.905 V).

If devices are powered directly from a dual rail (i.e., not behind a power regulator), then the RDSon of the FETs used to create the dual rail must be analyzed to ensure there is not too much voltage drop across the FET.

• Dual voltage rails may not be at the expected voltage.

Dropout voltage • The minimum dropout for all voltage regulators must be considered. Take into account that the voltage on a dual rail may not be the expected voltage.

Voltage tolerance requirements are met. • See the individual component specifications for each voltage tolerance.

Page 211: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Third-Party Vendor Information

R

Intel® 815E Chipset Platform Design Guide 211

15 Third-Party Vendor Information This design guide has been compiled to give an overview of important design considerations while providing sources for additional information. This chapter includes information regarding various third-party vendors who provide products to support the 815E chipset platform. The list of vendors can be used as a starting point for the designer. Intel does not endorse any one vendor, nor guarantee the availability or functionality of outside components. Contact the manufacturer for specific information regarding performance, availability, pricing and compatibility.

Super I/O (Vendors Contact Phone) • SMSC Dave Jenoff (909) 244-4937

• National Semiconductor Robert Reneau (408) 721-2981

• ITE Don Gardenhire (512)388-7880

• Winbond James Chen (02) 27190505 - Taipei office

Clock Generation (Vendors Contact Phone) • Cypress Semiconductor John Wunner 206-821-9202 x325

• ICS Raju Shah 408-925-9493

• IMI Elie Ayache 408-263-6300, x235

• PERICOM Ken Buntaran 408-435-1000

Memory Vendors

http://developer.intel.com/design/motherbd/se/se_mem.htm

Voltage Regulator Vendors (Vendors Contact Phone)

Analog Devices Richard Carlson (408) 382-3258

On Semiconductor Tod Shift (503) 203-7920

Semtech Jason Bowles (408) 566-8729

Interisel Gary Wiggins (360) 921-4421

Fairchild Semiconductor Ron Lenk (408) 822-2546

Firmware Hub Vendors (Vendors Contact Phone) • Silicon Storage Technology TBD

• STMicroelectronics TBD

Page 212: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Third-Party Vendor Information

R

212 Intel® 815E Chipset Platform Design Guide

GPA (a.k.a. AIMM) Card (Vendors Contact Phone) • Kingston [email protected]

[email protected]

• Smart Modular [email protected] [email protected]

• Micron Semiconductor TBD

TMDS Transmitters

Silicon Images John Nelson (408) 873-3111

Texas Instrument Greg Davis [[email protected]] (214) 480-3662

Chrontel Chi Tai Hong [[email protected]] (408) 544-2150

TV Encoders

Chrontel Chi Tai Hong [[email protected]] (408)544-2150

Conexant Eileen Carlson [[email protected]] (858) 713-3203

Focus Bill Schillhammer [[email protected]] (978) 661-0146

Philips Marcus Rosin [[email protected]]

Texas Instrument Greg Davis[[email protected]] (214) 480-3662

Combo TMDS Transmitters/TV Encoders

Chrontel Chi Tai Hong [[email protected]] (408) 544-2150

Texas Instrument Greg Davis[[email protected]] (214) 480-3662

LVDS Transmitter

National Semiconductor 387R Jason Lu [[email protected]] (408) 721-7540

Page 213: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

Appendix A: Customer Reference Board CRB)

R

Intel® 815E Chipset Platform Design Guide 213

Appendix A: Customer Reference Board CRB)

This appendix provides a set of Customer Reference Board (CRB) schematics for the 815E chipset platform for use with universal socket 370.

Page 214: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Revision 1.05 - Fab C

**PLEASE NOTE THESE SCHEMATICS ARE SUBJECT TO CHANGE

PAGETITLE

2

3,45

6

7,8

1011

12,13

9

18

19

20

2122

23

24

25

1COVER SHEET

BLOCK DIAGRAM

PGA370 PART 1 & 2AGTL TERMINATION

CLOCK GENERATOR

GMCH PART 1 & 2

DIMM 1 & 2

17

15

16

26

INTERNAL DEBUG HEADERSDECOUPLING CAPACITORS

PU/PDR & UNUSED GATES

AGP

ICH PART 1 & 2

PCI 1 & 2

AUDIO I/O

AC97 CODEC

VIDEO BUS & CONNECTOR

LPC I/O CONTROLLER & FDCL

KB, MS, GAME & IR

ATX POWER & H/W MONITOR

DIMM 3

27

28

PCI 3

14

FRONT PANEL & CNR

29

30

VREGS: DUALS, 3.3SB, 2.5, VCMOS

WOR, WOL & 2S1P

USB 0-3

31

FWH & UDMA100 IDE 1-2

Intel(R) Pentium(R) III and FC-PGA Celeron(tm) Processor /815E Chipset Universal Socket 370 PlatformCustomer Reference Board Schematics

32

SYSTEM CONFIGURATION

VREGS: VCCVID, V1_8SBVREGS: VDDQ, VCC1_8, AND VTT

THERMTRIP 33

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel orotherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditionsof Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relatingto sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arisingfrom future changes to them.

The Intel® 815E chipset may contain design defects or errors known as errata which may cause the product to deviate frompublished specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your productorder.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and wasdeveloped by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including PhilipsElectronics N.V. and North American Philips Corporation.

Alert on LAN is a result of the Intel-IBM Advanced Manageability Alliance and a trademark of IBM.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may beobtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

Intel®, Pentium®, Pentium® III, Celeron™, are trademarks or registered trademarks of Intel Corporation or its subsidiaries inthe United States and other countries.

*Other brands and names may be claimed as the property of others.

Copyright© 2001, Intel Corporation

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Title Page

1 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

Page 215: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

VRM

CTRL

ADDR

DATA

ADDR

CLOCK

DATA

CTRL

USB

IDE Primary

IDE Secondary

370-PIN SOCKET PROCESSOR

GMCH

ICH2

3 DIMMModules

AGPConnector

Digital VideoOut Device

PCI CONN 1

PCI CONN3

BLOCK DIAGRAM

FirmWare Hub

SIO

CNR

PCI CNTRL

PCI ADDR/DATA

AC'97 LINK

Keyboard

MouseFloppy Game Port Serial 1

GTL BUS

AudioCodec

Connector

ParallelSerial 2

USB PORT 1-4

UDMA/100

PCI CONN 2

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Block Diagram

2 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

Page 216: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

370 - Pin Socket Part 1

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

370-pin Socket Part 1

3 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

HA#[3..31]

HD#[0..63]

HA#3

HD#55

HD#52

HD#41

HD#34HD#33HD#32

HD#25

HD#22

HD#12

HD#2

HA#27

HA#18

HA#11

HD#35

HD#10

HD#6

HA#16

HD#43

HD#31

HD#24

HA#12

HD#42

HD#20

HD#30HD#29

HD#5

HD#3

HA#20

HD#60

HD#58

HD#48

HD#45

HD#40HD#39

HD#28

HD#56

HD#36

HD#27

HD#21

HD#15

HA#29

HA#25

HA#22

HA#14

HA#9

HD#38

HD#1HD#0

HA#13

HA#6HA#5

HD#23

HD#4

HA#21

HA#19

HA#10

HA#8

HA#4

HD#50

HD#47

HD#44

HA#31

HA#28

HA#23

HD#62HD#61

HD#57

HD#18

HD#16

HD#7

HD#59

HD#54HD#53

HD#49

HD#37

HD#8

HA#30

HA#26

HD#63

HD#51

HD#46

HD#26

HD#11

HD#9

HA#17

HA#7

HA#24

HA#15

HD#19

HD#17

HD#14HD#13

CPU_VID0

CPU_VID4CPU_VID3CPU_VID2CPU_VID1

RS#17RS#27

RS#07

HA#[3..31] 7

HD#[0..63] 7

HREQ#1 7HREQ#2 7HREQ#3 7HREQ#4 7

HREQ#0 7

JPR_VID0 29,32

JPR_VID4 29,32

JPR_VID2 29,32JPR_VID3 29,32

JPR_VID1 29,32

VCCVID

VCC3_3

VTT

VTT

R371

10K

R372 1k

U3A

Socket 370_9

W1T4N1M6U1S3T6J1S1P6Q3M4Q1L1N3U3H4R4P4H6L3G1F8G3K6E3E1

F12A5A3J3C5F6C1C7B2C9A9D8

D10C15D14D12

A7A11C11A21A15A17C13C25A13D16A23C21C19C27A19C23C17A25A27E25F16

AH26AH22AK28

AM

34A

H2

AD

2Z

2V

2M

2D

18H

2D

2A

L3

AG

5A

C5

Y5

U5

Q5

L5 G5

D4

B4

AM

6A

J7E

7B

8A

M10

AJ1

1E

11B

12A

M14

AJ1

5E

15B

16A

M18

AJ1

9E

19F

20B

20A

M22

AJ2

3D

22F

24B

24A

M26

AJ2

7D

26F

28B

28A

M30

D30

AF

32A

B32

X32

T32

P32

F32

B32

AH

34A

D34

Z34

V34

R34

M34

H34

D34

AK36

X36

T36

P36

K36

F36

A37

AC

33Y

37

AK8AH12AH8AN9AL15AH10AL9AH6AK10AN5AL7AK14AL5AN7AE1Z6AG3AC3AJ1AE3AB6AB4AF6Y3AA1AK6Z4AA3AD4X6AC1W3AF4

AL35AM36AL37AJ37

AK18AH16AH18AL19AL17C33C31A33A31E31C29E29A29

AH20AK16AL21AN11AN15G35AL13U37U35S37S33E23AN21AA35AA33

B26

C3

AK

2A

F2

AB

2T

2P

2K

2F

4E

5A

M4

AE

5A

A5

W5

S5

N5

J5 F2

D6

B6

AM

8A

J9E

9B

10A

M12

AJ1

3E

13B

14A

M16

AJ5

AJ1

7E

17B

18A

M20

AJ2

1D

20F

22A

M24

AJ2

5D

24F

26A

M28

AJ2

9D

28A

K34

F30

B30

AM

32A

H32

Z32

V32

R32

M32

H32

AF

34A

B34

X34

T34

P34

K34

F34

B34

AH

36B

22V

36R

36H

36D

36D

32A

D32

AH

24F

14K

32A

A37

Y35

HD#0HD#1HD#2HD#3HD#4HD#5HD#6HD#7HD#8HD#9HD#10HD#11HD#12HD#13HD#14HD#15HD#16HD#17HD#18HD#19HD#20HD#21HD#22HD#23HD#24HD#25HD#26HD#27HD#28HD#29HD#30HD#31HD#32HD#33HD#34HD#35HD#36HD#37HD#38HD#39HD#40HD#41HD#42HD#43HD#44HD#45HD#46HD#47HD#48HD#49HD#50HD#51HD#52HD#53HD#54HD#55HD#56HD#57HD#58HD#59HD#60HD#61HD#62HD#63

RS#0RS#1RS#2 G

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

D

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

D

GND/VID4

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

HA#3HA#4HA#5HA#6HA#7HA#8HA#9

HA#10HA#11HA#12HA#13HA#14HA#15HA#16HA#17HA#18HA#19HA#20HA#21HA#22HA#23HA#24HA#25HA#26HA#27HA#28HA#29HA#30HA#31HA#32HA#33HA#34HA#35

VID0VID1VID2VID3

REQ#0REQ#1REQ#2REQ#3REQ#4DEP0#DEP1#DEP2#DEP3#DEP4#DEP5#DEP6#DEP7#

VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5VTT1_5

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

IDV

CC

VID

VC

CV

ID

RP3

10K/8P4R

1 3 5 78642

RP4

1K/8P4R

1357 8

642

Page 217: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

GTLREF Inputs ( 1 cap for every 2 inputs )

GTLREF Generation CircuitUse 0603 Packages and distribute

370 - Pin Socket

within 500 mils of processor

Part2

Place Site w/in 0.5"Do Not stuff C

of clock pin (W37)

Rds_on approx. 100mOhm @5Vgs

CMOSREF generation circuitPlace near AB36

GTLREFA to CPU. GTLREF to GMCH.

Debug only!

Debug only! Do NOT placejumper before removingR375

66M

1 0100M

BSEL#10

BSEL#0

rsvd

FSB

0

1

1

1 133M

0

Debug sites only.

Do not stuff R330

Stuff resistoronly on non-UMBplatforms.

Tualatin THERMTRIP workaround circuit is on p

No-stuff R199 - see p.33.

Stuff either R5 or R415. See p33.

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

370-pin Socket Part 2

4 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

GTLREFA

PLL2

SLEWCNTR

FLUSH#

RTTCNTR

PLL1

ITP_VTT

ITP_DBRESET

ITP_CPURESET

AG1_VTT/NC

GTLREFA

CMOSREF

TUALDET

NCHCTRLP

DYN_OE

RESET2#

A20M# 12

VTIN2 21,25

BPRI# 7

HITM# 7

BR0# 5

THRMDN 21,25

BNR# 7

FERR# 12

STPCLK# 12

INTR 12

HLOCK# 7

HTRDY# 7

IGNNE# 12

CPUSLP# 12

HIT# 7

NMI 12

DRDY# 7

BSEL#1 29,32

DEFER# 7

INIT# 12,17

HADS# 7

BSEL#0 29,32

SMI# 12

DBSY# 7

APICD112

CPUHCLK6APICCLK_CPU6

CPU_PWGD12,33

ITPRDY#5

ITPCLK6

GTLREF 7,32

VTTPWRGD26

APICD012

TUAL56,7,26

TUAL5#

TUAL5 6,7,26

CPURST#7,33

CMOSREF

GTLREFA 32

DBRESET#25

THERMTRIP# 33

N639540333

VCC2_5

VTT

VTT

V3SB

VCCVID

V3SB

VTT VCC2_5

VTT

VTT

VTT

VCC5

VCC5

VTT

VTT

VCMOS

PR7

75,1%

R8

330

PR1

56,%1

R33

90.9,1%

BC12

0.1UF

BC18

0.1UF

R199

1.8k R4

1K

C12

10PF

R5

39 R3

1K

R6

39

R7

150 R2

150

MC7

4.7UF

R13

330

BC1

0.1UF

R275

22

+

C6

33uF (C size)

BC16

0.1UF

BC7

0.1UF

R14

150

PR8

150,1%

PR5

110,%1PR6

150,1%

BC17

0.1UF

R15

150

PR4

150,1%

L2

4.7UH/SMD-0805

C3

X18PF

R315 0

R319

243,1%

R9

680

R316 0R317 0

R318 243,1%

R314

1K

R330 X0

R342 1k

Q27FDN335N

R344

1k

R3432.2k

R3412.2k

R346

1k

R1

150

R338

75 1%

R339

150 1%

Q252N7002

Q262N3904

BC228

0.1uF

R373330

R375 0

JP6

JUMPER

R374

14

R340

1k

C163

0.1uF

FB30BEAD1 2

U3B

Socket 370_9

X2

AG1

C37E21

AJ33AJ31

AN29

AL29AL31

AH28

S35

W33U33

E27

AN35AN37AN33AL33AK32

J37A35

G33E37C35E35

N33N35N37Q33Q35Q37

AK30

AM2F10

W35Y1R2

G37L33

J35L35J33

W37Y33

AK26AH4

X4

AB

36A

D36

Z36

E33

F18

K4

R6

V6

AD

6A

K12

AK

22

AH14AN17AN25AN19AK20AN27AL23AL25AL27AN31AE37

AE33AG35AH30AJ35M36L37AG33AC35AG37AE35

AC37AL11AN13AN23

B36AK24V4

AN3AK4

AJ3AF36

AL1

RESVD21(BR1#)

EDGCTRL/VRSEL

CPUPRES#VCOREDET

BSEL0#BSEL1#

BR0#

THRMDNTHRMDP

THERMTRIP#

RTTCNTR

PLL1PLL2

SLEWCNTR

TDITDOTRST#TCKTMS

PREQ#PRDY#

BP2#BP3#BPM0#BPM1#

RSRVD6RSRVD7RSRVD8RSRVD9RSRVD10RSRVD11

RSRVD12/JBSEL1#

RSRVD13RSRVD15RSRVD16RSRVD17RSRVD18RSRVD19RSRVD20

PICD0PICD1PICCLKBCLKCLKREFPWRGOODRESET#RESET2#

V_C

MO

SV

1_5

V2_

5

VR

EF

0V

RE

F1

VR

EF

2V

RE

F3

VR

EF

4V

RE

F5

VR

EF

6V

RE

F7 BNR#

BPRI#TRDY#

DEFER#LOCK#DRDY#HITM#

HIT#DBSY#

ADS#FLUSH#

A20M#STPCLK#

SLP#SMI#

LINT0/INTRLINT1/NMI

INIT#FERR#

IGNNE#IERR#

RSP#AP0#AP1#RP#

BINIT#AERR#BERR#

DYN_OEVTTPWRGD

RSVD - NCTUALDET

RSRVD21

R345 1k

J2

XHEADER_15X2

2 14 36 58 7

10 912 1114 1316 1518 1720 1922 2124 2326 2528 2730 29

2 14 36 58 710 912 1114 1316 1518 1720 1922 2124 2326 2528 2730 29

R406

1k

Page 218: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

VTT Decoupling

Debug cap sites - place near processorDo not populate in assembly - debug sites only.

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

VTT Decoupling

5 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

ITPRDY# 4

BR0# 4

VTT

VTT

VTT

MC23

4.7UF

MC22

4.7UF

BC34

0.1UF

BC35

0.1UF

BC36

0.1UF

BC37

0.1UF

BC38

0.1UF

BC24

0.1UF

BC23

0.1UF

BC5

0.1UF

BC14

0.1UF

BC22

0.1UF

BC9

0.1UF

BC15

0.1UF

BC2

0.1UF

BC13

0.1UF

BC3

0.1UF

C164820uF

R12 150

R23 56

Page 219: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Clock power gate

Rds_on = 100 mOhm.

Ensure that the buffer used will disableits PLL and tristate outputs when norefclk is present; otherwise, must gatepower here, too.

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Clock Generator

6 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

MEMV3PCIV3

L_VCC2_5

AV3 USBV3

PCLK_REF

MEMCLK4MEMCLK1

MEMCLK8MEMCLK5

MEMCLK11MEMCLK6

MEMCLK0

MEMCLK11

MEMCLK7

MEMCLK10

MEMCLK[0..7]

MEMCLK9MEMCLK8

MEMCLK4

MEMCLK3MEMCLK2MEMCLK1MEMCLK0

MEMCLK2

MEMCLK10

MEMCLK5MEMCLK6

MEMCLK3 MEMCLK7

MEMCLK9

MEMCLK[8..11]

AGPCLK_CONN11

ICH_3V6613GMCH_3V668

SLP_S3#13,21,28

R_SMBDATA32R_SMBCLK32

ICH_CLK1413

FMOD129

PCLK_0/ICH12

FMOD029

GMCHHCLK 7

SIO_CLK24 21

APICCLK_CPU 4

MEMCLK[8..11] 10

APICCLK_ICH 12

MEMCLK[0..7] 9

DCLK_WR 7

USBCLK 13DOTCLK 8

PCLK_8 17

PCLK_2 14

PCLK_7 21PCLK_3 15

PCLK_1 14

VTTPWRGD1226

TUAL5 4,7,26

ITPCLK 4CPUHCLK 4

VCC2_5

VCC3_3

VCC_CLOCK

VCC_CLOCKVCC_CLOCK

VCC_CLOCK

VCC3_3

VCC_CLOCK

R72 10

PFB11

BEAD

1 2

R249 8.2K

U29

ICS9112B-17

1 671011

16

125

413

231415

98

REF CLKB1CLKB2CLKB3CLKB4

CLKOUT

GNDGND

VDDVDD

CLKA1CLKA2CLKA3CLKA4

FS1FS2

R312 X33

C132

X18PF

R303

10K

R302

10K

PFB12

BEAD

1 2

BC222

0.01UF

BC221

0.1UF

MC66

4.7UF

R60 10

BC28

0.01UF

BC27

0.1UF

BC29

0.01UF

BC30

0.1UF

MC20

4.7UF

MC19

4.7UF

PFB1

BEAD

1 2

BC33

0.01UF

BC21

0.1UF

BC63

0.01UF

BC64

0.1UF

BC227

0.1UF

BC226

0.01UF

MC18

4.7UF

PFB2

BEAD

1 2

BC31

0.1UF

BC32

0.01UF

BC56

0.1UF

BC55

0.01UF

PFB4

BEAD

1 2

BC59

0.01UF

BC57

0.01UF

BC58

0.1UF

BC62

0.01UF

BC61

0.1UF

MC29

4.7UF

MC28

4.7UF

PFB5

BEAD

1 2

BC60

0.1UF

BC26

0.01UF

BC25

0.1UF

MC21

4.7UF

C3318PF

C3518PF

R58 33R57 33R45 33R46 33

RN19 22/8P4R1357

2468

RN20 22/8P4R1357

2468

R50 22

R62 22R63 22

Y3

14.318MHZ

R44 22

R51 22

C19

X10PF

C21

X10PF

C20

X10PF

R277 33

CN4

X10P/8P4C

1 3 5 782 4 6

1 3 5 782 4 6 CN5

X10P/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

C34

X10PF

C31

X10PF

C23

X10PF

C22

X10PF

C40

X10PF

C39

X10PF

C41

X10PF

C42

X10PF

U6

ICS9250-28

54531

51504746

45424138

37363332

2627

3 55 8 13 17 19 24 30 34 39

2 5 9 14 20 25 31 35

6

74

56

101112

1516

212223

29

1828

40 44 49

43 48 52

CPUCLK_0CPUCLK_1

IOAPIC

SDRAM0SDRAM1SDRAM2SDRAM3

SDRAM4SDRAM5SDRAM6SDRAM7

SDRAM8SDRAM9

SDRAM10SDRAM11

48MHZ_048MHZ_1

GN

DL

GN

DL

GN

DG

ND

GN

DG

ND

GN

DG

ND

GN

DG

ND

VD

DL

VD

DV

DD

VD

DV

DD

AV

DD

VD

DV

DD

X1

X2REF0

VD

DL

3V66-03V66-13V66-2

PCICLK0PCICLK1

PD#SCLKSDATA

SDRAM12

FS0FS1

VD

DV

DD

VD

D

GN

DG

ND

GN

D

C29

X10PF

R64 33

R290 33R67 33

R65 33R66 33

R49 33

R47 33

R48 33

C25

X10PF

C24

X10PF

C28

X10PF

C30

X10PF

C133

X10PF

RN34

33/8P4R

1357

2468

CN6

X10P/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

C120

X10PF

Q29FDN359AN

R347

0

R348

130

R320 33

Q28

2N7002

Page 220: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

Host Interface

SM_WE#SM_MAA9SM_CAS#SBA7SM_BS0SM_BS1SM_MAA10SM_MAA11SM_MAA12

SM_RAS#

Host Freq : HI=100 LO=66FSB P-MOS Kicker : HI=NON-Cu LO=CuHost Freq : HI=133 LO=100/66LM FREQ : HI=133 LO=100

SM/LM muxing strap , active low

IOQ depth : HI=4 LO=1ALLZ : LO=ALLZ HI=Normal

XOR chain : LO=XOR HI=Normal

SYSTEM MEMORY

Do Not Stuff CPlace Site w/in0.5" of clockball(v6)

Place closeto GMCH

Backside decouping , should beplaced under chipset memory signalfield

Backside decouping , should beplaced under chipset AGP signalfield

Debug sites only.

Placenear GMCH

LO = Future 0.13u Socket 370 processorsHI = Pentium(R) III Processor or Intel(R)

Celeron(tm) Processor w/CPUID = 068Xh

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

GMCH Part 1

7 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

HD#[0..63]

HA#[3..31]

HREQ#1

HD#61

HD#25

HREQ#0

HD#58HD#57

HD#51

HD#33

HD#24

HD#13

HD#49

HD#32

HD#29

HA#31

HD#62

HD#48

HD#30

HD#9

HD#0

HA#30

HD#39

HD#10

HD#5HD#4

RS#0

HD#53

HD#42

HD#28

HD#63

HD#55

HD#40

HD#26

HD#16

HD#8

HD#3

HD#38HD#37

HD#1

HD#47

HD#43

HD#11

HD#56

HD#54

HD#44

HD#41

HD#27

HD#19

HA#29

HD#22

HREQ#4

HD#45

HD#23

HD#17

HD#14

HD#52

HD#46

HD#34

HD#20

HD#18

HD#2

HREQ#3

HD#60

HD#35

HD#31

HD#15

HD#7

HREQ#2

HD#59

HD#6

HD#50

HD#36

HD#21

HD#12

HA#3HA#4HA#5HA#6HA#7HA#8HA#9

HA#16

HA#12HA#13

HA#11

HA#14

HA#10

HA#15

HA#17HA#18HA#19HA#20HA#21HA#22HA#23

HA#26HA#27

HA#25

HA#28

HA#24

RS#2RS#1

SM_MAA4SM_MAA5SM_MAA6SM_MAA7

SM_MD28

SM_MD9

SM_MD6

SM_CKE1

SM_MAA11

SM_MAA3

SM_MD50

SM_MD42

SM_MD32

SM_MD7

SM_CSA#2

SM_MD54

SM_MD45

SM_MD15

SM_CSB#1

SM_MD61

SM_MD48

SM_MD16

SM_MD0

SM_CSA#0

SM_MAA0

SM_DQM5

SM_MD63

SM_MD36

SM_MD24

SM_MD19

SM_CSB#0

SM_MD41

SM_MD33

SM_MD21

SM_MD3

SM_CKE0

SM_CSB#3

SM_MAA8

SM_MD51

SM_MD35

SM_MD29

SM_MD13

SM_MD10

SM_CSA#1

SM_MAA12

SM_MAA2

SM_MD55

SM_MD53

SM_MD43

SM_MD12

SM_CKE3

SM_CSA#3

SM_MAA9

SM_DQM2

SM_MD59SM_MD58

SM_MD56

SM_MD46

SM_MD2

SM_DQM4

SM_MD62

SM_MD37

SM_MD17

SM_MAA1

SM_DQM0

SM_MD39

SM_MD22

SM_DQM7

SM_MD34

SM_MD26

SM_MD1

SM_MD52

SM_MD40

SM_MD31SM_MD30

SM_MD11

SM_MD8

SM_MD5

SM_CKE2

SM_CSB#2

SM_DQM1

SM_MD49

SM_MD44

SM_MD14

SM_MD4

SM_DQM3

SM_MD60

SM_MD57

SM_MD47

SM_MD23

SM_MD38

SM_MD27

SM_MD20

SM_MD18

SM_DQM6

SM_MD25

SM_MAA10

SM_MD[0..63]

SM_MAA[0..12]

SM_DQM[0..7]

SM_WE#

SM_MAB#[4..7]

SM_CKE[0..3]

SM_MAC#[4..7]

SM_MAC#7SM_MAC#6

SM_MAB#5SM_MAB#6

SM_MAC#4

SM_MAB#4

SM_MAB#7

SM_MAC#5

SM_CSA#4SM_CSA#5

SM_CSB#5SM_CSB#4

SM_CKE4SM_CKE5

SM_CKE[4..5]

SM_CSA#[0..3]

SM_CSA#[4..5]

SM_CSB#[0..3]

SM_CSB#[4..5]

SM_MAA9

SM_CAS#

SM_MAA10

SM_RAS#

SM_MAA12

HD#[0..63] 3

CPURST#4,33HLOCK#4DEFER#4

HADS#BNR#4BPRI#4DBSY#4DRDY#4HIT#4HITM#4HTRDY#4

HA#[3..31]3SM_BS09,10SM_BS19,10

SM_RAS#9,10SM_CAS#9,10SM_WE#9,10

DCLK_WR6

PCIRST#16,17,21,30GMCHHCLK6

SM_MAA[0..12]9,10

SM_DQM[0..7]9,10

SM_MD[0..63] 9,10SM_MAB#[4..7]9

SM_CKE[0..3]9

SM_MAC#[4..7]10

SM_CKE[4..5]10

SM_CSA#[4..5]10

SM_CSA#[0..3]9

SM_CSB#[4..5]10

SM_CSB#[0..3]9

R_BSEL#0 29

R_REFCLK 29

HREQ#03HREQ#13HREQ#23HREQ#33HREQ#43

RS#03RS#13RS#23

GTLREF4,32

TUAL54,6,26

VTT

VCC3SBY

VCC3SBY

VDDQ

VTT

VTT

R61

90.9,1%

BC72

0.1UF

BC73

0.1UF

C38X18PF

RN37

10/8P4R

1357

2468

C36

22PF

PR9 40.2,1%

RN36 10/8P4R

1357

2468

RN38 10/8P4R1357

2468

R68 X10K

R77 X10K

BC188

X0.1UF

BC190

X0.1UF

BC191

X0.1UF

BC189

X0.1UF

BC192

X0.1UF

BC193

X0.1UF

BC194

X0.1UF

BC195

X0.1UF

U7A

U6AA10

AA7H3

AA5L4M3G1N4M5J3J1K1L3K3

R4P1T2R3N5P5R1U1P2T1T3P3T5R5V5Y2V3

W1U4V2

W3W4U5Y5Y3U3Y1W5V1

M1N1M2L5N3

K2L1H1

AA1AB2AF2AD4AB1AB3AA3AC4AC1AF3AD1AE3AD2AD3AF1AA4AD6AC3AE1AB6AF4AE5AC8AB5AF5AC6AF6AD11AF8AD8AD5AB7AF7AD7AB8AE7AE9AB9AF9AD10AF12AB11AB10AD9AC10AF10AD14AD12AB12AE11AE15AF11AF13AB14AF14AB13AB15AE13AC14AD13AD15AF16AF15AC12

GTLREFAGTLREFB

HCLKRESET#CPURST#HLOCK#DEFER#ADS#BNR#BPRI#DBSY#DRDY#HIT#HITM#HTRDY#

HA#3HA#4HA#5HA#6HA#7HA#8HA#9HA#10HA#11HA#12HA#13HA#14HA#15HA#16HA#17HA#18HA#19HA#20HA#21HA#22HA#23HA#24HA#25HA#26HA#27HA#28HA#29HA#30HA#31

HREQ#0HREQ#1HREQ#2HREQ#3HREQ#4

RS#0RS#1RS#2

HD#0HD#1HD#2HD#3HD#4HD#5HD#6HD#7HD#8HD#9

HD#10HD#11HD#12HD#13HD#14HD#15HD#16HD#17HD#18HD#19HD#20HD#21HD#22HD#23HD#24HD#25HD#26HD#27HD#28HD#29HD#30HD#31HD#32HD#33HD#34HD#35HD#36HD#37HD#38HD#39HD#40HD#41HD#42HD#43HD#44HD#45HD#46HD#47HD#48HD#49HD#50HD#51HD#52HD#53HD#54HD#55HD#56HD#57HD#58HD#59HD#60HD#61HD#62HD#63

U7B

82815 GMCH

B13D11

G7

D13B16F12A16B12A12C11A11D12C13E11A13B7

B15A15C14A14

B10A10C10

A9

D15A17D14E14E13B17

F9F8

D10D9B9A8

C16D18E16

D8E8E9D7C8C7

F7G10

D16F15A7A6

A18C17

B6A5

D23C23D22F21E21G20F20D20F19E19D19E18B18F18G18D17A3A1C1F2G3D6C5B4D4C2D3E4F5G4J6K5A26A25B24A24B23A23C22A22D21B21A21C20B20A20C19A19A4A2B1E1G2E6D5C4B3D2E3F4F6G5H4J4

SBS0SBS1

SRCOMP

SMAA0SMAA1SMAA2SMAA3SMAA4SMAA5SMAA6SMAA7SMAA8SMAA9SMAA10SMAA11SMAA12

SMAB#4SMAB#5SMAB#6SMAB#7

SMAC4SMAC5SMAC6SMAC7

SCSA#0SCSA#1SCSA#2SCSA#3SCSA#4SCSA#5

SCSB#0SCSB#1SCSB#2SCSB#3SCSB#4SCSB#5

SRAS#SCAS#SWE#

SCKE0SCKE1SCKE2SCKE3SCKE4SCKE5

SCLKRESVD

SDQM0SDQM1SDQM2SDQM3SDQM4SDQM5SDQM6SDQM7

SMD0SMD1SMD2SMD3SMD4SMD5SMD6SMD7SMD8SMD9

SMD10SMD11SMD12SMD13SMD14SMD15SMD16SMD17SMD18SMD19SMD20SMD21SMD22SMD23SMD24SMD25SMD26SMD27SMD28SMD29SMD30SMD31SMD32SMD33SMD34SMD35SMD36SMD37SMD38SMD39SMD40SMD41SMD42SMD43SMD44SMD45SMD46SMD47SMD48SMD49SMD50SMD51SMD52SMD53SMD54SMD55SMD56SMD57SMD58SMD59SMD60SMD61SMD62SMD63

R90 8.2K

R89 8.2K

R88 10K

PR43

150,1%

PR42

63.4 1%

R34910k

Q302N7002

C168

0.1uF

FB31BEAD

1 2

R407

56

Page 221: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A APower and Ground

Display Cache, Video, andHUB Interface

of clock ball(AA21)

Do Not Stuff C

Place as close asPossible to GMCHand via straightto VSS plane

Place R asClose aspossible toGMCH

Place Site w/in 0.5"

OCLK = 0.5"RCLK = 1.5"

NOTE : Place as close asPossible to GMCHand via straightto VSS plane

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

GMCH Part 2

8 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

GAD13

GAD15

GAD7

GAD26

GAD2

GAD5

GAD25

GAD21

GAD0

GAD23

GAD28

GAD22

GAD10

GAD24

GAD31

GAD20GAD19GAD18

GAD30

GAD16

GAD1

GAD3

GAD8

GAD29

GAD9

GAD17

GAD12

GAD14

GAD27

GAD6

GAD11

GAD4

GAD[0..31]

OCLKRCLK

FTD7FTD6

FTD11

FTD3FTD2

HL7

HL9

FTD1

FTD5

HL5

HCOMP

HL4

HL10

HL2

FTD10FTD9

FTD4

HL3

FTD8

HL0

HL6

SBA[0..7]

HL1

HL[0..10]

FTD[0..11]

FTD0

HL8

GRCOMP

HUBREF_GMCH

GAD[0..31]11

GCBE#011GCBE#111GCBE#211GCBE#311

GDEVSEL#11GFRAME#11

GIRDY#11GTRDY#11GSTOP#11GPAR11GREQ#11GGNT#11PIPE#11

ADSTB011ADSTB0#11ADSTB111ADSTB1#11SBSTB11SBSTB#11

ST011ST111ST211

RBF#11WBF#11

GMCH_AGPREF 11

FTCLK0 16

FTHSYNC 16

3VFTSCL 16

3VDDCCL 16

FTD[0..11] 16

VID_BLUE 16

VID_RED 16CRT_HSYNC 16

HL[0..10] 12

SBA[0..7] 11

SL_STALL 16

HLSTB 12

FTBLNK# 16

FTVSYNC 16

CRT_VSYNC 16

HLSTB# 12

VID_GREEN 16

FTCLK1 16

3VFTSDA 16

3VDDCDA 16

GMCH_3V66 6

DOTCLK 6

CONN_AGPREF11,32

SBA0 11SBA1 11SBA2 11SBA3 11SBA4 11SBA5 11SBA6 11SBA7 11

VDDQ

VCC1_8VCC3SBYVDDQ

VCC1_8

VCC1_8

VCC1_8

PR15

40.2,1%

PR14 15.1%

C61

15PF/5%,MPO

PR13

174,1%

PR23

1K,1%

PR21

82,1%

PR24

82,1%

PR22

1K,1%

C69

560PF

C72

560PF

PR18

40.2,1%

C58

10PF

BC89

0.1UF

PR16

301,1%

PR17

301,1%

BC90

0.1UF

U7D

82815 GMCH

AF24AE25

W6Y9

Y18AA6AA8

AA11AA13AA15AA17AA19AB16AB20AC22AD19

C25E24F23G22

J7K6M6P6T6V7

G26

AA21Y7

E23AF26AF25

B2B5B8

B11B14B19B22B25E2

F10F14F17G6G8

G19H2H5H7

K20Y24L21M23U25N25R21U20U23W20

AB4E7AC2AC5AC7AC9AC11AC13AC15AC17AC19AC21AC25AE2AE4AE6AE8AE10AE12AE14AE16AE18AE20B26C3C6C9C12C15C18C21C24D1E5E10E12E15E17E20E22F1F3F11F13T21U2U7K24V4V6V20V22W2W7W23W25Y4Y6Y8Y10Y17Y19AA2AA9AA12AA14AA16

GNDGND

VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8VCC_1.8

VCC1_8VCC1_8VCC1_8VCC1_8VCC1_8

VCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBYVCC3SBY

VDDQVDDQVDDQVDDQVDDQVDDQVDDQVDDQVDDQVDDQ

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

U7E

Solano

P11P12P13P14P15P16R2R6

R11R12R13R14R15R16R23R25

T4T11T12T13T14T15T16L15L16L22M4

M11M12M13M14M15M16L25

N2N6N11N12N13N14N15N16N23AA23F16F25G9G17G21G23P24H6H22J2J5J23J25K4K7K21L2L6L11L12L13L14AA25P4

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

GNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGNDGND

R251 22

U7C

82815 GMCH

K26J22K25J21L24J20L26K23K22M25M24M26M21N24N22N26T26T22U24T23U26T24V24U21V25V21V26

W21W24W22W26Y21

H23N21T25Y26

R26P26P23P21P25R24

AE26AD25AC26

M22L23U22V23Y23

AA24

AD24AC24AC23

AD26AB24

J24J26R22P22

AD16AF17AE17AD17AF18AD18AF20AD20AC20AF21AE21AD21AB19AC18AE19AF19AC16AB17

AB21AA20

AA18AB18

AE24Y20AD23

AF22AF23AD22AE22AE23

F22H24H26H25G24F24E26E25D26D25D24C26H21G25F26H20

AB22AB25AB23AB26AA22AA26Y22Y25

GAD0/LDQM0GAD1/LMD4GAD2/LMD7GAD3/LMD3GAD4/LMD6GAD5/LMD2GAD6/LMD5GAD7/LMD1GAD8/LMD0GAD9/LMA4GAD10/LDQM1GAD11/LMA2GAD12/LMD8GAD13/LMA5GAD14/LMD9GAD15/LMA1GAD/16/LMA8GAD17/LMD14GAD18/LMA11GAD19/LMD15GAD20/LMA9GAD21/LMD16GAD22/LCS#GAD23/LMD17GAD24/LCKEGAD25/LMD18GAD26/LCAS#GAD27/LMD19GAD28/LTCLK1GAD29/LMD20GAD30/LTCLK0GAD31/LMD21

GCBE#0/LMA3GCBE#1/LMD10GCBE#2/LMD13GCBE#3/LRDS#

GFRAME#/LMA10GDEVSEL#/LMD11GIRDY#/LMD12GTRDY#/LMA7GSTOP#/LMA0GPAR/LMA6GREQ#/LMD27GGNT#PIPE#/LMD24

ADSTB0ADSTB0#ADSTB1ADSTB1#SBSTBSBSTB#

ST0/LMD28ST1/LDQM3ST2/LMD29

RBF#/LMD30WBF#AGPREFGRCOMPOCLOCKRCLOCK

LTVDATA0LTVDATA1LTVDATA2LTVDATA3LTVDATA4LTVDATA5LTVDATA6LTVDATA7LTVDATA8LTVDATA9

LTVDATA10LTVDATA11

BLANK#TVCLKIN/SL_STALL

CLKOUT0CLKOUT1TVVSYNCTVHSYNC

LTVCKLTVDA

DDDADDCK

DCLKREFIWASTE

IREF

VSYNCHSYNC

REDGREEN

BLUE

HCLKHL0HL1HL2HL3HL4HL5HL6HL7HL8HL9

HL10HUBREF

HLSTBHLSTB#HCOMP

SBA0/LMD31SBA1/LMD25SBA2/LDQM2SBA3/LMD26SBA4/LMD23SBA5/LWE#

SBA6/LMD22SBA7/LGM_FREQ_SEL

L6 22nH

C169

33uF

C170

0.1uF

C171

0.01uF

Page 222: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

CH6-12

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

DIMMs 1 and 2

9 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

SM_CKE0

SM_MAA2 SM_MAA2

SM_DQM7

SM_MD48

SM_MD29

SM_BS0

SM_DQM5

SM_MD55

SM_MD2

SM_MAA0

SM_CKE2

SM_MD44

SM_MD39

SM_MD41

SM_MD57

SM_MD34

SM_MD40

SM_MD56

SM_MD21

MEMCLK6

SM_MD8

SM_MD4

SM_CKE3

MEMCLK1

SM_DQM2

SM_MD37

SM_MD32

SM_MD17

SM_MD36

SM_MD15

SM_MAB#6

SM_MD52

SM_CSA#0

SM_MD12

SM_MD24

SM_MD19

SM_MD3

SM_MD60

SM_MAA11

SM_MD27

SM_CSA#2

SM_MD31

SM_CAS#

SM_MAA10

SM_MD54

SM_MD16

SM_MAB#4SM_MAA3

SM_MD44

MEMCLK0

SM_MD49

SM_DQM4

SM_CSB#2

SM_MD51

SMBDATA

SM_MD46

SM_RAS#

SM_MD15

SM_MD20

SM_MD61

SM_MD20

SM_MD63

SM_CSB#1

SM_DQM1

SM_MD51

SM_MD32

SM_MD58

MEMCLK4

SM_MD18

SM_MD57

SM_MD9

SM_MAA1

SM_MAB#5

SM_MD10

SM_MD27

SM_MD18

SM_DQM6

SM_MD23

SM_MD17

SM_MD5

SM_MD24

SM_MD42

SM_MD34

SM_MD62

SM_MD11 SM_MD43

SM_MD25

SM_MD59

SM_MAA9

SM_CSA#1

SM_MD8

SM_MD1

SM_MD5

SM_MD26

SM_MAA8

SM_MD21

SM_MD42

SM_MD6

SM_MD12SM_MD45

SM_MD54

SM_CSB#3

SM_MD3

SM_MD14

SM_DQM5

SM_CSB#0

SM_MD56

SM_WE#

SM_MAA8

SM_MD35

SM_DQM4

SM_MD60

SM_MD45

SM_MD26

SM_MD48

SM_MAA12

SM_MD25

SM_MD61

SM_MAA7

SM_MD10

SM_MD40

SM_WE#

SM_MD41

SM_MD22

SM_BS0

MEMCLK7MEMCLK3

SM_MD55

SM_MAA1

SM_MD35

SM_DQM7

SM_MD38SM_MD39

SM_MD19

SM_MAA9

SM_MD7

SM_CSA#3

SM_MD47

SM_RAS#

SMBDATA

SM_MD62

SM_MAA12

MEMCLK2

SM_MD53

SM_MAA10

SM_MD7

SM_MD0

SM_CAS#

SM_MAA4

SM_CKE1

SM_MD2

SM_MD14

SM_MD22

SM_MAA11

SM_MD13

SM_MD23

SM_MAA6

SM_MD28

SM_MD58

SM_MD50

SM_MD4

SM_MAA0

SM_DQM6

MEMCLK5

SM_DQM3

SM_MAA3

SM_MD30

SM_MAA5

SM_MD47SM_MD46

SM_MD50

SM_MD0

SM_MD63

SM_MD6

SM_MD36

SM_BS1

SM_DQM0

SM_MD43

SM_MD28

SMBCLK

SM_MD13

SMBCLK

SM_MD33

SM_MAB#7

SM_MD30

SM_MD16

SM_MD38

SM_MD52

SM_DQM3

SM_MD49

SM_MD9

SM_DQM2

SM_DQM1

SM_MD29

SM_MD37

SM_MD31

SM_MD59

SM_MD11

SM_MD53

SM_BS1

SM_DQM0

SM_MD1SM_MD33

MEMCLK[0..7]

SM_CKE[0..3]

SM_CSA#[0..3]

SM_CSB#[0..3]

SM_DQM[0..7]

SM_MAB#[4..7]

SM_MD[0..63]

SM_MAA[0..12]

SM_WE#

SM_RAS#

SM_CAS#

SM_BS0

SM_BS1

SMBDATASMBCLK

DM_SA_PU 10

SM_MAA[0..12] 7,10

SM_MD[0..63] 7,10

SM_MAB#[4..7] 7

SM_DQM[0..7] 7,10

MEMCLK[0..7] 6

SM_CKE[0..3] 7

SM_CSA#[0..3] 7

SM_CSB#[0..3] 7

SM_WE# 7,10

SM_RAS# 7,10

SM_CAS# 7,10

SM_BS0 7,10

SM_BS1 7,10

SMBDATA 10,13,21,24,30,32SMBCLK 10,13,21,24,30,32

VCC3SBY

VCC3SBY VCC3SBYVCC3SBYVCC3SBY

R282.2K

DIMM1

DIMM168

123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384

858687888990919293949596979899100101102103104105106107

109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168

108

VSSDQ0DQ1DQ2DQ3VDDDQ4DQ5DQ6DQ7DQ8VSSDQ9DQ10DQ11DQ12DQ13VDDDQ14DQ15CB0CB1VSSCB8CB9VDDWE#/WE0#DQM0DQM1CS0#DU/OE0#VSSA0A2A4A6A8A10/APBA1/A12VDDVDDCLK0/DUVSSDU/OE2#CS2#DQM2DQM3DU/WE2#VDDCB10CB11CB2CB3VSSDQ16DQ17DQ18DQ19VDDDQ20NCVREF/DUCKE1VSSDQ21DQ22DQ23VSSDQ24DQ25DQ26DQ27VDDDQ28DQ29DQ30DQ31VSSCLK2/NCNCWPSDASCLVDD

VSSDQ32DQ33DQ34DQ35VDD

DQ36DQ37DQ38DQ39DQ40

VSSDQ41DQ42DQ43DQ44DQ45VDD

DQ46DQ47

CB4CB5VSS

CB13VDD

CAS#/DUDQM4DQM5CS1#

RAS#/DUVSS

A1A3A5A7A9

BA0/A11A11/A13

VDDCLK1/DU

A12/DUVSS

CKE0/DUCS3#

DQM6DQM7

A13/DUVDD

CB14CB15CB6CB7VSS

DQ48DQ49DQ50DQ51VDD

DQ52NC

VREF/DUREGE

VSSDQ53DQ54DQ55

VSSDQ56DQ57DQ58DQ59VDD

DQ60DQ61DQ62DQ63

VSSCLK3/NC

NCSA0SA1SA2VDD

CB12

DIMM2

DIMM168

123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384

858687888990919293949596979899100101102103104105106107

109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168

108

VSSDQ0DQ1DQ2DQ3VDDDQ4DQ5DQ6DQ7DQ8VSSDQ9DQ10DQ11DQ12DQ13VDDDQ14DQ15CB0CB1VSSCB8CB9VDDWE#/WE0#DQM0DQM1CS0#DU/OE0#VSSA0A2A4A6A8A10/APBA1/A12VDDVDDCLK0/DUVSSDU/OE2#CS2#DQM2DQM3DU/WE2#VDDCB10CB11CB2CB3VSSDQ16DQ17DQ18DQ19VDDDQ20NCVREF/DUCKE1VSSDQ21DQ22DQ23VSSDQ24DQ25DQ26DQ27VDDDQ28DQ29DQ30DQ31VSSCLK2/NCNCWPSDASCLVDD

VSSDQ32DQ33DQ34DQ35VDD

DQ36DQ37DQ38DQ39DQ40

VSSDQ41DQ42DQ43DQ44DQ45VDD

DQ46DQ47

CB4CB5VSS

CB13VDD

CAS#/DUDQM4DQM5CS1#

RAS#/DUVSS

A1A3A5A7A9

BA0/A11A11/A13

VDDCLK1/DU

A12/DUVSS

CKE0/DUCS3#

DQM6DQM7

A13/DUVDD

CB14CB15CB6CB7VSS

DQ48DQ49DQ50DQ51VDD

DQ52NC

VREF/DUREGE

VSSDQ53DQ54DQ55

VSSDQ56DQ57DQ58DQ59VDD

DQ60DQ61DQ62DQ63

VSSCLK3/NC

NCSA0SA1SA2VDD

CB12

Page 223: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

DIMM 3

10 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

SM_MD[0..63]

SM_CSB#[4..5]

SM_MAA[0..12]

SM_CKE[4..5]

SM_CSA#[4..5]

SM_DQM[0..7]

SM_MAC#[4..7]

SM_CSA#4

SM_MD56

SM_MAA11

SM_MD49

SM_MD61

SM_MD38

SM_MD19

SM_MAA10SM_MAA9

SMBDATA

SM_MD12

SM_MD10

SM_MD34

SM_MD46

SM_MD35

SM_MD45

SM_MD18

SM_DQM5

SM_BS1

SM_DQM2

SM_MD39

SM_MD44

SM_MD55

SM_MD43

SM_MD53

SM_MD8

SM_MAA2

SM_MD6SM_MD5

SM_MD7

SM_MD15

SM_MD29

SM_CSB#4

SM_DQM7

SM_MAC#4

SM_MD4

SM_MAC#5

SM_MD13

SM_MD36

SM_CSB#5

SM_MD21

SM_MD11

SM_CKE4

SM_MD63

SM_DQM4

MEMCLK9

SM_MD16

SM_MD28

SM_MD27

SM_DQM3

SM_MAA0SM_MAA3

SM_MD40

MEMCLK8

SM_MAC#6

SM_DQM0

SM_MD60

SM_MD22

MEMCLK10

SM_MD20

SM_MAA1

SM_MD23

SM_MD0SM_MD1

SM_WE#

SM_BS0

SM_MD54

SM_MD59

SM_MD32

SM_MD58

SM_MD42

SM_MD31

SM_MAC#7

SM_MD62

SM_MD9

SM_MD51

SM_MD2

SM_CSA#5

SM_MD30

SM_MAA8

SM_MD41

SM_MD52

SM_DQM1

SM_MD26

SM_MD17

SM_MD47

MEMCLK11

SM_MD14

SM_MD48

SMBCLK

SM_CKE5

SM_MD25

SM_MD50

SM_MAA12

SM_MD57

SM_MD37

SM_MD3

SM_MD24

SM_DQM6

SM_MD33

SMBDATA

SM_RAS#

SM_CAS#

SM_BS1

SMBCLK

SM_WE#

SM_BS0

MEMCLK[8..11]

SM_CAS#

SM_RAS#

SM_BS07,9

SM_BS17,9

SM_CAS#7,9

SM_CSB#[4..5]7

SM_WE#7,9

SM_CSA#[4..5]7

SM_MD[0..63]7,9

SM_MAC#[4..7]7

SM_DQM[0..7]7,9

SM_RAS#7,9

SM_MAA[0..12]7,9

SMBCLK9,13,21,24,30,32SMBDATA9,13,21,24,30,32

DM_SA_PU9

MEMCLK[8..11]6

SM_CKE[4..5]7

VCC3SBY VCC3SBY

DIMM3

DIMM168

123456789

101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384

858687888990919293949596979899100101102103104105106107

109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168

108

VSSDQ0DQ1DQ2DQ3VDDDQ4DQ5DQ6DQ7DQ8VSSDQ9DQ10DQ11DQ12DQ13VDDDQ14DQ15CB0CB1VSSCB8CB9VDDWE#/WE0#DQM0DQM1CS0#DU/OE0#VSSA0A2A4A6A8A10/APBA1/A12VDDVDDCLK0/DUVSSDU/OE2#CS2#DQM2DQM3DU/WE2#VDDCB10CB11CB2CB3VSSDQ16DQ17DQ18DQ19VDDDQ20NCVREF/DUCKE1VSSDQ21DQ22DQ23VSSDQ24DQ25DQ26DQ27VDDDQ28DQ29DQ30DQ31VSSCLK2/NCNCWPSDASCLVDD

VSSDQ32DQ33DQ34DQ35VDD

DQ36DQ37DQ38DQ39DQ40

VSSDQ41DQ42DQ43DQ44DQ45VDD

DQ46DQ47

CB4CB5VSS

CB13VDD

CAS#/DUDQM4DQM5CS1#

RAS#/DUVSS

A1A3A5A7A9

BA0/A11A11/A13

VDDCLK1/DU

A12/DUVSS

CKE0/DUCS3#

DQM6DQM7

A13/DUVDD

CB14CB15CB6CB7VSS

DQ48DQ49DQ50DQ51VDD

DQ52NC

VREF/DUREGE

VSSDQ53DQ54DQ55

VSSDQ56DQ57DQ58DQ59VDD

DQ60DQ61DQ62DQ63

VSSCLK3/NC

NCSA0SA1SA2VDD

CB12

Page 224: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

CH6-18

Place closeto GMCH

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

AGP

11 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

GREQ# GGNT#

ST0 ST1ST2

PIPE#

WBF#SBA0 SBA1

SBA2 SBA3SBSTB SBSTB1#

SBA4 SBA5SBA6 SBA7

ADSTB1 ADSTB1#

GIRDY# GFRAME#

GDEVSEL# GTRDY#GSTOP#

GPERR#

GSERR# GPAR

ADSTB0 ADSTB0#

GFRAME#

GPERR#

PIPE#WBF#

ADSTB1ADSTB1#

ADSTB0

GAD[0..31]

GAD2

GAD25

GAD23

GAD19

GAD12

GAD5

GAD21

GAD18

GAD13

GAD9

GAD1

GAD22GAD20

GAD11

GAD4

GAD16

GAD7

GAD8

GAD27

GAD31GAD29

GAD0

SBA[0..7]

GAD6

GAD17

GAD3

GAD14

GAD15

GAD10

GAD30GAD28

GAD26GAD24

SBA0SBA1SBA2SBA3

ADSTB0#

GSERR#

GDEVSEL#

GPAR

GTRDY#GIRDY#

GSTOP#

ST0

GREQ#

ST1

GGNT#

ST2

SBA7SBA6

SBSTBSBSTB#

SBA4SBA5

RBF#

RBF#

CON_AGPREF

AGPUSBN 18

PIRQ#A 14,15,30

GGNT# 8

ST1 8

PIPE# 8

TYPEDET# 26

PCI_RST# 14,15,30

GFRAME# 8

GTRDY# 8GSTOP# 8PCI_PME# 12,14,15,22

GPAR 8

GCBE#0 8

ADSTB0# 8

ADSTB1# 8

WBF# 8

SBSTB# 8

GCBE#3 8

AGP_OC#18

AGPUSBP18

PIRQ#B14,15,30AGPCLK_CONN6

GREQ#8

ST08ST28

RBF#8

SBSTB8

ADSTB18

GCBE#28

GIRDY#8

GDEVSEL#8

GCBE#18

ADSTB08

GMCH_AGPREF8

GAD[0..31]8

SBA[0..7]8

CONN_AGPREF 8,32

VDDQ

V3SB

VCC3_3VCC5

VCC12

VDDQ

VCC12

VDDQ

RN49

8.2K/8P4R

1357

2468

RN48

8.2K/8P4R

1357

2468

RN43

8.2K/8P4R

1357

2468

RN44

8.2K/8P4R

1357

2468

RN46

8.2K/8P4R

1357

2468

R106

2.2K

RN42

8.2K/8P4R

1357

2468

RN45

8.2K/8P4R

1357

2468

R3358.2K

R3328.2KR3338.2KR3348.2K

AGP1

AGP4XU_20

B1B2B3B4B5B6B7B8B9

B10B11B12B13B14B15B16B17B18B19B20B21B22B23B24B25B26B27B28B29B30B31B32B33B34B35B36B37B38B39B40B41B42B43B44B45B46B47B48B49B50B51B52B53B54B55B56B57B58B59B60B61B62B63B64B65B66

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31A32A33A34A35A36A37A38A39A40A41A42A43A44A45A46A47A48A49A50A51A52A53A54A55A56A57A58A59A60A61A62A63A64A65A66

OVRCNT#5V_A5V_BUSB+GND_KINTB#CLKREQ#/DQ27VCC3.3_FST0/DQ28ST2/DQ29RBF#/DQ30GND_LRESV_HSBA0/DQ31VCC3.3_GSBA2/DQM2SB_STBGND_MSBA4/DQ23SBA6/DQ22RESVGND_N3.3VAUX1VCC3.3_HAD31/DQ21AD29/DQ20VCC3.3_IAD27/DQ19AD25/DQ18GND_OAD_STB1AD23/DQ17VDDQ_FAD21/DQ16AD19/DQ15GND_PAD17/DQ14C/BE2#/DQ13VDDQ_GIRDY#/DQ123.3VAUX2GND_QRESV_KVCC3.3_JDEVSEL#/DQ11VDDQ_HPERR#GND_RSERR#C/BE1#/DQ10VDDQ_IAD14/DQ9AD12/DQ8GND_SAD10/DQM1AD8/DQ0VDDQ_JAD_STB0AD7/DQ1GND_TAD5/DQ2AD3/DQ3VDDQ_KAD1/DQ4VREF_CG

12VTYPEDET#

RESV_AUSB-

GND_AINTA#RST#GNT#

VCC3.3_ADQM3/ST1

RESV_BDQ24/PIPE#

GND_BWBF#

DQ25/SBA1VCC3.3_B

DQ26/SBA3SB_STB#

GND_CWE#/SBA5

M_FREQ_SEL/SBA7RESV_CGND_D

RESV_DVCC3.3_C

TCLK0/AD30TCLK1/AD28

VCC3.3_DCAS#/AD26

AD24GND_E

AD_STB1#RAS#/C/BE3#

VDDQ_AA0/AD22A9/AD20GND_F

A11/AD18A8/AD16VDDQ_B

A10/FRAME#RESV_EGND_GRESV_F

VCC3.3_EA7/TRDY#

CS#/STOP#PME#

GND_HA6/PAR

A1/AD15VDDQ_CA5/AD13A2/AD11

GND_IA4/AD9

A3/C/BE0#VDDQ_D

AD_STB0#DQ5/AD6

GND_JDQ6/AD4DQ7/AD2VDDQ_E

DQM0/AD0VREF_GC

PR19

200,1%

Q132N7002

PR20

301,1%

Page 225: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

NPOP

Place R asClose aspossible toICH

Place as close asPossible to ICHand via straightto VSS plane

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

ICH2 Part 1

12 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

AD[0..31]

HL[0..10]

HL10

HL4

HL9

HUBREF_ICH

HL2HL1

HL8

HL0

HL5

HL7

HL3

HL6

AD24AD23

AD20

AD17

AD9

AD22

AD10

AD12

AD26AD25

AD1

AD4

AD28

AD3AD2

AD27

AD19

AD8

AD31

AD11

AD30

AD15

AD0

AD13AD14

AD6

AD29

AD16

AD21

AD18

AD7

AD5

U12_RN69-1

U12_RN69-7

U12_RN69-3U12_RN69-5

AD[0..31]14,15

IGNNE# 4

A20M# 4

STPCLK# 4SMI# 4

KBRST# 21,30

CPUSLP# 4

NMI 4

INIT# 4,17INTR 4

FERR# 4

ICH_IRQ#D 30

ICH_IRQ#B 30ICH_IRQ#C 30

CPU_PWGD 4,33

HLSTB# 8

IRQ15 17IRQ14 17

SERIRQ 21,30

PREQ#5 30

PGNT#1 14

APICD1 4

PGNT#2 15

PREQ#0 14,30

HLSTB 8

PREQ#4 30

APICD0 4

PREQ#2 15,30PREQ#1 14,30

PREQ#3 30

APICCLK_ICH 6

PGNT#0 14

HL[0..10] 8

ICH_IRQ#A 30

PCLK_0/ICH6

PCI_PME#11,14,15,22

C_BE#014,15

ICH_IRQ#F30

C_BE#114,15

IRDY#14,15,30

PAR14,15

ICH_IRQ#H30

FRAME#14,15,30

GPIO2730

TRDY#14,15,30

PERR#14,15,30

DEVSEL#14,15,30

PLOCK#14,15,30ICHRST#30

ICH_IRQ#G30

C_BE#214,15

STOP#14,15,30

ICH_IRQ#E30

SERR#14,15,30

C_BE#314,15

PCI_REQ#A30

P66DET17

GPIO2317

LAN_RXD0 24LAN_RXD1 24LAN_RXD2 24

LAN_TXD0 24

LAN_CLK 24LAN_RSTSYNC 24

LPC_PME#21,30EXTSMI#24

GPI830S66DET17

LAN_TXD2 24

PRI_DWN#24,29

HUBREF_ICH 32

LAN_TXD1 24

A20GATE 21,30

VCC1_8

VCC1_8

V1_8SBV3SB V3SBVCC1_8 V3SBVCC3_3 V1_8SBVCC1_8

C101

10PF

PR25

301,1%

PR26

301,1%

PR27

40.2,1%

BC119

0.01UF

U12A82801BA ICH2

AA4AB4

Y4W5W4Y5

AB3AA5AB5

Y3W6W3Y6Y2

AA6Y1V2

AA8V1

AB8U4W9U3Y9U2

AB9U1

W10T4

Y10T3

AA10

AA3AB6

Y8AA9

W11V3

AB7W8V4

W1AA15AA7W2W7

Y15

M3L2

E14

E15

E16

E17

E18

F18

G18

H18

J18

P18

R18

R5

T5

U5

V5

D11A12R22A11C12C11B11B12C10B13C13

A4B5A5B6B7A8B8A9C8C6C7

A6A7A3B4

P1P2P3N4

F21C16N20N19P22N21

R2R3T1AB10

M2M1R4T2

D10

E5

K19

L19

P5

V9

D2

Y7

N3N2N1

AA11Y14W14

AB15A15D14C14

L1B14A14

AB14AA14

A13

C5

M4

P4L3

R1L4

A1

A10

A2

A21

A22

AA

1A

A2

AA

21A

A22

AB

1A

B2

AB

21A

B22

B1

B10

B2

B21

B22

B3

B9

C2

C3

C4

C9

D3

D5

D6

D7

D8

D9

E6

E7

E8

E9

J10

J11

J12

J13

J14

J9 K1

K10

K11

K12

K13

K14

K9

L10

L11

L12

L13

L14

L9 M9

M10

M11

M12

M13

M14

N9

N10

N11

N12

N13

N14

P9

P10

P11

P12

P13

P14

G2G1H1

F3F2F1

G3H2

V6

V7

V8

U18

T18

F5

G5

V17

V18

V14

V15

V16

H5

J5

Y11

AD0AD1AD2AD3AD4AD5AD6AD7AD8AD9AD10AD11AD12AD13AD14AD15AD16AD17AD18AD19AD20AD21AD22AD23AD24AD25AD26AD27AD28AD29AD30AD31

C_BE#0C_BE#1C_BE#2C_BE#3

PCICLKFRAME#DEVSEL#IRDY#TRDY#STOP#PCIRST#PLOCK#PARSERR#

PCI_PME#

REQ#A/GPI0GNT#A/GPO16

VC

C3_

3_2

VC

C3_

3_3

VC

C3_

3_4

VC

C3_

3_5

VC

C3_

3_6

VC

C3_

3_7

VC

C3_

3_8

VC

C3_

3_10

VC

C3_

3_11

VC

C3_

3_12

VC

C3_

3_13

VC

C3_

3_14

VC

C3_

3_15

VC

C3_

3_16

VC

C3_

3_17

A20M#CPUSLP#

FERR#IGNNE#

INIT#INTRNMI

SMI#STPCLK#

RCIN#A20GATE

HL0HL1HL2HL3HL4HL5HL6HL7HL8HL9

HL10

HLSTBHLSTB#HCOMP

HUBREF

PIRQ#APIRQ#BPIRQ#CPIRQ#D

IRQ14IRQ15

APICCLKAPICD1APICD0SERIRQ

REQ#0REQ#1REQ#2REQ#3

GNT#0GNT#1GNT#2GNT#3

VC

C1_

8_1

VC

C1_

8_2

VC

C1_

8_3

VC

C1_

8_4

VC

C1_

8_5

VC

C1_

8_6

VC

CA

PERR#

PIRQ#E/GPI2PIRQ#F/GPI3PIRQ#G/GPI4

GPI7GPI8GPI12GPI13GPO18GPO19GPO20GPO21GPOD22GPO23GPIOD27GPIOD28

CPUPWRGOD

HL11

PIRQ#H/GPI5

REQ#4REQ#B/GPI1/REQ#5

GNT#4GNT#B/GPO17/GNT#5

VS

S0

VS

S1

VS

S2

VS

S3

VS

S4

VS

S5

VS

S6

VS

S7

VS

S8

VS

S9

VS

S10

VS

S11

VS

S12

VS

S13

VS

S14

VS

S15

VS

S16

VS

S17

VS

S18

VS

S19

VS

S20

VS

S21

VS

S22

VS

S23

VS

S24

VS

S25

VS

S26

VS

S27

VS

S28

VS

S29

VS

S30

VS

S31

VS

S32

VS

S33

VS

S34

VS

S35

VS

S36

VS

S37

VS

S38

VS

S39

VS

S40

VS

S41

VS

S42

VS

S43

VS

S44

VS

S45

VS

S46

VS

S47

VS

S48

VS

S49

VS

S50

VS

S51

VS

S52

VS

S53

VS

S54

VS

S55

VS

S56

VS

S57

VS

S58

VS

S59

VS

S60

VS

S61

VS

S62

VS

S63

VS

S64

VS

S65

VS

S66

VS

S67

VS

S68

VS

S69

VS

S70

LAN_RXD0LAN_RXD1LAN_RXD2

LAN_TXD0LAN_TXD1LAN_TXD2

LAN_CLKLAN_RSTSYNC

VC

C3_

3_18

VC

C3_

3_19

VC

C3_

3_20

VC

CP

S1

VC

CP

S2

VC

CP

X1

VC

CP

X2

VC

CU

SB

1V

CC

US

B2

VC

CC

S1

VC

CC

S2

VC

CC

S3

VC

CA

X1

VC

CA

X2

GPI6

RN69 22/8P4R1357

2468

Page 226: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Target 20ms afterVCC_CLOCK ispowered

Debug only - donot stuff

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

ICH2 Part 2

13 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

PDA0

SDA0

PDD5PDD6

SDD1SDD0

SDD4

PDD1

PDD7

PDD11

SDD10

SDD14

PDD2

SDD7

PDA2

SDD12

SDD2

SDD5

PDD4

SDA2

PDD8

PDD12

PDA1

SDA1

PDD13

SDD3

SDD13

PDD14PDD15

SDD11

SDD15

PDD9PDD10

SDD8

SDD6

SDD9

PDD0

PDD3

SDD[0..15]

PDD[0..15]

RTCX1VBIAS

RTCX2RTCRST#

PDA[0..2]

SDA[0..2]

R174_JP1

ICH_PWROK SDCS#1 17

AC_RST#24,29

SDCS#3 17

PDIOR# 17

PDIOW# 17

AC_SDIN124,30

SDDACK# 17

SDIOW# 17

PDREQ 17

SDIOR# 17

PIORDY 17

PDCS#1 17

AC_SDIN019,24,30

AC_BITCLK19,24

PDCS#3 17

SIORDY 17

PDDACK# 17SDREQ 17

USBCLK6ICH_3V666

ICH_SPKR19,24,29

AC_SYNC19,24

SDD[0..15] 17

PDD[0..15] 17

ICH_RI#22,30

SLP_S3#6,21,28

PWRBTN#21,33

OVT#21,30

SLP_S5#28

RSMRST#21

LAD317,21LAD217,21

LDRQ#021

LFRAME#17,21

LAD117,21LAD017,21

SMBALERT#30

SMBDATA9,10,21,24,30,32SMBCLK9,10,21,24,30,32

SUSCLK21

USBP1P18USBP1N18

USBP0N18

USBP2P18

USBP3P18USBP3N18

USBP2N18

EE_CS24

EE_SHCLK24 SMLINK1 15,30SMLINK0 15,30

USBP0P18

USBOC#0-118

AC_SDOUT19,24,29

ICH_CLK146

PDA[0..2] 17

SDA[0..2] 17

USBOC#2-318

CASEOPEN#21,25

GPIO2530

EE_DOUT24EE_DIN24

PWROK21,25

VRM_PWRGD 27

VCC5

VCC3_3

VCC5

VCCRTC VCC5SBY

V3SB

V3SB

VCC3_3VCC_CLOCK

VCC3_3 VCMOS

VCC3_3

BC125

0.1UF

C91

1.0UF

R129 1K

CP1

47PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

CP2

47PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

RN70 15/8P4R1357

2468RN71 15/8P4R

1357

2468

C88

X18PF

C113

1.0UF

BAT1

BATTERY

C103

18PF

R149 10M

C110

0.047UF

R181 1K

Y2

32.768KHZ

R162

10M

C102

18PF

R187

1K

R174 15KJP1

CCM0S

1

32

Q162N7002

R141 10C96

X10PR134 1K

R164

560K

R271

560K

D8 SS12/SMD

D12

SS12/SMD

R324 1K

U12B

82801BA ICH2

AA13W16

AB18R20

W21AA17R21Y17

AA16AB16AB17

T19

M19P20D4

T21U22T22T20

V22P19R19P21Y22W22N22

Y12W12

AB13AB12AB11

Y13W13

AB19AA19

W17Y18

Y20W19

E21C15E19D15

F20F19E22A16D16B16

G22B18F22B17G19D17G21C17G20A17

H19H22J19J22K21L20M21M22L22L21K22K20J21J20H21H20

D18B19D19A20C20C21D22E20D21C22D20B20C19A19C18A18

U21

M20

K2

V19

D13

D12

W15V21

Y16

W18Y19

AB20AA20

Y21W20

K4K3J4J3

U19V20B15U20

AA18

AA12

THRM#SLP_S3#SLP_S5#PWROK

PWRBTN#RI#RSMRST#SUS_STAT#

SMBDATASMBCLKSMBALTER#/GPI11INTRUDER#

CLK14CLK48CLK66

VBIASRTCX1RTCX2RTCRST#

AC_RST#AC_SYNCAC_BITCLKAC_SDOUTAC_SDIN0AC_SDIN1SPKR

LAD0/FWH0LAD1/FWH1LAD2/FWH2LAD3/FWH3LFRAME#/FWH4LDRQ#0LDRQ#1

USBP1PUSBP1N

USBP0PUSBP0N

OC#1OC#0

PDCS#1SDCS#1PDSC#3SDCS#3

PDA0PDA1PDA2SDA0SDA1SDA2

PDDREQSDDREQ

PDDACK#SDDACK#

PDIOR#SDIOR#PDIOW#SDIOW#PIORDYSIORDY

PDD0PDD1PDD2PDD3PDD4PDD5PDD6PDD7PDD8PDD9

PDD10PDD11PDD12PDD13PDD14PDD15

SDD0SDD1SDD2SDD3SDD4SDD5SDD6SDD7SDD8SDD9

SDD10SDD11SDD12SDD13SDD14SDD15

VC

CR

TC

V5R

1V

5R2

V5R

_SU

S

VC

PU

2V

CP

U1GPIO25

GPIO24

RSM_PWROK

USBP2PUSBP2NUSBP3PUSBP3N

OC#2OC#3

EE_CSEE_DINEE_DOUTEE_SHCLK

SMLINK0SMLINK1

VRMPWRGDTP0

SUSCLK

FS0

R325 1K

C104

1.0UF

D18

SS12/SMD

BC197

0.1UF

U33

741G08 AND

1

2

3

4

5

A

B GN

D

YVcc

R376 43k

C172

1.0uF

R377 0

D19

BAT54C

12

3

12

3

R403

1K

Page 227: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

PCI 1 and 2

14 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

AD30

AD28AD26

AD24

AD22AD20

AD18AD16

AD15

AD13AD11

AD9

AD6AD4

AD2AD0

AD31AD29

AD27AD25

AD23

AD21AD19

AD17

PERR#

AD14

AD12AD10

AD8AD7

AD5AD3

AD1

ACK64#

PIRQ#BPIRQ#D

PCI_RST#

PCI_PME#AD30

AD28AD26

AD24R_AD17

AD22AD20

AD18AD16

FRAME#

TRDY#

STOP#

PARAD15

AD13AD11

AD9

C_BE#0

AD6AD4

AD2AD0

PIRQ#CPIRQ#A

AD31AD29

AD27AD25

C_BE#3AD23

AD21AD19

AD17C_BE#2

IRDY#

DEVSEL#

PLOCK#PERR#

SERR#

C_BE#1AD14

AD12AD10

AD8AD7

AD5AD3

AD1

ACK64#

AD17R_AD16 AD16

AD[0..31]

C_BE#[0..3]

C_BE#3

C_BE#2

C_BE#1

C_BE#0

PIRQ#B11,15,30PIRQ#D15,30

PCLK_16

PREQ#012,30

IRDY#12,15,30

DEVSEL#12,15,30

PLOCK#12,15,30

SERR#12,15,30

AD[0..31]12,15

C_BE#[0..3]12,15

PIRQ#A 11,15,30PIRQ#C 15,30

PGNT#0 12

PCI_PME# 11,12,15,22

FRAME# 12,15,30

TRDY# 12,15,30

STOP# 12,15,30

PAR 12,15

ACK64#15,30

PGNT#1 12PREQ#112,30

PCLK_26PCI_RST# 11,15,30

PERR#12,15,30

REQ64#1 30 REQ64#2 30

VCC3_3

VCC5

VCC12VCC12-

VCC5

VCC3_3VCC3_3

VCC5

VCC12VCC12-

VCC5

VCC3_3

V3SBV3SB

R133100

R142100

PCI1

PCI_CON_32BIT

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31A32A33A34A35A36A37A38A39A40A41A42A43A44A45A46A47A48A49

A52A53A54A55A56A57A58A59A60A61A62

B1B2B3B4B5B6B7B8B9

B10B11B12B13B14B15B16B17B18B19B20B21B22B23B24B25B26B27B28B29B30B31B32B33B34B35B36B37B38B39B40B41B42B43B44B45B46B47B48B49

B52B53B54B55B56B57B58B59B60B61B62

TRST#+12VTMSTDI+5V

INTA#INTC#

+5VRESERVED

+5V(I/O)RESERVED

GNDGND

RESERVEDRST#

+5V(I/O)GNTGND

PME#AD30+3.3VAD28AD26GNDAD24

IDSEL+3.3

AD22AD20GNDAD18AD16+3.3V

FRAME#GND

TRDY#GND

STOP#+3.3V

SDONESBO#GNDPAR

AD15+3.3VAD13AD11GNDAD9

C/BE#0+3.3V

AD6AD4

GNDAD2AD0

+5V(I/O)REQ64#

+5V+5V

-12VTCKGNDTDO+5V+5VINTB#INTD#PRSNT#1RESERVEDPRSNT#2GNDGNDRESERVEDGNDCLKGNDREQ#+5V(I/O)AD31AD29GNDAD27AD25+3.3VC/BE#3AD23GNDAD21AD19+3.3VAD17C/BE#2GNDIRDY#+3.3VDEVSEL#GNDLOCK#PERR#+3.3VSERR#+3.3VC/BE#1AD14GNDAD12AD10GND

AD8AD7+3.3VAD5AD3GNDAD1+5V(I/O)ACK64#+5V+5V

PCI2

PCI_CON_32BIT

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31A32A33A34A35A36A37A38A39A40A41A42A43A44A45A46A47A48A49

A52A53A54A55A56A57A58A59A60A61A62

B1B2B3B4B5B6B7B8B9

B10B11B12B13B14B15B16B17B18B19B20B21B22B23B24B25B26B27B28B29B30B31B32B33B34B35B36B37B38B39B40B41B42B43B44B45B46B47B48B49

B52B53B54B55B56B57B58B59B60B61B62

TRST#+12VTMSTDI+5V

INTA#INTC#

+5VRESERVED

+5V(I/O)RESERVED

GNDGND

RESERVEDRST#

+5V(I/O)GNTGND

PME#AD30+3.3VAD28AD26GNDAD24

IDSEL+3.3

AD22AD20GNDAD18AD16+3.3V

FRAME#GND

TRDY#GND

STOP#+3.3V

SDONESBO#GNDPAR

AD15+3.3VAD13AD11GNDAD9

C/BE#0+3.3V

AD6AD4

GNDAD2AD0

+5V(I/O)REQ64#

+5V+5V

-12VTCKGNDTDO+5V+5VINTB#INTD#PRSNT#1RESERVEDPRSNT#2GNDGNDRESERVEDGNDCLKGNDREQ#+5V(I/O)AD31AD29GNDAD27AD25+3.3VC/BE#3AD23GNDAD21AD19+3.3VAD17C/BE#2GNDIRDY#+3.3VDEVSEL#GNDLOCK#PERR#+3.3VSERR#+3.3VC/BE#1AD14GNDAD12AD10GND

AD8AD7+3.3VAD5AD3GNDAD1+5V(I/O)ACK64#+5V+5V

Page 228: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

PCI 3

15 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

AD22AD20

AD18AD16

AD15

AD9

AD6AD4

AD2AD0

AD31AD29

AD27AD25

AD23

AD21AD19

AD17

PERR#

AD14

AD12AD10

AD8AD7

AD5AD3

AD1

ACK64#

C_BE#3

C_BE#2

C_BE#1

AD18

C_BE#0

AD30

R_AD18AD24

AD11AD13

AD28AD26

AD[0..31]

C_BE#[0..3]

PIRQ#B11,14,30

PCLK_36

IRDY#12,14,30

DEVSEL#12,14,30

SERR#12,14,30

AD[0..31]12,14

C_BE#[0..3]12,14

PIRQ#C 14,30PIRQ#A 11,14,30

PGNT#2 12

PCI_PME# 11,12,14,22

FRAME# 12,14,30

TRDY# 12,14,30

STOP# 12,14,30

PAR 12,14

ACK64#14,30

PCI_RST# 11,14,30

PREQ#212,30

PIRQ#D14,30

PERR#12,14,30PLOCK#12,14,30

REQ64#3 30

SMLINK1 13,30SMLINK0 13,30

VCC3_3

VCC5

VCC12VCC12-

VCC5

VCC3_3V3SB

R148100

PCI3

PCI_CON_32BIT

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19A20A21A22A23A24A25A26A27A28A29A30A31A32A33A34A35A36A37A38A39A40A41A42A43A44A45A46A47A48A49

A52A53A54A55A56A57A58A59A60A61A62

B1B2B3B4B5B6B7B8B9

B10B11B12B13B14B15B16B17B18B19B20B21B22B23B24B25B26B27B28B29B30B31B32B33B34B35B36B37B38B39B40B41B42B43B44B45B46B47B48B49

B52B53B54B55B56B57B58B59B60B61B62

TRST#+12VTMSTDI+5V

INTA#INTC#

+5VRESERVED

+5V(I/O)RESERVED

GNDGND

RESERVEDRST#

+5V(I/O)GNTGND

PME#AD30+3.3VAD28AD26GNDAD24

IDSEL+3.3

AD22AD20GNDAD18AD16+3.3V

FRAME#GND

TRDY#GND

STOP#+3.3V

SDONESBO#GNDPAR

AD15+3.3VAD13AD11GNDAD9

C/BE#0+3.3V

AD6AD4

GNDAD2AD0

+5V(I/O)REQ64#

+5V+5V

-12VTCKGNDTDO+5V+5VINTB#INTD#PRSNT#1RESERVEDPRSNT#2GNDGNDRESERVEDGNDCLKGNDREQ#+5V(I/O)AD31AD29GNDAD27AD25+3.3VC/BE#3AD23GNDAD21AD19+3.3VAD17C/BE#2GNDIRDY#+3.3VDEVSEL#GNDLOCK#PERR#+3.3VSERR#+3.3VC/BE#1AD14GNDAD12AD10GND

AD8AD7+3.3VAD5AD3GNDAD1+5V(I/O)ACK64#+5V+5V

Page 229: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Place 100pF capnear DVO pin 40

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

VGA Header and DVO Debug Header

16 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

DDCCL

DDCDA

HS

VS

BV

GV

RVMONOPU

MON2PU

F5_FB11

FTD[0..11]

5VHSYNC5VVSYNC

5VDDCDA

5VFTSDA

5VDDCCL

U8_VCC

5VFTSCL

FTD5

FTD3

FTD11

FTD1

FTD8

FTD6

FTD4

FTD7

FTD2

FTD9FTD10

FTD0

FTVREF

3VDDCDA8

SL_STALL 8

3VDDCCL8

CRT_VSYNC8

FTVSYNC 8

3VFTSCL8

FTCLK1 8

CRT_HSYNC8

FTHSYNC 8

FTCLK0 8

VID_RED8

VID_GREEN8

VID_BLUE8

FTD[0..11]8

PCIRST#7,17,21,30

FTBLNK# 8

3VFTSDA8 VCC3SBY VCC1_8

VCC5

VCC5 VCC1_8

VCC5

VCC5

VCC1_8

VCC5 VCC3_3 VCC1_8

R85 33

C55

22PF

U28

PAC-VGA201/QSOP

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16VCC3

VCC1

VIDEO_1

VIDEO_2

VIDEO_3

GND

POWER_UP

VCC2 DDC_OUT1

DDC_OUT2

SYNC_IN1

SYNC_OUT1

SYNC_IN2

SYNC_OUT2

SD1

SD2

PR12

75,1%

C50

3.3PF

C49

X10PF

BC68

0.22UF

C47

3.3PF

C43

3.3PF

PR11

75,1%

PR10

75,1%

C53

10PF

C54

10PF

R87 33

C57

22PF

C56

10PF

C48

10PF

R84

1K

R322 10

R321 10

BC223

0.22UF

VFB1

BEAD

1 2

FB11

BEAD

12

VGA1

VGA_CONN

61

1172

1283

1394

14105

15

R73

1K

F5

FUSE_1.0A

R97

4.7K

R96

4.7K

VFB2

BEAD

1 2

VFB3

BEAD

1 2

C46

X10PF

C45

X10PF

BC225

0.22UF

BC224

0.22UF

BC86

0.1UF

R95

4.7K

R327 22R326 22

U8QST3384

3478

111417182122

242569101516192023

121

13

1A11A21A31A41A52A12A22A32A42A5

VCC1B11B21B31B41B52B12B22B32B42B5

GNDBEA#BEB#

C134

100PF

D4

1N4148

R328 2.2K

C135

100PF

R329 2.2K

RN41 2.2K/8P4R

1357

2468

D11

G1

D10

G2

D9

G3

D8

G4

D7

D6

G5

ST# STB

G6

D5

G7

D4

G8

D3

D2

G9

D1

G10

D0

G11

D/B

G12

Y C

CV

BS

SP

0

SP

1

SP

2

SP

3

5V1

5V2

3V1

3V2

3V3

3V4

VD

D1

VD

D2

VD

D3

VD

D4

VR

EF

PD

#

RS

T#

SD

A5

SC

L5

SD

A

SC

L

I/C HS

VS J3

DVO CONNECTOR

12

34

56

78

910

1112

1314

1516

1718

1920

2122

2324

2526

2728

2930

3132

3334

3536

3738

3940

4142

4344

4546

4748

4950

5152

5354

5556

5758

5960

G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

R3501k

R3511k

C136

0.01uF

C137

100pF

C138

1.0uF

C139

1.0uF

C140

1.0uF

C141

2.2uF

C142

1.0uF

C143

1.0uF

C144

2.2uF

Page 230: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

IDEFWH

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

FWH and UDMA100 IDE

17 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

IDERST_IDE1_PIN1PDD8

PDD6 PDD9PDD5 PDD10PDD4 PDD11PDD3 PDD12PDD2 PDD13PDD1 PDD14PDD0 PDD15

PDA1PDA0

IDERST_IDE2_PIN1

SDD6SDD5SDD4SDD3SDD2SDD1SDD0

SDA1SDA0

SDA2

IDERST#

FPGI4

SDD11

SDD13

SDD9SDD10

SDD8

SDD15SDD14

SDD12

IDERST#SDD7

SDD[0..15]

SDA[0..2]

PDD7

PDA2

PDD[0..15]

PDA[0..2]

PDREQ13

PDIOR#13PDIOW#13

PIORDY13PDDACK#13

IRQ1412

PDCS#3 13

SDD[0..15]13

SDCS#113

SDA[0..2]13

SDIOW#13

SIORDY13SDDACK#13

IRQ1512

SDCS#3 13

SDIOR#13

IDEACTS#24

IDEACTP#24PDCS#113

SDREQ13

PCIRST#7,16,21,30

INIT# 4,12

LAD3 13,21

PCLK_8 6

GPIO2312

LAD013,21LAD113,21LAD213,21

LFRAME# 13,21

IDERST#30

PDD[0..15]13

PDA[0..2]13

S66DET 12

P66DET 12

VCC3_3

VCC3_3

VCC3_3

VCC3_3VCC3_3

VCC3_3

R79

4.7K

R112 33

R76

4.7K

R113 33

R83 8.2K

IDE2

PIN_2X20

13579

11131517192123252729

24681012141618202224262830

3133353739

3234363840

BC175

0.1UF

BC177

0.1UF

BC178

0.1UF

BC173

0.1UFR207

0

R211 8.2K

C51

47PF

C44

47PF

R80

10K

IDE1

PIN_2X20

13579

11131517192123252729

24681012141618202224262830

3133353739

3234363840

R70

10K

U23

FWH32

123456789

10111213141516 17

181920212223242526272829303132VPP

RST#FGPI3FGPI2FGPI1FGPI0WP#TBL#ID3ID2ID1ID0FWH0FWH1FWH2GND FWH3

RFURFURFURFURFU

FWH4INIT#VCCGND

VCCAGNDA

ICFGPI4

CLKVCC

R206 8.2K

R75 8.2K

Page 231: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

JP4 Pin 3 near USB2 Pin 5JP4 Pin 4 near USB2 Pin 7

JP5 Pin 3 near USB2 Pin 6JP5 Pin 4 near USB2 Pin 8

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

USB

18 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

USBP0P13USBP1N13USBP1P13

USBP0N13

USBOC#0-113

AGPUSBN11AGPUSBP11

USBP3N13USBP2P13

CNRUSBN24

USBOC#2-313

USBP3P13

CNRUSBP24

AGP_OC#11

CNR_OC#24

USBP2N13

VCC5DUAL

VCC5DUAL

V3SB

BC4

470PF

+ EC18

100UF

FB24 BEAD

1 2 FB23 BEAD

1 2 FB22 BEAD

1 2

F4 FUSE_1.0A

FB21 BEAD

1 2

FB8 BEAD

1 2USB1

USB_CON2

12345678

VCC0DATA0-DATA0+GND0VCC1DATA1-DATA1+GND1

CP3

47PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

RN7215K/8P4R

1 3 5 7

2 4 6 8

FB29 BEAD

1 2

JP4

HEADER5

1

32

45

+ EC39

100UF

C122

470PF FB27 BEAD

1 2

R268 X0

R266330K

FB25 BEAD

1 2

JP5

HEADER5

1

32

45

FB26 BEAD

1 2

F7 FUSE_1.0A

RN7315K/8P4R

1 3 5 7

2 4 6 8

R269 X0

R267330K

USB2

HEADER5X2

1 23 45 67 89 10

CP4

47PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

FB28 BEAD

1 2

Page 232: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

AC'97CODEC

"SINGLE POINT CONNECTION"

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

AC'97 Codec

19 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

CX

3D

MONO_OUT

VR

EF

RX

3D

FIL

T_R

FIL

T_L

AF

ILT

2

AF

ILT

1

XT

AL_

OU

T

XTAL_IN

R154_MC58

VR

EF

OU

T

PC_BEEPR336_MC56

AC97SPKR24EAPD 20

AUD_VREFOUT 20

AC_SYNC 13,24AC_BITCLK 13,24

AC_SDIN0 13,24,30

PRI_DWN_RST# 29AC_SDOUT 13,24,29

LINE_IN_L20

LNLVL_OUT_R20

CD_R20

CD_REF20

MIC_IN20

LINE_IN_R20

CD_L20

LNLVL_OUT_L20

AUX_R20AUX_L20

ICH_SPKR13,24,29

VCC3_3 VCC5 VCC5_AUDIO

MC53

1UF

C97

22PF

C98

22PF

BC129

0.1UF

BC139

0.1UF

BC140

0.1UF

C99

X10PF

MC48

2.2UF

MC46

4.7UF

MC51

0.1uF NPOP

C95

2700PF

C94

2700PF

MC54

1UF

MC52

1UF

MC55

0.1UF

MC56 1UF

MC58 1UF

U15

CS4299

4 1 7 9 38 42 25 26 40 44 43

122423212220181917161415133736354139

29 30 32 31 33 34 27 28 3 2

1158106

46454847

DV

SS

1

DV

DD

1

DV

SS

2

DV

DD

2

AV

DD

2

AV

SS

2

AV

DD

1

AV

SS

1

NC

40N

C44

NC

43

PC_BEEPLINE_IN_RLINE_IN_LMIC1MIC2CD_RCD_LCD_REFVIDEO_RVIDEO_LAUX_LAUX_RPHONEMONO_OUTLINE_OUT_RLINE_OUT_LLNLVL_OUT_RLNLVL_OUT_L

AF

ILT

1

AF

ILT

2

FIL

T_L

FIL

T_R

RX

3D

CX

3D

VR

EF

VR

EF

OU

T

XT

L_O

UT

XT

L_IN

RESET#SDATA_OUT

SDATA_INSYNC

BIT_CLK

CS1CS0

CHAIN_CLKEAPD

BC136

0.1UF

R337220K

R154 100

PFB6

BEAD

12

R254

1K

R252

1K

R253 X0

Y1

24.576MHZ

R336 1K

R155220K

Page 233: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

CD Analog InputLine_In Analog Input

Microphone Input

Stereo HP/Spkr out

"SINGLE POINT CONNECTION"Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Audio I/O

20 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

R119_FB15

R120_MC41 JK3_MICIN

CD_ING

JK2_LINE_IN_R

JK2_LINE_IN_L

AUX_INL

AUX_INR

R122_FB17MC44_R122

R121_FB16MC42_R121

CD_INR CDIN_R

CD_INLCDIN_L

C87_C77

U11_BYPASSU11_OUTB

U11_OUTA

SPKROUT_R

U11_INB

MC47_R132

SPKROUT_L

CDIN_REF

C74_JK1

MC45_R127 U11_INALNLVL_OUT_R19

AUD_VREFOUT19

LINE_IN_R19

LINE_IN_L19

CD_R 19

CD_L 19

CD_REF 19

MIC_IN19

AUX_L 19

AUX_R 19

LNLVL_OUT_L19

EAPD19

VCC5_AUDIO

C90100PF

R12820K

BC123

0.1UF

R126 20K

C87 100PF

R127

20K

+

C78

100UF

C75

100PF

R119

2.2K

R120

1K

C80

100PF

MC42

1UF

R125220K

R124220K

R115

1K

R117

1K

R116

1K

AUX1

2.54_WAFER_4

1

32

4

C850.01UF

CD2

2.54_WAFER_4

1

32

4

CD1

2mm_WAFER_4

1

32

4

JK2

PHONEJACK

JK3

PHONEJACK

JK1

PHONEJACK

R1221K

R1211K

C86

100PF

MC41

1UFC76

100PF

MC43

1UFMC39

1UFMC38

1UF

C81

100PF

C79

100PF

MC37

1UFC83

100PF

C84

100PF

MC36

1UF

MC44

1UF

MC45

1UF

U11

LM4880

1234

8765

OUTAINABYPASSGND

VDDOUTB

INBSHUTDN

+

C77

100UF

R104

22

R105

22

C74

100PF

R132

20K

MC47

1UF

FB13

BEAD

1 2

FB14

BEAD

1 2

FB17

BEAD

1 2

FB16

BEAD

1 2

FB15

BEAD

1 2

R118220K

C82

100PF

MC401UF

Page 234: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

W83627HF

FDD Signals Trace 8 or 10 mil

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Super I/O and FDC

21 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

WD#

DIR#

DS1#

WE#

MOA#

HEAD#

STEP#

DSB#DSA#MOB#

RWC#

IOAVCC

SUSLED 24KDAT 23KCLK 23

KEYLOCK# 24RI#0 22DCD#0 22

RXD0 22DTR#0 22RTS#0 22DSR#0 22CTS#0 22

STB# 22AFD# 22ERR# 22

SLIN# 22

ACK# 22BUSY 22PE 22

VTIN24,25VTIN125

FANIO325FANIO225FANIO125

FANPWM225FANPWM125

BEEP24

MCLK 23MDAT 23

PS_ON 25

IRRX 23IRTX 23RI#1 22DCD#1 22

RXD1 22DTR#1 22RTS#1 22DSR#1 22CTS#1 22

CASEOPEN# 13,25

SUSCLK 13

TXD1 22

KBRST# 12,30

PAR_INIT# 22

MIDI_IN23

J1BUTTON223J2BUTTON223

J2BUTTON123J1BUTTON123

JOY1Y23JOY2Y23

MIDI_OUT23

JOY2X23JOY1X23

SMBDATA9,10,13,24,30,32

SLP_S3# 6,13,28

A20GATE 12,30

PWROK 13,25

SLCT 22

PCIRST# 7,16,17,30

HM_VREF25VTIN325

THRMDN4,25

SMBCLK9,10,13,24,30,32

OVT#13,30

PWRBTN# 13,33

TXD0 22

RSMRST# 13

PDR0 22PDR1 22PDR2 22PDR3 22PDR4 22PDR5 22PDR6 22PDR7 22

LAD213,17LAD313,17

LAD113,17LAD013,17

SIO_CLK246LPC_PME#12,30PCLK_76

LDRQ#013

VID027,29,32VID127,29,32VID227,29,32

-5VIN25-12VIN25+12VIN25+3.3VIN25

VCORE25

LFRAME#13,17

VID327,29,32

SERIRQ12,30

PANSWIN 24,32

VTT_SENSE25

VCC5

VCC5

VCC5SBY

VCC3_3

VCC5

VCC5

VCCRTC

VCC5SBY

V3SB

R1660

R185300R193300

R15710K

BC155.1U

BC162.1U

BC154

0.1UF

BC161

0.1UF

BC1720.1UF

FB19

BEAD

1 2

FDC1

HEADER_17X2

13579

11131517192123252729

24681012141618202224262830

3133

3234

BC1510.1UF

FB20

BEAD

1 2

R16710K

U17

W83627HF

1 2 3 4 5 6 7 9 10 11 12 13 14 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

3940414243444546474849505152535455565758596061626364

6566676869707172737475767778798081828384858687888990919293949596979899100

101

102

103104105106107108109110111112113114115116117118119120121122123124125126127128

8 15

DR

VD

EN

0D

RV

DE

N1

IND

EX

#M

OA

#D

SB

#D

SA

#M

OB

#

ST

EP

#W

D#

WE

#V

CC

TR

AK

0#W

P#

HE

AD

#D

SK

CH

G#

CLK

INP

ME

#V

SS

PC

ICLK

LDR

Q#

SE

RIR

QLA

D3

LAD

2LA

D1

LAD

0V

CC

3VLF

RA

ME

#LR

ES

ET

#S

LCT

PE

BU

SY

AC

K#

PD

7P

D6

PD

5P

D4

PD3PD2PD1PD0

SLIN#INIT#ERR#AFD#STB#VCC

CTSA#DSRA#RTSA#DTRA#

SINASOUTA

VSSDCDA#

RIA#KBLOCK#

GA20MKBRST

VSBKCLKKDAT

SUSLED/GP35

MC

LKM

DA

TP

SO

UT

#P

SIN

#C

IRR

X/G

P34

RS

MR

ST

#/G

P33

PW

RO

K/G

P32

PW

RC

TL#

/GP

31S

US

CIN

/GP

30V

BA

TS

US

CLK

INC

AS

EO

PE

N#

VC

CC

TS

B#

DS

RB

#R

TS

B#

DT

RB

#S

INB

SO

UT

BD

CD

B#

RIB

#V

SS

IRT

X/G

P26

IRR

X/G

P25

WD

TO

/GP

24P

LED

/GP

23S

DA

/GP

22S

CL/

GP

21A

GN

D-5

VIN

-12V

IN+1

2VIN

AV

CC

+3.3

VIN

VC

OR

EB

VC

OR

EA

VR

EF

VT

IN3

VTIN2VTIN1OVT#VID4VID3VID2VID1VID0FANIO3FANIO2FANIO1VCCFANPWM2FANPWM1VSSBEEPMSI/GP20MSO/IRQIN0GPSA2/GP17GPSB2/GP16GPY1/GP15GPY2/P16/GP14GPX2/P15/GP13GPX1/P14/GP12GPSB1/P13/GP11GPSA1/P12/GP10

DIR

#

RD

AT

A#

Page 235: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Parallel Port

WAKE ON MODEM

COM1

COM2

WAKE ON LAN

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Serial, Parallel, WOL, and WOR

22 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

RI0

RI1

DCD0DTR0CTS0TXDD0RTS0RXDD0DSR0RI0

DCD1DTR1CTS1TXDD1RTS1RXDD1DSR1RI1

DSR0RXDD0

RXDD1

TXDD1DCD1

RTS1

DTR1

DTR0

TXDD0RTS0

CTS0

DCD0

RI1

RI0

CTS1DSR1

DCD#021DTR#021CTS#021

TXD021RTS#021

DSR#021RI#021

DCD#121DTR#121CTS#121

TXD121RTS#121

DSR#121RI#121

RXD021

RXD121

PDR721

PDR121

STB#21

PDR021

PDR321

PDR421

PDR521

PAR_INIT#21

SLIN#21

ACK#21

BUSY21

PE21

SLCT21

ERR#21

PDR221

PDR621

AFD#21

PCI_PME#11,12,14,15

ICH_RI#13,30

VCC5

VCC12- VCC12 VCC5

VCC5SBY

U5

PAC-S1284

1

2

3 26

4

5

6

7

8

9

10

11

12

13

14

28

27

15

25

24

23

22

21

20

19

18

17

16

P1

P2

SI1 SO1

SI2

SI3

SI4

SI5

P3

SI6

P4

SI7

P5

SI8

SI9

P8

P7

P6

SO2

SO3

SO4

GND

SO5

VCC

SO6

SO7

SO8

SO9

R107

10K

R109

10K

U10

GD75232

2345678

1

19181716151413

9

1011

12

20

RA1RA2RA3DY1DY2RA4DY3

12V

RY1RY2RY3DA1DA2RY4DA3

RA5

-12VGND

RY5

5V

CN2

100PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6CN3

100PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

CN9

100PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6CN11

100PF/8P4C

1 3 5 782 4 6

1 3 5 782 4 6

COM2

HEADER_5X2

13579

2468

10

COM1

CONNECTOR_DB9

594837261

BC99.1U

BC54.1U

U9

GD75232

2345678

1

19181716151413

9

1011

12

20

RA1RA2RA3DY1DY2RA4DY3

12V

RY1RY2RY3DA1DA2RY4DA3

RA5

-12VGND

RY5

5V

BC49.1U

R1082.2K

R2294.7K

R230

100

LPT1

LPT

13251224112310229

218

207

196

185

174

163

152

141

D2

SS12/SMD

D6

SS12/SMD

D7

SS12/SMD

Q142N3904

Q152N3904

Q21

2N3904

R1102.2K

WOL1

HEADER_3*1(2MM)

1

32

Page 236: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Game Port

KeyboardMouse

IR

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

PS/2, Game, and IR

23 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

MIDI_OUTPUT

JOY_1YJ2BUT2

JOY_2Y

CN1_U1

MIDI_INPUTJ1BUT2

JOY_2XJOY_1XJ2BUT1J1BUT1

JOY2X21

J2BUTTON221

MIDI_OUT21

J1BUTTON121

J1BUTTON221

JOY1X21

JOY1Y21JOY2Y21

J2BUTTON121

MIDI_IN21

KDAT21

KCLK21

MDAT21

MCLK21

IRRX21

IRTX21

VCC5VCC5 VCC5VCC5 VCC5VCC5 VCC5

VCC5

VCC5DUAL

R934.7K

R92

4.7K

R99

4.7K

C6822PF

C73

470PFC641000PF

F6 XFUSE_1.0A

C62

470PF

R98 47

C59

470PFC6322PF

C711000PF

R103 0

C671000PF

R1024.7K

C6522PF

C6622PF

C601000PF

CN10

470PF/8P4C

13578 246

13578 246

R944.7K

R1014.7K

C70

470PFJ1

GAME_PORT

8157

146

135

124

113

10291

CN8

470PF/8P4C

13578 246

13578 246

FB12

BEAD

12

R91 47

R18 0

R17 0

CN1

470PF8P4C

13578

246

13578

246

IR1

HEADER_1X5

1

32

45

FB1

BEAD

1 2

FB3

BEAD

1 2

FB5

BEAD

1 2

FB2

BEAD

1 2

FB4

BEAD

1 2

FB6

BEAD

1 2

F1 XFUSE_1.0A

F2 XFUSE_1.0AU1

KB/MOUSE

123456

131415

1617

789101112

C1

2.2UF

C2

2.2UF

RN4 4.7K/8P4R

1357

2468

RN40 1K/8P4R

1357

2468

RN39 1K/8P4R

1357

2468

Page 237: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

8

8

7

7

6

6

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

HDD LED

PWR_SW

KEYLOCK

SMI_SW

SPEAKER

RESET

GREEN LED

RESERVE

PC_BEEP SELECTION

3-4 ON1-2 ON

CONTROLLED by AC97 CODEC

JP2TRADITIONAL

ResetSwitch

PowerSwitch

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Front Panel Headers and CNR

24 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

R237_2

R243_PN1

R240_PN1

R238_PN1

R237_PN2

R242_PN1

SMBDATA

D15_PN1

SMBCLK

IDEACTS#17

BEEP21

KEYLOCK#21

PANSWIN21,32

IDEACTP#17

HWRST#25,32

SUSLED21

EXTSMI#12

ICH_SPKR13,19,29

AC97SPKR19

AC_SDIN1 13,30AC_SDIN0 13,19,30

AC_RST# 13,29

CNR_OC#18

AC_SDOUT13,19,29AC_SYNC13,19

AC_BITCLK13,19

PRI_DWN#12,29SMBCLK9,10,13,21,30,32

SMBDATA 9,10,13,21,30,32

CNRUSBN 18

CNRUSBP 18

EE_CS 13

LAN_TXD0 12LAN_TXD2 12

LAN_CLK 12LAN_RXD1 12

LAN_RXD012

LAN_TXD112LAN_RSTSYNC12

LAN_RXD212

EE_SHCLK13EE_DOUT 13EE_DIN13

VCC5

VCC5SBY VCC5

VCC5

V3SB

VCC5

VCC12VCC5SBYVCC12- VCC5V3SB

VCC5SBY

VCC3_3

VCC5SBY

VCC5VCC5

VCC5

BC1840.1UF

R236

33

SP1

BUZZER

R24410K

R238220

R2400

BC185

0.1UF

R243150

R242220

PN1

HEADER_14

1234567891011121314

R23310K

PN2

HEADER_14

1234567891011121314

R234150

R23510K

R232 68

R231 68

R237

0

C119

0.1UF

R25510K

R22310K

R24720K

JP2

XHEADER 2X2

1 23 4

R256 0

R226 2.2K

R27215K

C125

47PF

R27315K

C126

47PF

SMB2

SMBCON

1

32

45

R239 330

SMB1

SMBCON

1

32

45

R24110K

CNRSLOT1

CNR

B1B2B3B4B5B6B7B8B9

B10B11B12B13B14B15B16B17B18B19

B20B21B22B23B24B25B26B27B28B29B30

A1A2A3A4A5A6A7A8A9A10A11A12A13A14A15A16A17A18A19

A20A21A22A23A24A25A26A27A28A29A30

RESERVEDRESERVEDRESERVEDGNDRESERVEDRESERVEDGNDLAN_TXD1LAN_RSTSYNCGNDLAN_RXD2LAN_RXD0GNDRESERVED+5VDUALUSB_OC#GND-12V+3.3VD

GNDEE_DOUTEE_SHCLKGNDSMB_A0SMB_SCLPRIMARY_DN#GNDAC97_SYNCAC97_SD_OUTAC97_BITCLK

RESERVEDRESERVED

GNDRESERVEDRESERVED

GNDLAN_TXD2LAN_TXD0

GNDLAN_CLK

LAN_RXD1RESERVED

USB+GNDUSB-+12VGND

+3.3VDUAL+5VD

GNDEE_DINEE_CS

SMB_A1SMB_A2

SMB_SDAAC97_RESET#

RESERVEDAC97_SD_IN1AC97_SD_IN0

GND

R2462.2K

D15 1N4148

D14 1N4148

Q192N3904

Q202N3904

Q222N3904

D16

LED

SW2

SW_4

1 2

3 4

1 2

3 4

SW3

SW_4

1 2

3 4

1 2

3 4

Page 238: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

CPU FAN

CHASSIS FAN

PWR FAN

Temperature Sensing

If case is opened,this switch should be closed.

Voltage Sensing

"power use"

"system use"

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

ATX Power and HW Monitor

25 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

+12CHFAN

+12CPUFAN

ATXPWROK

FANIO1 21FANPWM121

FANIO2 21

FANIO3 21

HM_VREF21

THRMDN4,21

VTIN121

VTIN24,21

+3.3VIN 21

-5VIN 21

+12VIN 21

VCORE 21

-12VIN 21

VTIN321

PWROK 13,21

CASEOPEN#13,21

HWRST#24,32

PS_ON21

DBRESET#4

FANPWM221

VTT_SENSE 21

VCC12-

VCC_5-

VCC5 VCC5SBYVCC12

VCC12

VCCVID

VCC12-

VCC_5-

VTT

VCC12

VCC3_3

VCC12

VCC12

VCC5

VCC5

VCC5

VCCRTC

VCC3_3 VCC5VCC5SBY V3SB

VCC5SBY

VCC5SBY

VCC5SBY

V3SB VCC5SBY

V3SBV3SBU19E

74LVC06A

11 10

R189

4.7K

ATXPR1

ATX_PWCON

2345678910

11121314151617181920

1

3.3VGND+5V

GND+5V

GNDPWROK

AUX5V+12V

3.3V-12VGNDPS_ONGNDGNDGND-5V+5V+5V

3.3V

R218

4.7K

R217 1K

R216 510

+EC38

22UF

FAN3

HEADER_3

1

32

R11

4.7K

R10 1K

R16 510

FAN1

HEADER_3

1

32

Q172N7002

Q12N7002

+EC3

22UF

FAN2

HEADER_3

1

32

R100

1K

+EC35

22UF

R210

30KC118

3300PF

PR37

28K,1%

PR32

120K,1%

PR34

232K,1%

R214

10KPR35

56K,1%

R208

10K

R209

10K

PR33

56K,1%

S1

HEADER_2PIN

R245 100

R213 10M

R19

1K

R212

1K

PR39

10K,1%

PR36

10K,1%

tRT1

10K_1%-THRM/0603

U20F

74LVC14A

1213

U19F

74LVC06A

13 12

R19015K

U19A

74LVC06A

1 2

714

BC164.1U

U20C

74LVC14A

65

C115

2.2UF

U20D

74LVC14A

89

R19233K

tRT2

X10K_1%-THRM/0603

PR38

10K,1%

U19B

74LVC06A

3 4

U20A

74LVC14A7

1421

R3231K

BC165.1U

D13

1N4148

D1

1N4148

D5

1N4148

D101N4148

Q182N2907

Q22N2907

JP3

HEADER_21 2

Page 239: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Target isreally 1.85V

2.0ms delaynominal

ASSERTED LOW!

Empty for ADM1051AJR

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

VRegs: Vddq, Vcc1_8, and Vtt

26 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

VR1_FB

U32-2

U31_FORCE2

U31_SENSE1

U31_SENSE2

U31_SHDN1#

R355_C147

U31_SHDN2#

D24_U32

U31_FORCE1

Q49_B

Q48_B

TUAL54,6,7

VTTPWRGD12 6

VTTPWRGD 4

VTTPWRGD5# 27

TYPEDET#11

VCC3_3

VCC3_3

VCC3_3

VCC5

V1_8SB

VCC5

V1_8SB

VCC12

VTT

VCC12VCC5SBY

VCC5

VCC5

VCC5VTT

VCC1_8

VDDQ

VCC3_3

VCC3_3

Q39PHD55N03LT

Q40MTD3055VLT4

R357

0

R360

100 1%

R3550

VR1

LT1587-ADJ

32

1

VINVOUT

ADJ

R364

49.9 1%

Q41FDN335N R367

10 1%

C160

22uF Tantalum

R366732 1%

R38020k

C1730.1 uF

C17410 uF

C147

1.0uF

Q442N7002

R3791k

R3782.2k

R358

1M - NPOP

R3681k 1%

Q432N7002

C162

0.1uF

R3615620 1%

ADM1051A

U31

8

4

53

7

16

2

VCC

GND

SHDN1#SHDN2#

FORCE 1

FORCE 2SENSE 1

SENSE 2

C148

0.1uF

R3563.3k

D23 BAT54C

12

3

12

3C150

100uF

C151

100uF

C152

4.7uF

C153

4.7uF

C149

0.1uF

C156

100uF

C157

100uF

C158

4.7uF

C159

4.7uF

C155

0.1uF

U32A

LM393 Ch1

21

8

4

3

IN- 1OUT 1

VCC

GND

IN+ 1

U32B

LM393 Ch2

5

67IN+ 2

IN- 2OUT 2

D24BAT54C

12

3

12

3

R3543.3k

R3811k

Q49NPN

Q48PNP

R402

470

R401

220

R400

220

R35910k

Page 240: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

New V1_SB Circuitry

This takes the place ofthe old V1_8SB circuit.

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

VRegs: VCCVID, V1_8SB

27 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

Q45_L7

Q46_R386

Q45_L8

U34_C188

VID0

VID2VID3

U34_C182R382_U34

U34_R384

VCCVID_FB

VID1

VID4U34-17

U34_R391

U34-18

U34_1415

VID[0:4]21,29,32 VRM_PWRGD 13VTTPWRGD5#26

VCC12

VCC5

VCC5

VCCVID

V1_8SB

V3SB

R382 10 (805)

C1930.001uF

C17510uF

C1760.1uF

C1773300uF

C1783300uF

C1790.1uF

C1804.7uF

C1814.7uF

L7 1.7uH

Q45SUD50N03-07

Q46SUD50N03-07

R388

2.2 (805)

C1894700pF

L8 1.2uH

R389 2 mOhm (2512)

R384220

C185820uF

C190820uF

C186820uF

C191820uF

C1921000uF

C1871000uF

C1830.1uF

R391 0R390

25.5k 1%

R392 0

C197

C1940.1uF

R383220

R385 4.7 (805)R386 2.2 (805)

R393

154k 1%

C182 0.001uF

C1844.7uF

C188

100pF

U34

ADP3170

161

432

5

181796

20

1415

13

8

12

111019

7

VCCVID3

VID0VID1VID2

VID25

DRVHDRVL

FBPWRGD

GND

LRDRVLRFB

COMP

SD

CT

CS+CS-

PGND

REF

R404

32.4 1%

R405

38.3 1%

Page 241: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Stuff this box

Do not stuff this box.

Debug note:Stuff only one box.

1206 pack

1210 pack

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

VRegs: Duals, 3.3SB, 2.5, VCMOS

28 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

U2_R20

U2_C4

U2_Q5

U2_Q8

U2_Q7U2_Q4

Q3_Feedback

Q42_Feedback

SLP_S5#13SLP_S3#6,13,21

VCC3_3VCC12VCC5SBY

VCC3SBYV3SB VCC5SBY

VCC5DUALVCC5SBY

VCC5 VCC2_5

VCC3_3

VCC5

VCMOSVCC3_3

VCC1_8

C5

1UFC18

1UFR2010K

C4

0.1UF

C8

1UF

+ EC6

10UF

PR3

100,1%

PR2

100,1%

+ EC5

100UF

C7

0.1UF

U2

RT9641

141

3

49

6752

13

15

16

11

10

12

812

V

5VS

B

3V3DLSB

3V3DLFAULT/MSET

S3S5EN5VDLEN3VDLSS

DRV2

VSEN2

5VDLSB

DLA

5VDL

GN

D

Q3

LM1117ADJ

3

1

2VIN AD

J

VOUT

Q5NDS356AP/SOT23

+EC17

100UF

+EC11

10UF

+EC20

10UF+EC10

100UF

+EC15

100UF

+EC22

100UF

Q8

FDS8936 / SI9936

1

2

3

4 5

6

7

8S1

G1

S2

G2 D2

D2

D1

D1

Q7

HUF76121D3S/TO252Q4

NZT651/SOT223

PR44

49.9 1%

+ EC43

10UF

Q42

LT1117ADJ

3

1

2VIN AD

J

VOUT

PR45

10 1%

+ EC42

10UF

R3691.13 1%

R3709.31 1%

+EC19

100UF

+EC14

1500UF

Page 242: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

SW 5

OFF FORCE CPU FREQ STRAP TO SAFE MODE(1111)USE CPU FREQ STRAP IN ICH REGISTER

AC_SDOUTON

STRAP(SPKR)

OFF REBOOT ON 2ND WATCHDOG TIMEOUT

SW 6NO REBOOT ON 2ND WATCHDOG TIMEOUTON

ON

SW 7OFF

ON BOARD AC97 CODECPRIMARY CODECDISABLE

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

System Config DIP Switches

29 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

SW1_R262SW1_R263 ICH_SPKR 13,19,24

AC_RST#13,24

PRI_DWN#12,24 PRI_DWN_RST# 19

JPR_VID03,32

JPR_VID13,32

JPR_VID33,32

JPR_VID43,32

JPR_VID23,32

VID221,27,32VID321,27,32VID427,32

VID021,27,32VID121,27,32

BSEL#14,32

BSEL#04,32

R_BSEL#07R_REFCLK7 FMOD1 6

FMOD0 6

AC_SDOUT 13,19,24

VCC3_3

VCC5SBY

VCC3_3 V3SB

V3SB

R262 8.2KR263 8.2K

RN592.2K/8P4R

1 3 5 7

2 4 6 8

D17

1N4148

R153

10K

U19C

74LVC06A

5 6

1 2 3

19 20 21

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

J5

7x3 JPR HDR

23456789101112131415161718192021

123456789

101112131415161718192021

1

R394 8.2k

R395 8.2k

SW1 DIPSW-812345678

161514131211109

RP51K/8P4R

1 3 5 78642

RP61K/8P4R

1 3 5 78642

Page 243: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

PCI ICH2

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Pullup/Pulldown Rs and Unused Gates

30 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

R188_U18

SERR#12,14,15PLOCK#12,14,15STOP#12,14,15DEVSEL#12,14,15

IRDY#12,14,15FRAME#12,14,15

PERR#12,14,15

TRDY#12,14,15

PREQ#112,14PREQ#012,14

PREQ#212,15

ACK64#14,15

SMBALERT#13

KBRST#12,21A20GATE12,21

PCI_REQ#A12OVT#13,21

AC_SDIN113,24

AC_SDIN013,19,24

ICH_IRQ#C12

ICH_IRQ#G12

ICH_IRQ#D12

ICH_IRQ#F12

ICH_IRQ#A12ICH_IRQ#B12

ICH_IRQ#H12

ICH_IRQ#E12

PIRQ#C14,15PIRQ#B11,14,15

PIRQ#D14,15

PIRQ#A11,14,15

SMLINK113,15SMLINK013,15

SERIRQ12,21

GPIO2712GPIO2513

ICH_RI#13,22

REQ64#114REQ64#214REQ64#315

ICHRST#12 PCIRST# 7,16,17,21

PCI_RST# 11,14,15

IDERST# 17

PREQ#412PREQ#512PREQ#312

SMBDATA9,10,13,21,24,32

LPC_PME#12,21

SMBCLK9,10,13,21,24,32

GPI812

VCC5 V3SB

VCC3_3

V3SB

VCC3_3

VCC3_3

V3SB

VCC3_3

VCC3_3

VCC3_3

VCC3_3 VCC3_3

VCC3_3 VCC5

VCC3_3

VCC3_3

VCC3_3

VCC3_3

VCC5SBY

RP2

2.7K/10P8R

12346789

10

5R1R2R3R4R5R6R7R8

C

C

RN55

8.2K/8P4R

1357

2468

RN54

8.2K/8P4R

1357

2468

RN51

8.2K/8P4R

1357

2468RN66

2.7K/8P4R

1357

2468

RN64

2.7K/8P4R

1357

2468

RN58

2.7K/8P4R

1357

2468

RN77

8.2K/8P4R

1357

2468

R152 10K

R147 10K

RN74

0/8P4R

1357

2468

RN76

X0/8P4R

1357

2468

RN75

8.2K/8P4R

1357

2468

R276 8.2K

U18A

74LVC07A

1 2

147

BC163.1U

R1881K

R1981K

R1971K

U18B

74LVC07A

3 4

147

R1961K

U18C

74LVC07A

5 6

147

U18D

74LVC07A

9 8

147

U20B

74LVC14A

43U18E

74LVC07A

11 10

147

U18F

74LVC07A

13 12

147

U19D

74LVC06A

9 8

U20E

74LVC14A

1011

RN60

4.7K/8P4R

1357

2468

Page 244: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

" GMCH : 0.1U//0.01U at each conner and each side-center "

" GMCH : Near Display Cache Quadrant "

" Display Cache : Near the Power Pins "

" GMCH : Near System Mem Quadrant "

" DIMM0 : Near Power Pins "

" DIMM1 : Near Power Pins "

" ICH : 0.1U//0.01U at each conner " " ICH : Near Power Pins "" ICH : Near Power Pins "

" misc. "

" ATX POWER " " ATX POWER " " ATX POWER "" ATX POWER "" ATX POWER "

" ICH : Near Power Pins "

" Within 70 mils of GMCH "

" DIMM2 : Near Power Pins "

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Decoupling Caps

31 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

VCC1_8

VCC3SBY

VCC3SBY

VCC3SBY

VCC1_8V3SBVCC3_3

VCC3_3

VCC3_3 VCC5 VCC_5-VCC12-VCC12

VCCVID

V1_8SB

VCC3SBY

VDDQ

VDDQ

MC3

4.7UF/X7R

MC4

4.7UF/X7R

MC2

4.7UF/X7R

MC1

4.7UF/X7R

MC24

4.7UF

BC78

0.1UF

BC71

0.1UF

BC43

0.1UF

BC44

0.1UF

BC42

0.1UF

BC50

0.1UF

BC81

0.1UF

BC45

0.1UF

BC75

0.01UF

BC114

0.01UF

BC105

0.01UF

BC95

0.01UF

BC96

0.01UF

BC79

0.01UF

BC46

0.01UF

BC47

0.01UF

BC101

0.1UF

BC102

0.1UF

MC33

4.7UF

MC32

4.7UF

MC35

4.7UF

MC34

4.7UF

BC103

0.1UF

BC104

0.1UF

BC112

0.1UF

BC111

0.1UF

BC110

0.1UF

BC108

0.1UF

BC87

0.01UF

BC82

0.01UF

BC80

0.01UF

BC74

0.01UF

BC88

0.01UF

BC65

0.01UF

BC48

0.01UF

BC51

0.01UF

BC52

0.01UF

BC76

0.1UF

BC66

0.1UF

MC16

4.7UF

MC11

4.7UF

MC31

4.7UF

MC30

4.7UF

BC19

0.1UF

BC39

0.1UF

BC10

0.1UF

BC8

0.1UF

MC27

4.7UF

MC17

4.7UF

MC12

4.7UF

BC40

0.1UF

BC67

0.1UF

BC11

0.1UF

BC77

0.1UF

BC20

0.1UF

MC25

4.7UF

BC84

0.1UF

BC121

0.1UF

BC138

0.1UF

BC132

0.1UF

BC131

0.1UF

BC149

0.01UF

BC124

0.01UF

BC147

0.01UF

BC150

0.01UF

BC116

0.1UF

BC113

0.1UF

BC115

0.1UF

MC57

2.2UF

BC122

0.1UF

BC106

0.1UF

BC109

0.1UF

BC107

0.1UF

BC100

0.1UF

BC128

0.1UF

BC158

0.01UF

BC160

0.01UF

BC159

0.01UF

BC144

0.01UF

BC145

0.1UF

BC146

0.1UF

BC169

0.01UF

BC171

0.01UF

BC183

0.01UF

BC170

0.01UF

BC181

0.01UF

BC182

0.01UF

BC186

0.01UF

BC187

0.01UF

EC33

22UF

BC85

0.1UF

BC83

0.1UF

EC27

22UF

BC41

0.1UF

BC53

0.1UF

BC69

0.1UF

BC70

0.1UF

EC28

22UF

BC156

0.1UF

BC142

0.1UF

EC36

22UF

BC168

0.1UF

BC180

0.1UF

EC26

22UF

BC167

0.1UF

BC179

0.1UF

BC143

0.1UF

BC157

0.1UF

BC91

0.01UF

BC97

0.01UF

BC92

0.01UF

BC93

0.01UF

BC98

0.01UF

BC208

0.1UF

BC212

0.1UF

BC211

0.1UF

BC210

0.1UF

BC209

0.1UF

MC59

2.2UF

BC207

0.1UF

BC206

0.1UF

BC205

0.1UF

BC204

0.1UF

MC60

4.7UF

MC26

4.7UF

BC94

0.01UF

BC213

0.1UF

BC214

0.1UF

BC215

0.1UF

BC216

0.1UF

BC217

0.1UF

BC218

0.1UF

MC61

4.7UF

MC62

4.7UF

MC63

4.7UF

H1 HOLE A1234 5

678

H3 HOLE A1234 5

678

H4 HOLE A1234 5

678

H5 HOLE A1234 5

678

H6 HOLE A1234 5

678

H7 HOLE A1234 5

678

H8 HOLE A1234 5

678

H9 HOLE A1234 5

678

MC5

4.7UF/X7R

MC6

4.7UF/X7R

MC8

4.7UF/X7R

MC9

4.7UF/X7R

MC10

4.7UF/X7R

MC13

4.7UF/X7R

MC14

4.7UF/X7R

MC15

4.7UF/X7R

MC49

4.7UF/X7R

MC50

4.7UF/X7R

MC64

4.7UF/X7R

MC65

4.7UF/X7R

Page 245: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Internal Debug headers

32 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

R_SMBCLKJPR_VID0JPR_VID2

VID3

JPR_VID4

VID1

VID4VID2VID0

R_SMBDATA

JPR_VID1JPR_VID3

VID[4:0]21,27,29

R_SMBCLK 6

GTLREF 4,7 GTLREFA 4 HUBREF_ICH 12 CONN_AGPREF 8,11

JPR_VID[4:0]3,29

BSEL#1 4,29BSEL#0 4,29

R_SMBDATA 6

PANSWIN21,24

HWRST#24,25 SMBDATA 9,10,13,21,24,30SMBCLK 9,10,13,21,24,30

VTT VTT VCC1_8 VCC3SBY VDDQ

J6

HEADER_3

1

32

J7

HEADER_3

1

32

J8

HEADER_3

1

32

J9

HEADER_3

1

32

J10

HEADER_3

1

32

J4

2x15 HDR

1 23 45 67 89 10

11 1213 1415 1617 1819 2021 2223 2425 2627 2829 30

1 23 45 67 89 1011 1213 1415 1617 1819 2021 2223 2425 2627 2829 30

R396 0

R397 0

Page 246: 815E Chipset Platform/ US370download.intel.com/design/chipsets/designex/29835002.pdf · 2018-01-09 · r 2 intel® 815e chipset platform design guide information in this document

A

A

B

B

C

C

D

D

E

E

4 4

3 3

2 2

1 1

No-stuff C198 - debug site only

Stuff either R5 or R415. See p4.

Intel(R) 815E Chipset Universal Socket 370 CRB

1.05

Thermtrip

33 33

Monday, April 30, 2001Monday, April 30, 2001

Document:

Page Name:

Revision:Platform Applications Engineering

1900 Prairie City RoadFolsom, CA 95630

Last Revised:

Page No:

of

Page:Doc:

Q52_R416

N6395404

Q51_Q52

THERMTRIP#4

PWRBTN# 13,21

CPURST#4,7

CPU_PWGD4,12

N6395403 4

VCC1_8 VCC1_8 V3SB

Q502N3904

Q512N3904

R408

0

R409

4.7k

R410

1K

R411

20k

R412 1K

Q522N3904

R416

2.2k

R413510

R4141.3k

C198X0.01uF

R415 0