55v high ef˜ciency buck-boost power manager and 60v ... · pdf file55v high...

2
10/17/567 Einführung Synchrone Abwärts-/Aufwärtsregler sind vielseitig und hocheffizient. Sie können als Aufwärts- und Abwärtsregler hohe Leistungen abgeben und kommen mit einer einzigen Induktivität aus, was das Design einfach macht. In der Regel werden Abwärts-/Aufwärtsregler in Anwendungen mit hoher Leistung mit normaler oder eher geringer Schaltfrequenz betrieben, was den Wirkungsgrad maximiert und Komplikationen im Zusammenhang mit Querströmen und der Austastzeit der Schalter, zu denen es bei der Synchrongleichrichtung bei hohen Frequenzen kom- men kann, vermeidet. Andererseits lässt sich mit einem Abwärts-/Auf- wärtsregler, der mit einer hohen Frequenz von 2 MHz betrieben wird und deshalb mit einer kleineren Induktivität auskommt, gewährleisten, dass die elektromagnetischen Störaussendungen (EMI) oberhalb des AM-Fre- quenzbandes liegen. Die Besonderheit der Abwärts-/Aufwärtsregler LT8390A und LT8391A liegt darin, dass sie mit 2 MHz arbeiten. Diese hohe Schaltfrequenz er- laubt die Verwendung einer platzsparenden Induktivität, was auch in An- wendungen mit hoher Leistung für kleine Lösungsabmessungen sorgt. Im Unterschied zu monolithischen Wandlern, bei denen die Integrati- on der Leistungsschalter in das IC-Gehäuse für weniger Platzaufwand sorgt, können reine Regler externe Leistungsschalter mit deutlich höhe- ren Spitzenströmen von beispielsweise 10 A ansteuern. Während derart hohe Spitzenströme die kleinen IC-Gehäuse typischer integrierter Wand- ler thermisch überfordern würden, werden externe, 3 mm × 3 mm große Synchron-MOSFETs ohne weiteres mit dieser Leistung fertig. Da diese MOSFETs zudem dicht gepackt mit den Kondensatoren der entschei- denden Schleife angeordnet werden können, ergeben sich sehr geringe EMI-Effekte. Für weniger elektromagnetische Störaussendungen sorgt außerdem die Tatsache, dass die spezielle Verstärkerarchitektur, die den Scheitelwert des Schalterstroms erfasst, den Messwiderstand unmittel- bar neben der Induktivität anordnet – das heißt außerhalb der kritischen Stromschleifen an Ein- und Ausgang. Abwärts-/Aufwärtsregler für 12V/4A mit 2 MHz Schaltfrequenz und 95 % Wirkungsgrad Der mit 2 MHz schaltende 12V/4A-Abwärts-/Aufwärtsregler in Bild 1 erreicht einen Wirkungsgrad von 95 %. Das relativ kompakte Design nutzt 3 mm × 3 mm große MOSFETs und eine einzige, für hohe Leistung ausgelegte Induktivität. Der Temperaturanstieg dieser Wandlerschaltung ist selbst bei 48 W Leistung gering: Bei 12 V Eingangsspannung erwärmt sich kein Bauteil um mehr als 45 °C über die Umgebungstemperatur, und bei 7 V Eingangsspannung beträgt die Temperaturzunahme des heißesten Bauelements weniger als +55 °C, wenn eine herkömmliche, vierlagige Leiterplatte ohne Kühlkörper und ohne Zwangsbelüftung 60V-Abwärts-/Aufwärtsregler mit 2 MHz Schaltfrequenz regeln hohe Spannungen und Ströme mit hohem Wirkungsgrad und geringen Störaussendungen (EMI) Design Note 567 Keith Szolusha Bild 1: 12V-/4A-Auf-Abwärts-Spannungsregler mit 2 MHz Schaltfrequenz und hohem Wirkungsgrad L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners. 165k 22nF 0.1μF 100V ×2 0.1μF 22μF 383k 4.7μF 100k 0.47μF 59.0k 2.2nF 10k 110k 10k 0.1μF 124k 75k 0.1μF 1μF 1μF L1 1μH M3 M4 M1 M2 1μF 10Ω 10Ω 22μF 22μF D1 D2 5mΩ R1 10mΩ R2 EN/UVLO VREF CTRL PGOOD BG2 BST2 TG2 INTVCC LOADEN FB VOUT ISP ISN SYNC/SPRD TEST 2MHz 63V 16V ×2 ISMON PGOOD 25V VOUT 12V 4A LSP LSN SW1 SW2 BST1 TG1 BG1 VIN LT8390A LOADTG ISMON SS VC RT GND SSFM OFF SSFM ON 25V ×2 INTVCC INTVCC INTVCC dn567 F01 VIN 6V TO 28V (CONTINUOUS) 4V TO 60V (TRANSIENT) 4.7μF 100V ×2 L1: WURTH 74437336010 1μH M1, M2: INFINEON BSZ065NO6LS5 M3, M4: INFINEON BSZ031NE2LS5 D1, D2: NEXPERIA BAT46WJ R1: SUSUMU KRL3216D-M-R005-F-T5 Figure 1. 2MHz 12V, 4A Buck-Boost Voltage Regulator with High Efficiency

Upload: dinhlien

Post on 06-Mar-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: 55V High Ef˜ciency Buck-Boost Power Manager and 60V ... · PDF file55V High Ef˜ciency Buck-Boost Power Manager and Multi-Chemistry Battery Charger 51 10/14/531 Figure 1. 15V to 55V

55V High Efficiency Buck-Boost Power Manager and Multi-Chemistry Battery ChargerDesign Note 531

Charlie Zhao

10/14/531

Figure 1. 15V to 55V Input, 25.2V/6.3A Buck-Boost Battery Charger

IntroductionToday, battery chargers are expected to easily support a variety of battery chemistries and accept a range of voltage inputs, including wide-ranging solar panels. It is increasingly common for input voltage ranges to span above and below the output battery voltage, requiring both step-down and step-up capability (buck-boost to-pology). The LTC4020 buck-boost power manager and multi-chemistry battery-charging controller can take wide-ranging 4.5V to 55V inputs and produce output voltages up to 55V. Its buck-boost DC/DC controller supports battery and system voltages above, below, or equal to the input voltage.

The charger is easily optimized for a variety of battery chemistries. For instance, it can follow a constant-current/constant-voltage (CC/CV) charge algorithm, with either C/10 or timed termination for lithium-based battery systems, a constant-current (CC) characteristic with timed termination, or an optimized 4-step, 3-stage lead-acid charge profile.

6.3A Charger for 25.2V Battery Float VoltageFigure 1 shows a 15V to 55V input, 25.2V/6.3A buck-boost battery charger, featuring a high efficiency 4-switch (M2–M5) synchronous buck-boost DC/DC L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PowerPath is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

dn531 F01

STAT2STAT1BST1BST2

SENSVINSENSTOP

INTVCC

SHDNVIN_REG

RNG/SSILIMIT

VFBMINVFBMAXVFB

FBG

NTCCSOUTMODE

R13100k

C50.22µF0603

SW1SW2

TG1

BG1

SENSBOT

SENSGND

BG2TG2CSP

CSN

BGATE

VBATVC

ITHTIMERRT

LTC4020

PVIN

SGND SGND PGND

R1536k0603

R1647k0603

M1Si7145DP

R18100Ω

R20100Ω

R263k

R273k

R1410k

C400.22µF

0603

C390.22µF

0603

C66.8nF0603

C547pF0603

C4100pF0603

C1, 0.1µF100V, 0603

GNDMODE

BAT25.2V FLOAT6.3A MAX

GND

VOUT21V TO 28V8A MAX

VOUTVBAT

R1920Ω

RCBAT10.008Ω

1W2512

C114.7µF6.3V0603

R1124.9k1%

R1024.9k0.1%

R9226k06031%

R8226k06030.1%

C120.033µF

RCBRB10.002 Ω1W2512

RCBRT10.002Ω1W2512

M4SiR664DP

M2SiR664DP

L15.6µH

WÜRTH 7443556560M3SiR422DP

M5SiR422DP

D6B360A

C190.22µF25V0603

C200.22µF25V0603

C2110µF6.3V0805

D1SBR0560S1

D2SBR0560S1 D4

GRN

D3RED

C1410µF35V1210

C1810µF35V

1210

C2710µF35V1210

C2810µF35V

1210

C15220µF35V35HVH220M

C17220µF

35V35HVH220M

+

+

R5OPT

R2510k

R1100k

R451k

R385.1Ω0805

C256µF63V

63HVH56M

C356µF63V63HVH56M

+

+

GND

VIN15V TO 55V

C23C164.7µF100V1210

10/17/567

EinführungSynchrone Abwärts-/Aufwärtsregler sind vielseitig und hocheffizient. Sie können als Aufwärts- und Abwärtsregler hohe Leistungen abgeben und kommen mit einer einzigen Induktivität aus, was das Design einfach macht. In der Regel werden Abwärts-/Aufwärtsregler in Anwendungen mit hoher Leistung mit normaler oder eher geringer Schaltfrequenz betrieben, was den Wirkungsgrad maximiert und Komplikationen im Zusammenhang mit Querströmen und der Austastzeit der Schalter, zu denen es bei der Synchrongleichrichtung bei hohen Frequenzen kom-men kann, vermeidet. Andererseits lässt sich mit einem Abwärts-/Auf-wärtsregler, der mit einer hohen Frequenz von 2 MHz betrieben wird und deshalb mit einer kleineren Induktivität auskommt, gewährleisten, dass die elektromagnetischen Störaussendungen (EMI) oberhalb des AM-Fre-quenzbandes liegen. Die Besonderheit der Abwärts-/Aufwärtsregler LT8390A und LT8391A liegt darin, dass sie mit 2 MHz arbeiten. Diese hohe Schaltfrequenz er-laubt die Verwendung einer platzsparenden Induktivität, was auch in An-wendungen mit hoher Leistung für kleine Lösungsabmessungen sorgt. Im Unterschied zu monolithischen Wandlern, bei denen die Integrati-on der Leistungsschalter in das IC-Gehäuse für weniger Platz aufwand sorgt, können reine Regler externe Leistungsschalter mit deutlich höhe-ren Spitzenströmen von beispielsweise 10 A ansteuern. Während derart hohe Spitzenströme die kleinen IC-Gehäuse typischer integrierter Wand-

ler thermisch überfordern würden, werden externe, 3 mm × 3 mm große Synchron-MOSFETs ohne weiteres mit dieser Leistung fertig. Da diese MOSFETs zudem dicht gepackt mit den Kondensatoren der entschei-denden Schleife angeordnet werden können, ergeben sich sehr geringe EMI-Effekte. Für weniger elektromagnetische Störaussendungen sorgt außerdem die Tatsache, dass die spezielle Verstärkerarchitektur, die den Scheitelwert des Schalterstroms erfasst, den Messwiderstand unmittel-bar neben der Induktivität anordnet – das heißt außerhalb der kritischen Stromschleifen an Ein- und Ausgang. Abwärts-/Aufwärtsregler für 12V/4A mit 2 MHz Schaltfrequenz und 95 % WirkungsgradDer mit 2 MHz schaltende 12V/4A-Abwärts-/Aufwärtsregler in Bild 1 erreicht einen Wirkungsgrad von 95 %. Das relativ kompakte Design nutzt 3 mm × 3 mm große MOSFETs und eine einzige, für hohe Leistung ausgelegte Induktivität. Der Temperaturanstieg dieser Wandlerschaltung ist selbst bei 48 W Leistung gering: Bei 12 V Eingangsspannung erwärmt sich kein Bauteil um mehr als 45 °C über die Umgebungstemperatur, und bei 7 V Eingangsspannung beträgt die Temperaturzunahme des heißesten Bauelements weniger als +55 °C, wenn eine herkömmliche, vierlagige Leiterplatte ohne Kühlkörper und ohne Zwangsbelüftung

60V-Abwärts-/Aufwärtsregler mit 2 MHz Schaltfrequenz regeln hohe Spannungen und Ströme mit hohem Wirkungsgrad und geringen Störaussendungen (EMI)Design Note 567 Keith Szolusha

DC/DC POWER SUPPLY

LTC3643BACKUP

CRITICALLOAD

DN565 F01

1(a)

VIN

D1

DC/DC POWER SUPPLY

LTC3643BACKUP

CRITICALLOAD

1(b)

VIN

D2

Simple Power Backup Supply for a 3.3V RailDesign Note 565

Victor Khasiev

08/17/565

Figure 1(a) and (b). Location of the Blocking Diode in the Backup System Schematic

IntroductionData loss is a concern in telecom, industrial and automotive applications where embedded systems require a dependable supply of power. Sudden power interruptions can corrupt data during read and write operations performed by hard drives and flash memory. Designers often use batteries, capacitors and supercaps to store enough energy to support criti-cal loads for a short time during a power interruption.

The LTC®3643 power backup supply allows designers to use a relatively inexpensive storage component: low cost electrolytic capacitors. In the backup or holdup supply presented here, the LTC3643 charges a storage capacitor to 40V when power is present, and discharges it to the critical load when power is inter-rupted. The load (output) voltage can be programmed to any voltage between 3V and 17V.

The LTC3643 easily fits backup solutions for 5V and 12V rails, but a 3.3V rail solution requires extra care. The minimum operating voltage of the LTC3643 is 3V, relatively close to the nominal 3.3V input volt-age level. This is too tight when a blocking diode is used to decouple the backup voltage source from noncritical circuitry as shown in Figure 1a. If D1 is a Shottky diode, its forward voltage drop—as a function of load current and temperature—can reach 0.4V to 0.5V, enough to place the voltage at the LTC3643 VIN pin below the 3V minimum. As a result, the backup supply circuit may not start up.

One possible solution is to move the diode to the input of the supplying DC/DC converter, D2, as shown in Figure 1b. Unfortunately, in this scenario, noncritical loads connected to the upstream DC/DC supply can draw power from the backup supply, leaving less energy for critical loads.

3.3V Backup Supply OperationFigure 2 shows a solution to producing a 3.3V backup supply that reserves energy for critical loads using a blocking MOSFET. The blocking diode shown in Figure 1 is replaced by Q1, a low gate threshold voltage power P-channel MOSFET.

The key to operating the backup supply in a 3.3V environment is the addition of the series RA-CA circuit. At start-up, as the input voltage rises, the current through the capacitor CA is governed by the equation IC = C • (dV/dt). This current generates a potential across RA, enough to enhance Q2, a low gate threshold voltage small signal N-channel MOSFET. As Q2 turns on, it pulls the gate of the Q1 to ground, providing an extremely low resistance path from the input voltage to the supply pins VIN of LTC3643. Once 3.3V is applied to the converter, it starts up, pulling down both the gate of Q1 and the PFO pin, and it starts charging the storage capacitor.

As the 3.3V rail reaches steady state, the IC current reduces to the point where the voltage across RA falls below the Q2 gate threshold level and Q2 turns off, no longer affecting the functionality of the backup converter. Also, the PFO pin grounds R3A, resetting the PFI pin power fail voltage level to the minimum 3V, to ensure that the converter remains operational when the input voltage source is disconnected.L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

Bild 1: 12V-/4A-Auf-Abwärts-Spannungsregler mit 2 MHz Schaltfrequenz und hohem Wirkungsgrad

165k

22nF

0.1µF100V×2

0.1µF

22µF

383k

4.7µF 100k

0.47µF

59.0k2.2nF

10k

110k

10k

0.1µF

124k75k

0.1µF

1µF 1µF

L11µH

M3

M4M1

M2

1µF

10Ω

10Ω

22µF

22µFD1 D2

5mΩR1

10mΩR2

EN/UVLO

VREF

CTRL

PGOOD

BG2

BST2

TG2

INTVCC

LOADEN

FB

VOUT

ISP

ISN

SYNC/SPRD

TEST

2MHz

63V

16V×2

ISMON

PGOOD

25V

VOUT12V4ALSP LSNSW1 SW2

BST1

TG1

BG1

VIN LT8390A

LOADTG

ISMON

SS VC RT

GND

SSFM OFF

SSFM ON

25V×2

INTVCCINTVCC

INTVCC

dn567 F01

VIN6V TO 28V

(CONTINUOUS)4V TO 60V

(TRANSIENT)4.7µF100V×2

L1: WURTH 74437336010 1µHM1, M2: INFINEON BSZ065NO6LS5M3, M4: INFINEON BSZ031NE2LS5D1, D2: NEXPERIA BAT46WJR1: SUSUMU KRL3216D-M-R005-F-T5

60V 2MHz Buck-Boost Controllers Regulate High Power Voltage and Current with High Efficiency and Low EMI Design Note 567

Keith Szolusha

10/17/567

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

Synchronous buck-boost controllers are versatile and highly efficient. They can produce high power as both a boost and a buck with a single inductor, keeping power supply design simple. Normally, a buck-boost controller in a high power application is operated at a standard or low switching frequency, this maximizes efficiency and avoids complications related to shoot-through and switch blanking time, which can arise in synchronous rectification at high frequencies. Nevertheless, a high frequency 2MHz buck-boost controller with a smaller inductor ensures that the EMI content resides above the AM frequency band.

The LT8390A and LT8391A buck-boost controllers are unique in that they operate at 2MHz. The high switching speed enables use of a small inductor for a compact solution size, even in high power applications.

Unlike monolithic converters, which save space with power switches inside the IC package, controllers can drive external power switches with much higher peak

currents, such as 10A. Such high peak currents would burn up the small IC packages of typical integrated converters, but external 3mm × 3mm synchronous MOSFETs can handle this power. The MOSFETs can be arranged in tight quarters with hot-loop capacitors for very low EMI. The unique peak switch current sense amplifier architecture places the sense resistor next to the power inductor, outside the critical input and output hot loops, also reducing EMI.

2MHz, 95% Efficiency, 12V, 4A Buck-BoostThe 2MHz, 12V, 4A buck-boost regulator in Figure 1 boasts efficiency to 95%. This relatively compact design uses 3mm × 3mm MOSFETs and a single high power inductor. The temperature rise for this converter is low, even at 48W. At 12V input, no component rises more than 45°C above room temperature. At 7V input, the hottest component rises less than 55°C with a

Figure 1. 2MHz 12V, 4A Buck-Boost Voltage Regulator with High Efficiency

165k

22nF

0.1µF100V×2

0.1µF

22µF

383k

4.7µF 100k

0.47µF

59.0k2.2nF

10k

110k

10k

0.1µF

124k75k

0.1µF

1µF 1µF

L11µH

M3

M4M1

M2

1µF

10Ω

10Ω

22µF

22µFD1 D2

5mΩR1

10mΩR2

EN/UVLO

VREF

CTRL

PGOOD

BG2

BST2

TG2

INTVCC

LOADEN

FB

VOUT

ISP

ISN

SYNC/SPRD

TEST

2MHz

63V

16V×2

ISMON

PGOOD

25V

VOUT12V4ALSP LSNSW1 SW2

BST1

TG1

BG1

VIN LT8390A

LOADTG

ISMON

SS VC RT

GND

SSFM OFF

SSFM ON

25V×2

INTVCCINTVCC

INTVCC

dn567 F01

VIN6V TO 28V

(CONTINUOUS)4V TO 60V

(TRANSIENT)4.7µF100V×2

L1: WURTH 74437336010 1µHM1, M2: INFINEON BSZ065NO6LS5M3, M4: INFINEON BSZ031NE2LS5D1, D2: NEXPERIA BAT46WJR1: SUSUMU KRL3216D-M-R005-F-T5

60V 2MHz Buck-Boost Controllers Regulate High Power Voltage and Current with High Efficiency and Low EMI Design Note 567

Keith Szolusha

10/17/567

L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their respective owners.

Synchronous buck-boost controllers are versatile and highly efficient. They can produce high power as both a boost and a buck with a single inductor, keeping power supply design simple. Normally, a buck-boost controller in a high power application is operated at a standard or low switching frequency, this maximizes efficiency and avoids complications related to shoot-through and switch blanking time, which can arise in synchronous rectification at high frequencies. Nevertheless, a high frequency 2MHz buck-boost controller with a smaller inductor ensures that the EMI content resides above the AM frequency band.

The LT8390A and LT8391A buck-boost controllers are unique in that they operate at 2MHz. The high switching speed enables use of a small inductor for a compact solution size, even in high power applications.

Unlike monolithic converters, which save space with power switches inside the IC package, controllers can drive external power switches with much higher peak

currents, such as 10A. Such high peak currents would burn up the small IC packages of typical integrated converters, but external 3mm × 3mm synchronous MOSFETs can handle this power. The MOSFETs can be arranged in tight quarters with hot-loop capacitors for very low EMI. The unique peak switch current sense amplifier architecture places the sense resistor next to the power inductor, outside the critical input and output hot loops, also reducing EMI.

2MHz, 95% Efficiency, 12V, 4A Buck-BoostThe 2MHz, 12V, 4A buck-boost regulator in Figure 1 boasts efficiency to 95%. This relatively compact design uses 3mm × 3mm MOSFETs and a single high power inductor. The temperature rise for this converter is low, even at 48W. At 12V input, no component rises more than 45°C above room temperature. At 7V input, the hottest component rises less than 55°C with a

Figure 1. 2MHz 12V, 4A Buck-Boost Voltage Regulator with High Efficiency

Page 2: 55V High Ef˜ciency Buck-Boost Power Manager and 60V ... · PDF file55V High Ef˜ciency Buck-Boost Power Manager and Multi-Chemistry Battery Charger 51 10/14/531 Figure 1. 15V to 55V

Der MCB ist ein optionaler externer Crowbar-Baustein, der an den Ausgang angeschlossen wird. Sobald die Ausgangsspannung ei-nen einstellbaren Grenzwert überschreitet (voreingestellt ist eine Ansprechschwelle von 11 % über der Nennspannung), legt der LTM4641 seinen CROWBAR-Ausgang umgehend (d. h. mit einer Reaktionszeit von maximal 500 ns) auf logisch High und schaltet seine Ausgangsspannung dauerhaft ab. Die Leistungsstufe wird hochohmig, und der obere interne MOSFET wird ebenso wie der untere abgeschaltet. Der CROWBAR-Ausgang schaltet MCB ein, wodurch die Ausgangskondensatoren entladen werden und ein weiteres Ansteigen der Ausgangsspannung unterbunden wird. Der Baustein MSP ist zwischen die eingangsseitige Spannungs-quelle (VIN) und den Eingangs-Pin (VINH) der Leistungsstufe des LTM4641 geschaltet. Der Baustein dient als rückstellbarer elekt-ronischer Stromkreisunterbrecher. Sobald die internen Schaltun-gen des LTM4641 einen Fehler wie etwa eine Überspannung am Ausgang (Output Overvoltage – OOV) registrieren, wird das Gate des MSP in einer Zeitspanne von maximal 2,6 µs entladen, wo-durch der MSP abschaltet. Damit wird die Stromversorgung vom VINH-Anschluss, dem Eingang der Leistungsstufe des LTM4641, getrennt. Die gefährliche Eingangsspannung kann auf diese Weise nicht mehr an den wertvollen Verbraucher gelangen. Zur Erzeugung des OOV-Grenzwerts nutzt der LTM4641 ferner eine unabhängige Referenzspannung, die nicht mit der Bandlücken (bandgap) -Spannung des Regelungs-IC zusammenhängt.

Bild 1 zeigt den Verlauf der CROWBAR-Spannung und von VOUT, wenn der obere MOSFET (MTOP) ausfällt und es zu einem Kurz-schluss zwischen VIN und dem Knoten SW kommt. Das CROW-BAR-Signal wechselt binnen 500 ns in den High-Status und schaltet damit den MCB ein, der den Ausgang mit der Masse verbindet. VOUT steigt zu keinem Zeitpunkt auf mehr als 110 % der Nenn-Ausgangsspannung an. Über- und Unterspannungsschutz für den EingangDer Eingang des LTM4641 ist mit einem Über- und Unterspan-nungsschutz versehen, dessen Ansprechschwellen vom Benutzer gewählt werden können (Bild 2). Der UVLO-Pin (UVLO = Undervoltage-Lockout) ist direkt mit dem invertierenden Eingang eines Komparators verbunden, dessen Ansprechschwelle 0,5 V beträgt. Wenn die Spannung am UVLO-Pin auf unter 0,5 V fällt, wird das Schalten des Wandlers unter-bunden. Sobald die Spannung an UVLO wieder über 0,5 V ansteigt, kann das Schalten wieder beginnen. Die Pins IOVRETRY und OVLO sind direkt an die nicht invertierenden Eingänge von Komparato-ren geführt, deren Ansprechschwellen ebenfalls 0,5 V betragen. Steigt die Spannung am Pin IOVRETRY auf über 0,5 V an, so wird das Schalten des Wandlers ebenfalls unterbrochen. Erst wenn die Spannung an IOVRETRY wieder mehr als 0,5 V beträgt, wird das Schalten wieder freigegeben. Das Schalten des Wandlers wird auch dann unterbunden, wenn die Spannung an OVLO die Marke

von 0,5 V übersteigt. Fällt die Spannung anschließend wieder un-ter 0,5 V, wird das Schalten jedoch erst dann wieder ermöglicht, wenn das Latch zurückgesetzt wurde. Diese drei Pins bieten zu-sätzliche Flexibilität, um das Verhalten des LTM4641 individuell einzustellen.

LINEAR TECHNOLOGY CORPORATION 2014

dn527 LT/AP 0614 111K • PRINTED IN THE USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com

Figure 3. Efficiency Curves of LTM4641

Data Sheet Download

www.linear.com/LTM4641For applications help,

call (408) 432-1900, Ext. 3979

MCB is an external optional crowbar device residing on VOUT. If the output voltage exceeds an adjustable threshold —default value is 11% above nominal— the LTM4641 pulls its CROWBAR output logic high immediately (500ns response time, maximum) and latches off its output voltage: the power stage becomes high impedance, with both internal top and bottom MOSFETs latched off. The CROWBAR output turns on MCB, discharging the output capacitors and preventing any further positive excursion of the output voltage.

MSP is placed between the input power source (VIN) and the LTM4641's power stage input pins (VINH), and is used as a resettable electronic power-interrupt switch. When a fault condition, such as an output overvoltage (OOV) condition, is detected by the LTM4641’s internal circuitry, the gate of MSP is discharged within 2.6μs (maximum) and MSP turns off. The input source sup-ply is thus disconnected from the LTM4641’s power stage input (VINH), preventing the hazardous (input) voltage from reaching the precious load. LTM4641 also uses an independent reference voltage to gener-ate an OOV threshold, separate from the control IC’s bandgap voltage.

Figure 1 shows the CROWBAR and VOUT waveforms when the top MOSFET MTOP fails, causing a short-circuit between the VIN and SW nodes. CROWBAR goes high within 500ns and turns on MCB to short the output to ground. VOUT never exceeds 110% of the specified output voltage.

Input Overvoltage and Undervoltage ProtectionsThe LTM4641 has input undervoltage and overvoltage protections, whose trip thresholds can be set by the user. Please refer to Figure 2.

The UVLO pin feeds directly into the inverting input of a comparator whose trip threshold is 0.5V. When the UVLO pin falls below 0.5V, switching action is inhibited; when the UVLO pin exceeds 0.5V, switching action can resume. The IOVRETRY and OVLO pins each feed directly into noninverting inputs of comparators whose trip thresholds are 0.5V. When the IOVRETRY pin exceeds 0.5V, switching action is inhibited; when IOVRETRY falls below 0.5V, switching action can resume. When the OVLO pin exceeds 0.5V, switching action is inhibited; when OVLO subsequently falls below 0.5V, switching action cannot occur until the latch has

been reset. These three pins give added flexibility to tailor the behavior of the LTM4641.

Figure 2. Circuit to Set the Input UVLO, IOVRETRY and OVLO Thresholds

+

VINLVINH

LTM4641UVLO

UVLO < 0.5V = OFF

HYST PULLS UP WHENON, HYST PULLS DOWN

WHEN OFF

HYST

IOVRETRYIOVRETRY > 0.5V = OFF

OVLO > 0.5V = LATCHOFFOVLO

SGND GND

AN527 F02

RTUV

CIN(MLCC)10µF×2

CIN(BULK)

VIN

RBUV

RTOV

RMOV

RBOV

RHYST

SGND CONNECTS TO GND INTERNAL TO MODULE. KEEP SGND ROUTES/PLANES SEPARATE FROM GNDON MOTHERBOARD

EfficiencyFigure 3 below shows the efficiency curves for the LTM4641 for a typical 12V input voltage for the circuit in Figure 1. With all the protection circuits, LTM4641 can still achieve high efficiency.

ConclusionThe LTM4641 μModule regulator monitors input voltage, output voltage and temperature conditions. It can provide comprehensive electrical and thermal protection from excessive voltage stress for loads such as processors, ASICs and high end FPGAs.

OUTPUT CURRENT (A)0

EFFI

CIEN

CY (%

)

95

85

70

90

80

75

65

604 82 6

DN527 F03

1093 71 5

6.0VOUT5.0VOUT3.3VOUT2.5VOUT1.8VOUT1.5VOUT1.2VOUT1.0VOUT0.9VOUT

Bild 2. Beschaltung zum Festlegen der Ansprechschwellen für UVLO, IOVRETRY und OVLO

EffizienzBild 3 zeigt die typischen Wirkungsgradkurven des LTM4641 bei einer typischen Eingangsspannung von 12 V für die Schaltung aus Bild 1. Auch mit allen Schutzschaltungen kommt der LTM4641 auf eine hohe Effizienz.

LINEAR TECHNOLOGY CORPORATION 2014

dn527 LT/AP 0614 111K • PRINTED IN THE USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com

Figure 3. Efficiency Curves of LTM4641

Data Sheet Download

www.linear.com/LTM4641For applications help,

call (408) 432-1900, Ext. 3979

MCB is an external optional crowbar device residing on VOUT. If the output voltage exceeds an adjustable threshold —default value is 11% above nominal— the LTM4641 pulls its CROWBAR output logic high immediately (500ns response time, maximum) and latches off its output voltage: the power stage becomes high impedance, with both internal top and bottom MOSFETs latched off. The CROWBAR output turns on MCB, discharging the output capacitors and preventing any further positive excursion of the output voltage.

MSP is placed between the input power source (VIN) and the LTM4641's power stage input pins (VINH), and is used as a resettable electronic power-interrupt switch. When a fault condition, such as an output overvoltage (OOV) condition, is detected by the LTM4641’s internal circuitry, the gate of MSP is discharged within 2.6μs (maximum) and MSP turns off. The input source sup-ply is thus disconnected from the LTM4641’s power stage input (VINH), preventing the hazardous (input) voltage from reaching the precious load. LTM4641 also uses an independent reference voltage to gener-ate an OOV threshold, separate from the control IC’s bandgap voltage.

Figure 1 shows the CROWBAR and VOUT waveforms when the top MOSFET MTOP fails, causing a short-circuit between the VIN and SW nodes. CROWBAR goes high within 500ns and turns on MCB to short the output to ground. VOUT never exceeds 110% of the specified output voltage.

Input Overvoltage and Undervoltage ProtectionsThe LTM4641 has input undervoltage and overvoltage protections, whose trip thresholds can be set by the user. Please refer to Figure 2.

The UVLO pin feeds directly into the inverting input of a comparator whose trip threshold is 0.5V. When the UVLO pin falls below 0.5V, switching action is inhibited; when the UVLO pin exceeds 0.5V, switching action can resume. The IOVRETRY and OVLO pins each feed directly into noninverting inputs of comparators whose trip thresholds are 0.5V. When the IOVRETRY pin exceeds 0.5V, switching action is inhibited; when IOVRETRY falls below 0.5V, switching action can resume. When the OVLO pin exceeds 0.5V, switching action is inhibited; when OVLO subsequently falls below 0.5V, switching action cannot occur until the latch has

been reset. These three pins give added flexibility to tailor the behavior of the LTM4641.

Figure 2. Circuit to Set the Input UVLO, IOVRETRY and OVLO Thresholds

+

VINLVINH

LTM4641UVLO

UVLO < 0.5V = OFF

HYST PULLS UP WHENON, HYST PULLS DOWN

WHEN OFF

HYST

IOVRETRYIOVRETRY > 0.5V = OFF

OVLO > 0.5V = LATCHOFFOVLO

SGND GND

AN527 F02

RTUV

CIN(MLCC)10µF×2

CIN(BULK)

VIN

RBUV

RTOV

RMOV

RBOV

RHYST

SGND CONNECTS TO GND INTERNAL TO MODULE. KEEP SGND ROUTES/PLANES SEPARATE FROM GNDON MOTHERBOARD

EfficiencyFigure 3 below shows the efficiency curves for the LTM4641 for a typical 12V input voltage for the circuit in Figure 1. With all the protection circuits, LTM4641 can still achieve high efficiency.

ConclusionThe LTM4641 μModule regulator monitors input voltage, output voltage and temperature conditions. It can provide comprehensive electrical and thermal protection from excessive voltage stress for loads such as processors, ASICs and high end FPGAs.

OUTPUT CURRENT (A)0

EFFI

CIEN

CY (%

)

95

85

70

90

80

75

65

604 82 6

DN527 F03

1093 71 5

6.0VOUT5.0VOUT3.3VOUT2.5VOUT1.8VOUT1.5VOUT1.2VOUT1.0VOUT0.9VOUT

Bild 3. Wirkungsgrad-Kennlinien des LTM4641FazitDas µModule LTM4641 überwacht die Eingangsspannung, die Ausgangsspannung und die Temperaturbedingungen. Der Bau-stein bietet Verbrauchern wie etwa Prozessoren, ASICs und an-spruchsvollen FPGAs einen umfassenden elektrischen und ther-mischen Schutz vor überhöhten Spannungen.

LINEAR TECHNOLOGY CORPORATION 2014

dn527 LT/AP 0614 111K • PRINTED IN THE USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com

Figure 3. Efficiency Curves of LTM4641

Data Sheet Download

www.linear.com/LTM4641For applications help,

call (408) 432-1900, Ext. 3979

MCB is an external optional crowbar device residing on VOUT. If the output voltage exceeds an adjustable threshold —default value is 11% above nominal— the LTM4641 pulls its CROWBAR output logic high immediately (500ns response time, maximum) and latches off its output voltage: the power stage becomes high impedance, with both internal top and bottom MOSFETs latched off. The CROWBAR output turns on MCB, discharging the output capacitors and preventing any further positive excursion of the output voltage.

MSP is placed between the input power source (VIN) and the LTM4641's power stage input pins (VINH), and is used as a resettable electronic power-interrupt switch. When a fault condition, such as an output overvoltage (OOV) condition, is detected by the LTM4641’s internal circuitry, the gate of MSP is discharged within 2.6μs (maximum) and MSP turns off. The input source sup-ply is thus disconnected from the LTM4641’s power stage input (VINH), preventing the hazardous (input) voltage from reaching the precious load. LTM4641 also uses an independent reference voltage to gener-ate an OOV threshold, separate from the control IC’s bandgap voltage.

Figure 1 shows the CROWBAR and VOUT waveforms when the top MOSFET MTOP fails, causing a short-circuit between the VIN and SW nodes. CROWBAR goes high within 500ns and turns on MCB to short the output to ground. VOUT never exceeds 110% of the specified output voltage.

Input Overvoltage and Undervoltage ProtectionsThe LTM4641 has input undervoltage and overvoltage protections, whose trip thresholds can be set by the user. Please refer to Figure 2.

The UVLO pin feeds directly into the inverting input of a comparator whose trip threshold is 0.5V. When the UVLO pin falls below 0.5V, switching action is inhibited; when the UVLO pin exceeds 0.5V, switching action can resume. The IOVRETRY and OVLO pins each feed directly into noninverting inputs of comparators whose trip thresholds are 0.5V. When the IOVRETRY pin exceeds 0.5V, switching action is inhibited; when IOVRETRY falls below 0.5V, switching action can resume. When the OVLO pin exceeds 0.5V, switching action is inhibited; when OVLO subsequently falls below 0.5V, switching action cannot occur until the latch has

been reset. These three pins give added flexibility to tailor the behavior of the LTM4641.

Figure 2. Circuit to Set the Input UVLO, IOVRETRY and OVLO Thresholds

+

VINLVINH

LTM4641UVLO

UVLO < 0.5V = OFF

HYST PULLS UP WHENON, HYST PULLS DOWN

WHEN OFF

HYST

IOVRETRYIOVRETRY > 0.5V = OFF

OVLO > 0.5V = LATCHOFFOVLO

SGND GND

AN527 F02

RTUV

CIN(MLCC)10µF×2

CIN(BULK)

VIN

RBUV

RTOV

RMOV

RBOV

RHYST

SGND CONNECTS TO GND INTERNAL TO MODULE. KEEP SGND ROUTES/PLANES SEPARATE FROM GNDON MOTHERBOARD

EfficiencyFigure 3 below shows the efficiency curves for the LTM4641 for a typical 12V input voltage for the circuit in Figure 1. With all the protection circuits, LTM4641 can still achieve high efficiency.

ConclusionThe LTM4641 μModule regulator monitors input voltage, output voltage and temperature conditions. It can provide comprehensive electrical and thermal protection from excessive voltage stress for loads such as processors, ASICs and high end FPGAs.

OUTPUT CURRENT (A)0

EFFI

CIEN

CY (%

)

95

85

70

90

80

75

65

604 82 6

DN527 F03

1093 71 5

6.0VOUT5.0VOUT3.3VOUT2.5VOUT1.8VOUT1.5VOUT1.2VOUT1.0VOUT0.9VOUT

LINEAR TECHNOLOGY CORPORATION 2014

dn527 LT/AP 0614 111K • PRINTED IN THE USALinear Technology Corporation1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 FAX: (408) 434-0507 www.linear.com

Figure 3. Efficiency Curves of LTM4641

Data Sheet Download

www.linear.com/LTM4641For applications help,

call (408) 432-1900, Ext. 3979

MCB is an external optional crowbar device residing on VOUT. If the output voltage exceeds an adjustable threshold —default value is 11% above nominal— the LTM4641 pulls its CROWBAR output logic high immediately (500ns response time, maximum) and latches off its output voltage: the power stage becomes high impedance, with both internal top and bottom MOSFETs latched off. The CROWBAR output turns on MCB, discharging the output capacitors and preventing any further positive excursion of the output voltage.

MSP is placed between the input power source (VIN) and the LTM4641's power stage input pins (VINH), and is used as a resettable electronic power-interrupt switch. When a fault condition, such as an output overvoltage (OOV) condition, is detected by the LTM4641’s internal circuitry, the gate of MSP is discharged within 2.6μs (maximum) and MSP turns off. The input source sup-ply is thus disconnected from the LTM4641’s power stage input (VINH), preventing the hazardous (input) voltage from reaching the precious load. LTM4641 also uses an independent reference voltage to gener-ate an OOV threshold, separate from the control IC’s bandgap voltage.

Figure 1 shows the CROWBAR and VOUT waveforms when the top MOSFET MTOP fails, causing a short-circuit between the VIN and SW nodes. CROWBAR goes high within 500ns and turns on MCB to short the output to ground. VOUT never exceeds 110% of the specified output voltage.

Input Overvoltage and Undervoltage ProtectionsThe LTM4641 has input undervoltage and overvoltage protections, whose trip thresholds can be set by the user. Please refer to Figure 2.

The UVLO pin feeds directly into the inverting input of a comparator whose trip threshold is 0.5V. When the UVLO pin falls below 0.5V, switching action is inhibited; when the UVLO pin exceeds 0.5V, switching action can resume. The IOVRETRY and OVLO pins each feed directly into noninverting inputs of comparators whose trip thresholds are 0.5V. When the IOVRETRY pin exceeds 0.5V, switching action is inhibited; when IOVRETRY falls below 0.5V, switching action can resume. When the OVLO pin exceeds 0.5V, switching action is inhibited; when OVLO subsequently falls below 0.5V, switching action cannot occur until the latch has

been reset. These three pins give added flexibility to tailor the behavior of the LTM4641.

Figure 2. Circuit to Set the Input UVLO, IOVRETRY and OVLO Thresholds

+

VINLVINH

LTM4641UVLO

UVLO < 0.5V = OFF

HYST PULLS UP WHENON, HYST PULLS DOWN

WHEN OFF

HYST

IOVRETRYIOVRETRY > 0.5V = OFF

OVLO > 0.5V = LATCHOFFOVLO

SGND GND

AN527 F02

RTUV

CIN(MLCC)10µF×2

CIN(BULK)

VIN

RBUV

RTOV

RMOV

RBOV

RHYST

SGND CONNECTS TO GND INTERNAL TO MODULE. KEEP SGND ROUTES/PLANES SEPARATE FROM GNDON MOTHERBOARD

EfficiencyFigure 3 below shows the efficiency curves for the LTM4641 for a typical 12V input voltage for the circuit in Figure 1. With all the protection circuits, LTM4641 can still achieve high efficiency.

ConclusionThe LTM4641 μModule regulator monitors input voltage, output voltage and temperature conditions. It can provide comprehensive electrical and thermal protection from excessive voltage stress for loads such as processors, ASICs and high end FPGAs.

OUTPUT CURRENT (A)0

EFFI

CIEN

CY (%

)

95

85

70

90

80

75

65

604 82 6

DN527 F03

1093 71 5

6.0VOUT5.0VOUT3.3VOUT2.5VOUT1.8VOUT1.5VOUT1.2VOUT1.0VOUT0.9VOUT

Bei technischen Fragen,Telefon +49 89 96 24 55 0

verwendet wird. Der Wandler kommt mit kurzzeitigen Einbrüchen der Eingangsspannung auf 4 V bei 4 A Laststrom zurecht oder kann bei 2 A Laststrom dauerhaft mit 4 V Eingangsspannung betrieben werden, was einer Leistung von ca. 25 W entspricht. Die hohe Schaltfrequenz (600 kHz bis 2 MHz) des LT8390A unterschei-det diesen Baustein von anderen Reglern mit vier Schaltern. Ebenso wie sein für niedrigere Schaltfrequenzen ausgelegter Verwandter LT8390 weist er eine ganze Reihe bemerkenswerter Eigenschaften auf, wie etwa ein PGOOD-Flag, Kurzschlussschutz und einen flexiblen Strom-begrenzungs-Messwiderstand zur Limitierung des Ausgangs- oder Ein-schalt (Inrush)-Stroms. Mit seiner zur Senkung des EMI-Aufkommens dienenden Spread-Spectrum-Frequenzmodulation (SSFM) eignet er sich ideal für Automotive-Anwendungen. Abwärts-/Aufwärts-LED-Treiber mit 2 MHz Schaltfrequenz und ge-ringen EMI-Effekten für Automotive-AnwendungenDer LT8391A ist das als LED-Treiber konzipierte, ebenfalls mit 2 MHz betriebene Gegenstück zum LT8390A. Der Hauptunterschied zwi-schen beiden ist, dass der LT8391A mit PWM-Dimmfunktionen und einer Funktion zur Erkennung von Unterbrechungen im LED-Stromkreis ausgestattet ist. Mithilfe des Messwiderstands am Ausgang wird der Strom durch eine LED-Kette geregelt, deren Spannung im Bereich der Eingangsspannung liegen kann (z. B. 9 V bis 16 V bei einer Autobat-terie). Die Eingangsspannung darf bei Kaltstarts bis auf 4 V absinken, und kurzzeitige Spannungsspitzen von 60 V am Eingang sind ebenfalls zulässig. Der LT8391A bietet ein PWM-Dimmungsverhältnis von bis zu 2.000:1 bei 120 Hz. Mit seinem eingebauten PWM-Dimmungsgenerator, der ohne externen Takt auskommt, ermöglicht er eine präzise Dimmung im Verhältnis 128:1. Der in Bild 2 gezeigte, mit 2 MHz schaltende LED-Treiber LT8391A ist für Kfz-Frontscheinwerfer optimiert. Er nutzt AEC-Q100-qualifizierte Bautei-le und entspricht der Norm CISPR 25 Klasse 5 für gestrahlte elektromagnetische Störaussendungen. Die SSFM-Technik wirkt EMI-re-

duzierend und sorgt für einen flimmerfreien Betrieb bei gleichzeitiger PWM-Dimmung. Das kompakte Design kommt mit einer kleinen Induktivität und be-sonders kompakten EMI-Filtern am Ein- und Ausgang aus. Die Ein-gangsspannung kann zwischen 4 V und 60 V betragen. Die vier Syn-chron-MOSFETs lassen sich bei Bedarf durch zwei Doppel-MOSFETs ersetzen, um den Bauteileaufwand zu verringern. Die Schaltung kommt auf einen Wirkungsgrad von 93 %. Das FAULT-Flag signalisiert Kurz-schlüsse und unterbrochene LED-Verbindungen, mit denen die Schal-tung problemlos fertig wird. FazitDie mit 2 MHz Schaltfrequenz betriebenen 60V-Abwärts-/Aufwärtsregler LT8390A und LT8391A können bei wenig Platzaufwand hohe Spannun-gen und Ströme regeln. Die auf geringe elektromagnetische Störaus-sendungen ausgerichtete Architektur und die SSFM-Technik machen die Bausteine zur idealen Wahl für Anwendungen, in denen es auf geringe EMI-Effekte ankommt.

INPUT = 500mVP-P

FREQUENCY (kHz)0.1 1 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

THD

+ NO

ISE

(%)

DN563 F02

50Ω100Ω300ΩNO LOAD INPUT AT 1kHz

NO LOAD300Ω100Ω50Ω

AUDIO INPUT AMPLITUDE (V)0.001 0.01 0.1 1 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

THD

+ NO

ISE

(%)

DN563 F03

Data Sheet Download

www.linear.com/LTC6261For applications help,

call (408) 432-1900, Ext. 3409

With 500mVP-P input, the output is 1.5VP-P, or 0.75V max, or 0.53VRMS. With 50Ω, 500mV input leads to approximately 5.6mW delivered power. At 1VP-P input, the circuit delivers 22.5mW. Note that it helps that the LTC6261 output can swing close to rail-to-rail with load.

The first build of this circuit in the lab produced a significant tone at a few hundred Hz. It turned out that the positive input was not well grounded as an “AC ground” over all frequencies because the voltage was not strongly pegged. The need to peg the voltage arises when using a single supply rather than a dual supply. With a single supply, VM is not ground, but rather a mid-rail voltage created to enable inverting topologies to work properly. The resistor divider that creates VM has large resistance values (for example, two 470k in series) to minimize additional supply cur-rent. A large capacitor ensures a strong ground at low frequencies. Indeed, the addition of a large capacitor (1µF, which forms a pole with the 470k resistors in parallel) eliminated the mysterious distortion tone.

Figure 2. LTC6262 Bridge Driver THD and Noise with Different Loads vs Frequency

Figure 3. LTC6262 Bridge Driver THD and Noise with Different Loads vs Amplitude at 1kHz

Despite the low quiescent current, this driver delivers low distortion to a headphone load. At high enough amplitude, distortion increases dramatically as the op amp output clips. Clipping occurs sooner with more loading as the output transistors start to run out of current gain.

One significant concern in a portable device is bat-tery drain. Music played loudly, or listeners’ musical choices affect the rate of battery drain. The end-use of a device is out of the designer’s control. Quiescent current, though, is not. Because much of a device’s time may be spent idle, quiescent current is significant, as it drains batteries continuously. The LTC6261’s low quiescent current increases battery discharge time.

ConclusionThe applications shown here take advantage of a unique combination of features available in the LTC6261 op amp family. The low quiescent current of these devices does not diminish their ability to perform at levels usually reserved for more power hungry parts. Rail-to-rail input and output, shutdown, and choice of package are features that add to their versatility.

DN563 LT/TP 0617 71K • PRINTED IN THE USA© LINEAR TECHNOLOGY CORPORATION 2017

Bild 2: Dieser 16V/1,5A-Auf-Abwärts-LED-Treiber für Automotive-Anwendungen erfüllt die Bedingungen der EMI-Norm CISPR 25 Klasse 5

CONTINUOUS OPERATION WITH HIGHEST COMPONENT TEMPERATURE BELOW 90°C (TA = 25°C)

INPUT VOLTAGE (V)0 5 10 15 20 25 30 35 40

50

60

70

80

90

100

EFFI

CIEN

CY (%

)

dn567 F03

IOUT = 2A

IOUT = 4A

165k

22nF

4.7µF

0.1µF22µF

383k

4.7µF100k

0.47µF

113k

90.9k

59.0k3.3nF

4.7k

1M54.9k

10µF

100k

0.1µF

1µF

1µF

L12.2µH

M3

M4M1

M2

D1 D2

6mΩR1

56mΩ

M5D3

300k488Hz

FB2

0.1µF

FB1

4.7µF

0.1µF

10Ω

D5

10Ω

D4

EN/UVLO

VREF

CTRL1

FAULT

BG2

BST2

TG2

INTVCC

FB

VOUT

ISP

ISNSYNC/SPRD

VIN6V TO 40V

(CONTINUOUS)4V TO 60V

(TRANSIENT)

2MHz

63V100V×2+0.1µF×2

25V×2+0.1µF×2

FAULT

LSP LSNSW1 SW2BST1

TG1

BG1

VIN

LT8391A

SS VC RT

GND

SSFM OFF

SSFM ON

INTVCCINTVCC

INTVCC

PWMTG

PWM

RPCTRL2

ANALOG DIM

PWM DIM

100V×2

16V1.5ALEDs

INPUT EMI FILTER

OUTPUT EMIFILTER

dn567 F02

5.1Ω

5.1Ω

INTERNAL PWM

L1: COILCRAFT XAL5030-222MEBM1, M2: NEXPERIA BUK9M42-60EM3, M4: INFINEON IPZ40N04S5L-7R4M5: NEXPERIA PMV50EPEAD1, D2: NEXPERIA BAT46WJD3: NEXPERIA PMEG3010EBD4, D5: NEXPERIA PMEG2010AEBFB1: 2× PARALLEL TDK MPZ2012S221ATD25FB2: 2× PARALLEL TDK MPZ2012S102ATD25R1: SUSUMU KRL3216D-C-R006-F

© LINEAR TECHNOLOGY CORPORATION 2017DN567 LT/AP 1017 71K • PRINTED IN THE USA

Data Sheet Download

www.linear.com/LT8390AFor applications help,

call (408) 432-1900, Ext. 3801

Figure 2. Low EMI 16V, 1.5A Automotive Buck-Boost LED Driver Passes CISPR 25 Class 5 EMI

standard 4-layer PCB and no heat sink or airflow. This converter handles short input transients down to 4V at 4A load, or runs continuously at 4V input with 2A of load (~25W).

The LT8390A’s high switching frequency (600kHz to 2MHz) distinguishes it from the field of 4-switch con-trollers. It also has a variety of notable features like its lower frequency cousin, the LT8390. It has a PGOOD flag, short-circuit protection, and a flexible current-limiting sense resistor for output or inrush current restrictions. Its spread spectrum frequency modulation (SSFM) for low EMI makes it ideal for automotive applications.

2MHz Low EMI Automotive Buck-Boost LED DriverThe LT8391A is a 2MHz LED driver counterpart of the LT8390A. The main difference is that LT8391A includes LED driver PWM dimming features and open LED fault protection. The output sense resistor controls current through a string of LEDs whose voltage may lie within the input voltage range, such as the 9V to 16V car battery. It can run down to 4V cold crank and can withstand up to 60V input transients. LT8391A provides up to 2000:1 PWM dimming ratio at 120Hz and it can use its internal PWM dimming generator (no external clock required) for up to 128:1 accurate dimming.

The 2MHz LT8391A LED driver shown in Figure 1 is optimized for automotive headlights. It uses AEC-Q100

components and meets CISPR 25 Class 5 radiated EMI standards. SSFM reduces EMI, and also runs flicker-free simultaneously with PWM dimming.

This compact design features a small inductor and especially small input and output EMI filters. It can run down to 4V and up to 60V. The four synchronous MOSFETs shown can be replaced with two dual MOSFETs for reduced component count when needed. It reaches 93% efficiency. The FAULT flag reports short-circuit and open LED conditions, which are handled with ease.

ConclusionThe LT8390A and LT8391A 2MHz 60V buck-boost controllers can regulate high power voltage and cur-rent in compact spaces. The low EMI architecture and SSFM feature make these ideal for low EMI applications.

Figure 3. LT8390A Efficiency of Figure 1

CONTINUOUS OPERATION WITH HIGHEST COMPONENT TEMPERATURE BELOW 90°C (TA = 25°C)

INPUT VOLTAGE (V)0 5 10 15 20 25 30 35 40

50

60

70

80

90

100EF

FICI

ENCY

(%)

dn567 F03

IOUT = 2A

IOUT = 4A

165k

22nF

4.7µF

0.1µF22µF

383k

4.7µF100k

0.47µF

113k

90.9k

59.0k3.3nF

4.7k

1M54.9k

10µF

100k

0.1µF

1µF

1µF

L12.2µH

M3

M4M1

M2

D1 D2

6mΩR1

56mΩ

M5D3

300k488Hz

FB2

0.1µF

FB1

4.7µF

0.1µF

10Ω

D5

10Ω

D4

EN/UVLO

VREF

CTRL1

FAULT

BG2

BST2

TG2

INTVCC

FB

VOUT

ISP

ISNSYNC/SPRD

VIN6V TO 40V

(CONTINUOUS)4V TO 60V

(TRANSIENT)

2MHz

63V100V×2+0.1µF×2

25V×2+0.1µF×2

FAULT

LSP LSNSW1 SW2BST1

TG1

BG1

VIN

LT8391A

SS VC RT

GND

SSFM OFF

SSFM ON

INTVCCINTVCC

INTVCC

PWMTG

PWM

RPCTRL2

ANALOG DIM

PWM DIM

100V×2

16V1.5ALEDs

INPUT EMI FILTER

OUTPUT EMIFILTER

dn567 F02

5.1Ω

5.1Ω

INTERNAL PWM

L1: COILCRAFT XAL5030-222MEBM1, M2: NEXPERIA BUK9M42-60EM3, M4: INFINEON IPZ40N04S5L-7R4M5: NEXPERIA PMV50EPEAD1, D2: NEXPERIA BAT46WJD3: NEXPERIA PMEG3010EBD4, D5: NEXPERIA PMEG2010AEBFB1: 2× PARALLEL TDK MPZ2012S221ATD25FB2: 2× PARALLEL TDK MPZ2012S102ATD25R1: SUSUMU KRL3216D-C-R006-F

© LINEAR TECHNOLOGY CORPORATION 2017DN567 LT/AP 1017 71K • PRINTED IN THE USA

Data Sheet Download

www.linear.com/LT8390AFor applications help,

call (408) 432-1900, Ext. 3801

Figure 2. Low EMI 16V, 1.5A Automotive Buck-Boost LED Driver Passes CISPR 25 Class 5 EMI

standard 4-layer PCB and no heat sink or airflow. This converter handles short input transients down to 4V at 4A load, or runs continuously at 4V input with 2A of load (~25W).

The LT8390A’s high switching frequency (600kHz to 2MHz) distinguishes it from the field of 4-switch con-trollers. It also has a variety of notable features like its lower frequency cousin, the LT8390. It has a PGOOD flag, short-circuit protection, and a flexible current-limiting sense resistor for output or inrush current restrictions. Its spread spectrum frequency modulation (SSFM) for low EMI makes it ideal for automotive applications.

2MHz Low EMI Automotive Buck-Boost LED DriverThe LT8391A is a 2MHz LED driver counterpart of the LT8390A. The main difference is that LT8391A includes LED driver PWM dimming features and open LED fault protection. The output sense resistor controls current through a string of LEDs whose voltage may lie within the input voltage range, such as the 9V to 16V car battery. It can run down to 4V cold crank and can withstand up to 60V input transients. LT8391A provides up to 2000:1 PWM dimming ratio at 120Hz and it can use its internal PWM dimming generator (no external clock required) for up to 128:1 accurate dimming.

The 2MHz LT8391A LED driver shown in Figure 1 is optimized for automotive headlights. It uses AEC-Q100

components and meets CISPR 25 Class 5 radiated EMI standards. SSFM reduces EMI, and also runs flicker-free simultaneously with PWM dimming.

This compact design features a small inductor and especially small input and output EMI filters. It can run down to 4V and up to 60V. The four synchronous MOSFETs shown can be replaced with two dual MOSFETs for reduced component count when needed. It reaches 93% efficiency. The FAULT flag reports short-circuit and open LED conditions, which are handled with ease.

ConclusionThe LT8390A and LT8391A 2MHz 60V buck-boost controllers can regulate high power voltage and cur-rent in compact spaces. The low EMI architecture and SSFM feature make these ideal for low EMI applications.

Figure 3. LT8390A Efficiency of Figure 1 Bild 3: Wirkungsgrad des LT8390A in der Schaltung aus Bild 1

CONTINUOUS OPERATION WITH HIGHEST COMPONENT TEMPERATURE BELOW 90°C (TA = 25°C)

INPUT VOLTAGE (V)0 5 10 15 20 25 30 35 40

50

60

70

80

90

100EF

FICI

ENCY

(%)

dn567 F03

IOUT = 2A

IOUT = 4A

165k

22nF

4.7µF

0.1µF22µF

383k

4.7µF100k

0.47µF

113k

90.9k

59.0k3.3nF

4.7k

1M54.9k

10µF

100k

0.1µF

1µF

1µF

L12.2µH

M3

M4M1

M2

D1 D2

6mΩR1

56mΩ

M5D3

300k488Hz

FB2

0.1µF

FB1

4.7µF

0.1µF

10Ω

D5

10Ω

D4

EN/UVLO

VREF

CTRL1

FAULT

BG2

BST2

TG2

INTVCC

FB

VOUT

ISP

ISNSYNC/SPRD

VIN6V TO 40V

(CONTINUOUS)4V TO 60V

(TRANSIENT)

2MHz

63V100V×2+0.1µF×2

25V×2+0.1µF×2

FAULT

LSP LSNSW1 SW2BST1

TG1

BG1

VIN

LT8391A

SS VC RT

GND

SSFM OFF

SSFM ON

INTVCCINTVCC

INTVCC

PWMTG

PWM

RPCTRL2

ANALOG DIM

PWM DIM

100V×2

16V1.5ALEDs

INPUT EMI FILTER

OUTPUT EMIFILTER

dn567 F02

5.1Ω

5.1Ω

INTERNAL PWM

L1: COILCRAFT XAL5030-222MEBM1, M2: NEXPERIA BUK9M42-60EM3, M4: INFINEON IPZ40N04S5L-7R4M5: NEXPERIA PMV50EPEAD1, D2: NEXPERIA BAT46WJD3: NEXPERIA PMEG3010EBD4, D5: NEXPERIA PMEG2010AEBFB1: 2× PARALLEL TDK MPZ2012S221ATD25FB2: 2× PARALLEL TDK MPZ2012S102ATD25R1: SUSUMU KRL3216D-C-R006-F

© LINEAR TECHNOLOGY CORPORATION 2017DN567 LT/AP 1017 71K • PRINTED IN THE USA

Data Sheet Download

www.linear.com/LT8390AFor applications help,

call (408) 432-1900, Ext. 3801

Figure 2. Low EMI 16V, 1.5A Automotive Buck-Boost LED Driver Passes CISPR 25 Class 5 EMI

standard 4-layer PCB and no heat sink or airflow. This converter handles short input transients down to 4V at 4A load, or runs continuously at 4V input with 2A of load (~25W).

The LT8390A’s high switching frequency (600kHz to 2MHz) distinguishes it from the field of 4-switch con-trollers. It also has a variety of notable features like its lower frequency cousin, the LT8390. It has a PGOOD flag, short-circuit protection, and a flexible current-limiting sense resistor for output or inrush current restrictions. Its spread spectrum frequency modulation (SSFM) for low EMI makes it ideal for automotive applications.

2MHz Low EMI Automotive Buck-Boost LED DriverThe LT8391A is a 2MHz LED driver counterpart of the LT8390A. The main difference is that LT8391A includes LED driver PWM dimming features and open LED fault protection. The output sense resistor controls current through a string of LEDs whose voltage may lie within the input voltage range, such as the 9V to 16V car battery. It can run down to 4V cold crank and can withstand up to 60V input transients. LT8391A provides up to 2000:1 PWM dimming ratio at 120Hz and it can use its internal PWM dimming generator (no external clock required) for up to 128:1 accurate dimming.

The 2MHz LT8391A LED driver shown in Figure 1 is optimized for automotive headlights. It uses AEC-Q100

components and meets CISPR 25 Class 5 radiated EMI standards. SSFM reduces EMI, and also runs flicker-free simultaneously with PWM dimming.

This compact design features a small inductor and especially small input and output EMI filters. It can run down to 4V and up to 60V. The four synchronous MOSFETs shown can be replaced with two dual MOSFETs for reduced component count when needed. It reaches 93% efficiency. The FAULT flag reports short-circuit and open LED conditions, which are handled with ease.

ConclusionThe LT8390A and LT8391A 2MHz 60V buck-boost controllers can regulate high power voltage and cur-rent in compact spaces. The low EMI architecture and SSFM feature make these ideal for low EMI applications.

Figure 3. LT8390A Efficiency of Figure 1

CONTINUOUS OPERATION WITH HIGHEST COMPONENT TEMPERATURE BELOW 90°C (TA = 25°C)

INPUT VOLTAGE (V)0 5 10 15 20 25 30 35 40

50

60

70

80

90

100EF

FICI

ENCY

(%)

dn567 F03

IOUT = 2A

IOUT = 4A

165k

22nF

4.7µF

0.1µF22µF

383k

4.7µF100k

0.47µF

113k

90.9k

59.0k3.3nF

4.7k

1M54.9k

10µF

100k

0.1µF

1µF

1µF

L12.2µH

M3

M4M1

M2

D1 D2

6mΩR1

56mΩ

M5D3

300k488Hz

FB2

0.1µF

FB1

4.7µF

0.1µF

10Ω

D5

10Ω

D4

EN/UVLO

VREF

CTRL1

FAULT

BG2

BST2

TG2

INTVCC

FB

VOUT

ISP

ISNSYNC/SPRD

VIN6V TO 40V

(CONTINUOUS)4V TO 60V

(TRANSIENT)

2MHz

63V100V×2+0.1µF×2

25V×2+0.1µF×2

FAULT

LSP LSNSW1 SW2BST1

TG1

BG1

VIN

LT8391A

SS VC RT

GND

SSFM OFF

SSFM ON

INTVCCINTVCC

INTVCC

PWMTG

PWM

RPCTRL2

ANALOG DIM

PWM DIM

100V×2

16V1.5ALEDs

INPUT EMI FILTER

OUTPUT EMIFILTER

dn567 F02

5.1Ω

5.1Ω

INTERNAL PWM

L1: COILCRAFT XAL5030-222MEBM1, M2: NEXPERIA BUK9M42-60EM3, M4: INFINEON IPZ40N04S5L-7R4M5: NEXPERIA PMV50EPEAD1, D2: NEXPERIA BAT46WJD3: NEXPERIA PMEG3010EBD4, D5: NEXPERIA PMEG2010AEBFB1: 2× PARALLEL TDK MPZ2012S221ATD25FB2: 2× PARALLEL TDK MPZ2012S102ATD25R1: SUSUMU KRL3216D-C-R006-F

© LINEAR TECHNOLOGY CORPORATION 2017DN567 LT/AP 1017 71K • PRINTED IN THE USA

Data Sheet Download

www.linear.com/LT8390AFor applications help,

call (408) 432-1900, Ext. 3801

Figure 2. Low EMI 16V, 1.5A Automotive Buck-Boost LED Driver Passes CISPR 25 Class 5 EMI

standard 4-layer PCB and no heat sink or airflow. This converter handles short input transients down to 4V at 4A load, or runs continuously at 4V input with 2A of load (~25W).

The LT8390A’s high switching frequency (600kHz to 2MHz) distinguishes it from the field of 4-switch con-trollers. It also has a variety of notable features like its lower frequency cousin, the LT8390. It has a PGOOD flag, short-circuit protection, and a flexible current-limiting sense resistor for output or inrush current restrictions. Its spread spectrum frequency modulation (SSFM) for low EMI makes it ideal for automotive applications.

2MHz Low EMI Automotive Buck-Boost LED DriverThe LT8391A is a 2MHz LED driver counterpart of the LT8390A. The main difference is that LT8391A includes LED driver PWM dimming features and open LED fault protection. The output sense resistor controls current through a string of LEDs whose voltage may lie within the input voltage range, such as the 9V to 16V car battery. It can run down to 4V cold crank and can withstand up to 60V input transients. LT8391A provides up to 2000:1 PWM dimming ratio at 120Hz and it can use its internal PWM dimming generator (no external clock required) for up to 128:1 accurate dimming.

The 2MHz LT8391A LED driver shown in Figure 1 is optimized for automotive headlights. It uses AEC-Q100

components and meets CISPR 25 Class 5 radiated EMI standards. SSFM reduces EMI, and also runs flicker-free simultaneously with PWM dimming.

This compact design features a small inductor and especially small input and output EMI filters. It can run down to 4V and up to 60V. The four synchronous MOSFETs shown can be replaced with two dual MOSFETs for reduced component count when needed. It reaches 93% efficiency. The FAULT flag reports short-circuit and open LED conditions, which are handled with ease.

ConclusionThe LT8390A and LT8391A 2MHz 60V buck-boost controllers can regulate high power voltage and cur-rent in compact spaces. The low EMI architecture and SSFM feature make these ideal for low EMI applications.

Figure 3. LT8390A Efficiency of Figure 1