6 albert polman fom-institute amolf amsterdam

Upload: daniel-sandria

Post on 04-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    1/28

    Plasmonic thin-film solar cells

    Albert Polman

    Center for NanophotonicsFOM-Institute AMOLF

    Amsterdam, The Netherlands

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    2/28

    CALTECH

    AMOLF

    UNSW

    ANU

    Harry Atwater

    Vivian Ferry

    Kylie CatchpoleFiona BeckSuddha Mokapati

    Utrecht University

    Philips Research

    Ruud SchroppHongbo LiMarc Verschuuren

    Ewold Verhagen, Maarten HebbinkClaire van Lare, Rene de Waele

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    3/28

    Black dots:

    area of solarpanels neededto generate allof the worlds

    energyassuming 8%efficient

    photovoltaics

    Solar irradiance on earth

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    4/28

    Light is poorly absorbed in a thin-film solar cell

    Solar spectrumabsorbed in 2 mthick Si

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    5/28

    Re la t i ve abun dance of e l em en ts vs . at om ic n r .

    from P.H. Stauffer et al, Rare Earth Elements -Critical Resources for High Technology, USGS (2002)

    Materials resources are limited

    So lu t ions :

    1) Earth AbundantSemiconductors(Si,Cu2O, Zn3P2, FeS2)

    2) Enhance LightAbsorption/reducesemiconductorvolume

    Requirements to construct1 TW of PV with opticallythick cells at 15% efficiency

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    6/28

    Light trapping by surface plasmons

    Metal nanoparticlesurface coatings

    Textured metalbackcontacts

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    7/28

    Light scattering

    p

    Rayleigh scatteringfrom point dipole Scattering from point dipoleabove a substrate

    Preferentialscatteringinto high-index

    substrate

    See, e.g.: J. Mertz, JOSA-B 1 7 , 1906 (2000)

    4 %

    96 %

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    8/28

    Light trapping using particle plasmons

    Goal: Increased efficiency

    - IR absorption (higher Isc)- carrier collection (higher Voc)and/or

    Reduced thickness (=cost)

    fsubs fsubs

    fair

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    9/28

    Metal nanoparticle scattering

    Cross section > 1 All light captured and scatteredinto substrate (=AR coating)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    10/28

    From point dipole to particle plasmon

    500 550 600 650 700 750 8000

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    F

    ractionscatteredintosubstrate

    dipole

    cylinder

    hemisphere

    sphere 100nm

    sphere 150nm

    500 550 600 650 700 750 8000

    0.2

    0.4

    0.6

    0.8

    1

    Wavelength (nm)

    F

    ractionscatteredintosubstrate

    dipole

    cylinder

    hemisphere

    sphere 100nm

    sphere 150nm

    Fraction scattered into substrate highest forcylinder & hemisphere:strongest near-field coupling

    Ohmic damping V, scattering V2,

    Tradeoff: larger size more scattering,but lower coupling

    96 %

    0

    FDTDcalculations

    Kylie Catchpole

    Appl. Phys. Lett. 9 3 , 191113 (2008), Opt. Expr. 1 6 , 21793 (2008)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    11/28

    Scattering cross-section varies with dielectric spacer

    scat normalized to particle areaLarger spacing:

    Interference in driving

    fieldBut:lower coupling fraction

    (+ local density of statesvariation modifies albedo)

    500 600 700 800 900 10000

    2

    4

    6

    8

    10

    12

    14

    wavelength (nm)

    Qscat,

    Qsubs

    30nm

    10nm

    30 nm

    10 nm

    D

    Q

    tot

    sub

    Kylie Catchpole

    Appl. Phys. Lett. 9 3 , 191113 (2008), Opt. Expr. 1 6 , 21793 (2008)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    12/28

    Maximum path length enhancement

    Highest path length

    enhancement forcylinder and hemisphere

    Geometric series

    fsubs fsubs

    fair

    0.6 0.7 0.8 0.9 11

    10

    100

    fraction into substrate

    maximump

    athlengthenhancement

    sphere 150nm

    sphere 100nm

    cylinder

    hemisphere

    Lambertian

    horizontal dipole

    Fraction scattered into substrate

    Pathlengthenhance

    ment

    30 x

    (A=0.95)

    (A=0.90)

    Kylie Catchpole

    Appl. Phys. Lett. 9 3 , 191113 (2008), Opt. Expr. 1 6 , 21793 (2008)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    13/28

    c-Si c-Si100 m

    Integrating

    sphere

    30 nmSiO2Si3N4TiO2

    Optical absorption (1-R-T) in Si wafers

    Si3N4

    TiO2

    SiO2

    Si3N4

    TiO2

    SiO2

    Ref.

    AR effect, interference

    for shorter wavelength+ redshift

    Ref.

    Strongly enhancednear-IR absorption

    egineered bydielectric spacer

    Kylie Catchpole, Fiona BeckJ. Appl. Phys. 1 0 5 , 114310 (2009)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    14/28

    Photocurrent, external quantum efficiency

    SiO2front

    back

    Si3N4

    TiO2

    SiO2

    Si3N4

    TiO2

    SiO2

    front

    back

    Kylie Catchpole, Fiona BeckJ. Appl. Phys. 1 0 5 , 114310 (2009)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    15/28

    (a) (b)

    (c) (d)

    Fabrication of large-area metal nanopatterns

    Evaporation and annealing (ANU) Porous alumina template (CALTECH)

    Substrate conformal imprint lithography (SCIL) - Philips

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    16/28

    The EconomistJanuary 20, 2009

    h b f l

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    17/28

    Light trapping by surface plasmons

    Metal nanoparticlesurface coatings

    Textured metalbackcontacts

    Amorphous Si thin film solar cell fabrication steps

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    18/28

    Amorphous Si thin-film solar cell fabrication steps

    Soft-imprint by Verschuuren et al.Hot-wire a-Si deposition by Schropp et al.

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Ag ont t fte o e o ting imp inted ol gel

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    19/28

    500nm

    Ag contact after overcoating imprinted sol-gel

    513 nm pitch225 nm diameter240 nm deep

    printed over 6 wafer

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    f ll f b

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    20/28

    Cross section after cell fabrication

    imprint layer 150 nmAg 200 nm

    ZnO 100 nm

    n-a-Si:H 20 nm

    ITO (AR coating + topcontact) 80 nm

    i-a-Si:H 500 nm

    p-a-Si:H 20 nm

    1 m

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Current Voltage measurements

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    21/28

    Current-Voltage measurements

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Measured spectral response

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    22/28

    Measured spectral response

    51% increase inphotocurrent from

    600 800 nm

    no decrease inperformance from

    400-600 nm

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Comparing with full-field EM simulations

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    23/28

    Comparing with full-field EM simulations

    Calculation of lightabsorption usingfinite-difference

    time-domainsimulation

    Carrier collection

    assumed depthindependent

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Larger improvement possible with other patterns

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    24/28

    Larger improvement possible with other patterns

    Optimum:

    depth = 140 nm diameter = 370 nm enhancement = 54%

    CalculatedphotocurrentEnhancement

    (=600 nm)

    Vivian Ferry, Marc VerschuurenAppl. Phys. Lett. 9 5 , in press (2009)

    Light trapping by surface plasmons

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    25/28

    Light trapping by surface plasmons

    Metal nanoparticlesurface coatings

    Textured metalbackcontacts

    Other plasmonic solar cell designs

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    26/28

    Other plasmonic solar cell designs

    Ewold VerhagenOptics Express 1 7 , 14586 (2009)

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    27/28

  • 7/29/2019 6 Albert Polman FOM-Institute AMOLF Amsterdam

    28/28

    Needed: 3 Ph.D. students / post-docs

    For details/referencesvisit: www.erbium.nl