5. borehole trajectory control - drilling-engineering.com

26
5. Borehole Trajectory Control 5.1 Survey Tools 5.2 Borehole Trajectory Calculation Methods 5.3 Assessment of Current Bottom Hole Position 5.4 Borehole Trajectory Correction Methods Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Upload: others

Post on 19-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 5. Borehole Trajectory Control - drilling-engineering.com

5. Borehole Trajectory Control

5.1 Survey Tools

5.2 Borehole Trajectory Calculation Methods

5.3 Assessment of Current Bottom Hole Position

5.4 Borehole Trajectory Correction Methods

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 2: 5. Borehole Trajectory Control - drilling-engineering.com

Survey Tools are used for measurement of wellbore course

(inclination and azimuth)

Types of Survey Tools:

• Magnetic Survey Instruments

• Gyroscopic Survey Instruments

Magnetic and Gyroscopic Survey Tools :

• Single-shot instruments record only one point at a given depth

• Multi-shot instruments record several points along the well depth

Survey Tools can be:

• Dropped

• Lowered on wireline

• Used as a part of MWD

5.1 Survey Tools

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 3: 5. Borehole Trajectory Control - drilling-engineering.com

Mechanical Magnetic Survey Instruments

• Based on the compass principle

• Use Earth’s horizontal magnetic component to reference

magnetic north

• Cannot be used in MWD tools

Electronic Magnetic Survey Instruments

• Use magnetometers to measure the Earth’s magnetic field and

accelerometers to measure Earth’s gravitational field

• Can be used to measure inclination, azimuth and tool face

orientation (TFO)

• Are used in MWD tools

5.1 Magnetic Survey Instruments

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 4: 5. Borehole Trajectory Control - drilling-engineering.com

Used when the accuracy of magnetic survey instruments could

be affected by the presence of magnetic objects (e.g., casing)

Types of gyro instruments:

• Free gyro. Consists of motor-driven spinning mass (rotor)

mounted in a set of gimbals.

• Rate gyro. Has very accurate drift rate of 0.01º/h. Can detect

the Earth’s rotation and geographic north

• Inertial navigation system. Uses a group of gyros to orient the

system to the north and accelerometers to detect movements in

x, y and z planes

5.1 Gyroscopic Survey Instruments

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 5: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Borehole Trajectory Calculation

Y (East)

Х (North)

ΔX

Survey Data:

S – Measured Depth (MD)

α – Inclination

φ – Azimuth

Coordinates of actual

trajectory:

X2 = X1 + ΔX

Y2 = Y1 + ΔY

Z2 = Z1 + ΔZ

Z

Survey Data 2

(X2, Y2, Z2)

Survey Data 1

(X1, Y1, Z1)

ΔY

ΔZ

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 6: 5. Borehole Trajectory Control - drilling-engineering.com

1. Minimum Curvature Method

2. Radius of Curvature Method

3. Angle Averaging Method

4. Tangential Method

5. Balanced Tangential Method

5.2 Borehole Trajectory Calculation Methods

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 7: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Minimum Curvature Method

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 8: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Radius of Curvature Method

Note: α and φ in degrees

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 9: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Angle Averaging Method

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 10: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Tangential Method

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 11: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Balanced Tangential Method

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 12: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Borehole Trajectory Calculations

Angle Averaging Method

Y (East)

Х (North)

φ

α

O

B C

D

A

E

Z

(S2, α2, φ2)

(X2, Y2, Z2)

(S1, α1, φ1)

(X1, Y1, Z1)

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Survey Data:

S – Measured Depth (MD)

α – Inclination

φ – Azimuth

OA = ΔS = ΔMD

OB = ΔS ∙ sin α

OC = ΔX = ΔS sinα cosφ

OD = ΔY = ΔS sinα sinφ

OE = ΔZ = ΔS cosα = ΔTVD

ΔX

ΔY

ΔZ

Page 13: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Borehole Trajectory Calculation

i1ii

i1ii

;i1ii

ZZZ

YYY

XXX

Absolute Coordinate System

X – direction to North

Y – direction to East

Z – direction downward

Xо = Yо = Zо = 0 coordinate of wellhead

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Relative Coordinate System

X – direction along projected azimuth

X – direction perpendicular Y

Z – direction downward

Page 14: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Borehole Trajectory Calculation in Absolute Coordinate System

(Angle Averaging Method)

2cosSZ

2sin

2sinSY

2cos

2sinSX

i1iii

i1ii1iii

i1ii1iii

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 15: 5. Borehole Trajectory Control - drilling-engineering.com

5.2 Borehole Trajectory Calculation in Relative Coordinate System

(Angle Averaging Method)

]2

cos[2

sinSX прi1ii1i

ii

2cosSX

]2

sin[2

sinSY

i1iii

прi1ii1i

ii

ΔZi

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

φpr

φpr

Page 16: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Assessment of Current Bottom Hole Position Relative to the Target

φwc

Xc

Yc

Current Bottom Hole

Target

HDct

HD

X

Y

Rt

φe

φt φpr ●

● Wellhead

● Аct

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 17: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Assessment of Current Bottom Hole Position Relative to the Target

Target

Z

X

Act

● Wellhead

TVD

Zc

Rt

αr

Current Bottom Hole

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 18: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Assessment of Current Bottom Hole Position Relative to the Target

1. Borehole trajectory calculation

2. Calculation of azimuth of direction from wellhead to current

bottom hole

Yc φwb = arctan ---------- Xc

Xc, Yc – coordinates of current bottom hole

3. Calculation of horizontal displacement from actual bottom

hole to target

HDct = HD – Xc

HD – horizontal displacement

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 19: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Assessment of Current Bottom Hole Position Relative to the Target

4. Calculation of azimuth of direction required to hit the target

(right-left edge of the target)

φr = φpr + φt _ φe

where

φpr – projected well azimuth

Rt – radius of target

φt = arctan (Yc / HDct)

φe = arctan (Rt / Аct)

Аct = HDct / cos φt

+

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 20: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Assessment of Current Bottom Hole Position Relative to the Target

5. Calculation of inclination angle of direction required to hit the

target (far-near edge of the target)

Act _ Rt αr = arctan --------------------- TVD – Zc

where

TVD – True Vertical Depth

Zc – TVD of actual bottom hole

+

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 21: 5. Borehole Trajectory Control - drilling-engineering.com

5.3 Calculation of Required Azimuth and Inclination Angle Changes

6. Calculation of required azimuth change

Δφ = φr – φc where

φc – azimuth at current bottom hole

7. Calculation of required inclination angle change

Δα = αr – αc where

αc – inclination angle at current bottom hole

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 22: 5. Borehole Trajectory Control - drilling-engineering.com

5.4 Tool Face Orientation (TFO)

TFO

Bit

Downhole Motor with ABH

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

TFO is measured from the high side of

the borehole in a plane perpendicular to

the axis of the hole.

Page 23: 5. Borehole Trajectory Control - drilling-engineering.com

5.4 Tool Face Orientation (TFO)

Δα +

Δφ –

Δα –

Δφ –

Δα –

Δφ +

Δα +

Δφ + 270º

180º

90º

TFO

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Maximum

Right Turn Maximum

Left Turn

Maximum Drop

Maximum Build

Build &

Right Turn

Drop &

Left Turn

Build &

Left Turn

Drop &

Right Turn

Page 24: 5. Borehole Trajectory Control - drilling-engineering.com

5.4 Tool Face Orientation (TFO)

TFO 0º 0º-

90º 90º

90º-

180º 180º

180º-

270º 270º

270º-

360º 360º

Δα + + 0 – – – 0 + +

Δφ 0 + + + 0 – – – 0

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 25: 5. Borehole Trajectory Control - drilling-engineering.com

5.4 Analytical Method of TFO Calculation

sin αr ∙ sin Δφ TFO = arctan --------------------------------------------------------------------------- sin αr ∙ cos αc ∙ cos Δφ – sin αc ∙ cos αr cos β = cos αc ∙ cos αr + sin αc + sin αr ∙ cos Δφ Lcor = 100 ∙ β / i100

TFO – tool face orientation

αc и φc – inclination angle and azimuth at current bottom hole

αr и φr – required inclination angle and azimuth

Δ φ = φr – φc

Lcor – length of correction run, ft

i100 – dogleg severity (DLS), deg/100ft

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.

Page 26: 5. Borehole Trajectory Control - drilling-engineering.com

5.4 Graphical Method of TFO Calculation

Given: Determine:

αc = 14º φc = 90º Δφ = φr – φc = 110º – 90º = 20º

αr = 20º φr = 110º TFO = 65º

i100 = 6º/100ft Lcor = 100 ∙ β / i100 = 8.4 ∙ 100 / 6 =

= 140ft

Δφ = 20º

αc = 14º

αr = 20º

TFO = 65º

β = 8.4º

Oktay Mamedbekov. Directional Drilling. Borehole Trajectory Control.