440 report_1 copy

21
Title Author Group No. Date

Upload: n

Post on 15-Jul-2016

224 views

Category:

Documents


0 download

DESCRIPTION

hydrology

TRANSCRIPT

Page 1: 440 Report_1 Copy

 

 

 

 

Title    

Author  

 

 

 

 

 

 

 

 

 

 

 

 

 

Group  No.  

Date  

Page 2: 440 Report_1 Copy

 

ii  

Table  of  Contents  

Contents  Table  of  Contents  .................................................................................................................................................................  ii  

List  of  Figures  .......................................................................................................................................................................  iv  

List  of  Tables  ..........................................................................................................................................................................  v  

1.   Executive  Summary  ....................................................................................................................................................  1  

2.   Introduction  ...................................................................................................................................................................  2  

3.   Methodology  ..................................................................................................................................................................  3  

3.1   Governing  equations  ..........................................................................................................................................  3  

3.1.1   Continuity  Equation:  .............................................................................................................................  3  

3.1.2   Energy  equation:  ....................................................................................................................................  3  

3.2   Underlying  assumptions  ...................................................................................................................................  4  

4.   Experimental  Procedure  ...........................................................................................................................................  5  

4.1   Material:  ...................................................................................................................................................................  5  

4.2   Procedure  ................................................................................................................................................................  5  

5.   Data  Collected  ................................................................................................................................................................  7  

5.1   Straight  Pipe  trials  ...............................................................................................................................................  7  

5.2   Contraction  .............................................................................................................................................................  7  

5.3   Bend  ...........................................................................................................................................................................  8  

6.   Calculation  and  Results  .............................................................................................................................................  9  

6.1   Friction  Factor  results:  ......................................................................................................................................  9  

6.2   Kc  results:  ................................................................................................................................................................  9  

6.3   Kb  Results:  ............................................................................................................................................................  10  

7.   Discussion  and  Analysis  ..........................................................................................................................................  11  

7.1   General  Errors  .....................................................................................................................................................  11  

7.2   Friction  Factor  ....................................................................................................................................................  11  

7.3   Contraction  loss  coefficient  ...........................................................................................................................  11  

7.4   Bend  Loss  Coefficient  .......................................................................................................................................  12  

8.   Conclusions  ..................................................................................................................................................................  12  

Acknowledgments  .............................................................................................................................................................  13  

Page 3: 440 Report_1 Copy

 

iii  

References  ............................................................................................................................................................................  14  

Appendix  ...............................................................................................................................................................................  15  

 

 

Page 4: 440 Report_1 Copy

 

iv  

List  of  Figures  

Figure  1  Measuring  time  needed  to  fill  10  L  of  water  in  the  tank  ..................................................................  5  

Figure  2  Placing  the  sensors  on  the  end  points  of  the  segment  under  study  ............................................  6  

Figure  3  Reading  pressure  head  values  from  the  software  ..............................................................................  6  

Figure  4  Technician  fixing  pressure  censors  .........................................................................................................  12  

 

Page 5: 440 Report_1 Copy

 

v  

List  of  Tables  

Table  1  Data  collected  from  straight  pipe  trials  .....................................................................................................  7  

Table  2  Data  collected  from  contraction  trials  .......................................................................................................  7  

Table  3  Data  collected  from  90  degree  bend  trials  ...............................................................................................  8  

Table  4  Calculations  of  Reynold’s  number,  friction  factors  and  percentage  error  .................................  9  

Table  5  Calculation  of  Kc  and  the  percentage  error  .............................................................................................  9  

Table  6  Calculations  of  Kb  and  percentage  error  ................................................................................................  10  

Table  7  Kc  values  for  contraction  of  different  angles  ........................................................................................  15  

Table  8  K  values  for  threaded  pipe  fittings  ............................................................................................................  15  

Table  9  Ks  values  for  pipes  made  of  different  materials  ..................................................................................  15  

Table  10  Moody  Diagram  ...............................................................................................................................................  16  

 

Page 6: 440 Report_1 Copy

 

1  

1. Executive  Summary  

The  purpose  of  this  report  is  to  show  the  results  of  calculating  experimental  values  of  friction  factors  and  loss  coefficients  of  a  contraction  and  a  90  degree  threaded  bend.    Our  experiment  involved  3  phases  and  3  trials  per  phase:  

1) Friction  factor  of  a  straight  pipe  2) Kc  value  of  the  contraction  3) Kb  value  of  a  90  degree  threaded  bend  

 The  experiment  resulted  in  large  errors  in  determining  the  different  factors  relative  to  the  theoretical  ones.    The  friction  factor  found  had  an  average  error  of  42.45%  relative  to  the  theoretical  friction  factor.    Also,  the  Kc  value,  having  the  largest  error  in  calculation,  had  an  average  error  of  672%  relative  to  the  theoretical  Kc.  Finally,  the  Kb  value  had  an  average  error  of  35  %  from  the  theoretical  Kb.    The  errors  calculated  were  a  result  of  several  factors  including:  

1) Malfunction  and  inaccuracy  of  the  pressure  head  sensors  2) Assuming  of  Ks  instead  of  determining  the  actual  value  3) Not  measuring  again  the  flow  after  the  transition  from  one  segment  to  another  

   

Page 7: 440 Report_1 Copy

 

2  

2. Introduction  

         In  hydraulic  engineering  practice,  it  is  necessary  to  estimate  the  head  loss  incurred  by  

a  fluid  as  it  flows  along  a  pipeline.  For  example,  it  may  be  desired  to  predict  the  rate  of  

flow  along  a  proposed  pipe  connecting   two  reservoirs  at  different   levels.  Or   it  may  be  

necessary  to  calculate  what  additional  head  would  be  required  to  double  the  rate  of  flow  

along  an  existing  pipeline.  Thus  it’s  necessary  to  calculate  the  head  losses  for  the  above  

calculations  to  be  accurate.  

         Usually,  head  loss  is  incurred  by  fluid  mixing  which  occurs  at  fittings  such  as  bends  or  

valves,   and   by   frictional   resistance   at   the   pipe   wall.   Major   losses   are   due   to   bends,  

contraction-­‐expansion  and  valves.  Friction  losses  are  between  fluid  and  contact  surface.  

Where  there  are  numerous  fittings  and  the  pipe  is  short,  the  major  part  of  the  head  loss  

will  be  due  to  the  local  mixing  near  the  fittings.  For  a  long  pipeline,  on  the  other  hand,  

skin  friction  at  the  pipe  wall  near  will  predominate.  In  the  experiment  described  below,  

we  investigate  the  losses  due  to  frictional  resistance  in  a  straight  pipe  with  rough  walls,  

fluid  mixing  in  a  bend  and  a  contraction.  

   

Page 8: 440 Report_1 Copy

 

3  

3. Methodology  

3.1 Governing  equations  

In  this  experiment  two  main  equations  were  used:  Continuity  and  energy  equations.  

3.1.1 Continuity  Equation:  

The  continuity  equation  states  that  the  net  rate  of  mass  inflow  to  a  control  volume  is  

equal  to  the  rate  of  increase  in  mass  within  fixed  boundaries.  

Therefore,  𝜌1  *  A1*V1=𝜌2  *  A2*V2    Since  the  fluid  is  incompressible  then  𝜌1  =𝜌2    therefore    

A1*V1=A2*V2    Then  Q1=Q2  

Where:  

𝜌  =  density  (Kg/m3)  

V:  velocity  (m/s)  

A=  area  in  m2  

Q=  flow  rate  (m3/s)  

3.1.2 Energy  equation:  

   !!!  +  𝑧! + 𝛼1

!!!

!!+ ℎ𝑚 =   !!

!+  𝑧! + 𝛼2

!!!

!!+ ℎ!  

Where:  

§ !!  :  Pressure  Head  (m)  

§ 𝑧!  :  Elevation  Head  (m)  

§ !!

!!  :  Velocity  head  (m)  

§ HM:  Head  of  the  machine  (m).  There  is  an  absence  of    pumps  or  turbinesà  HM  =0  

§ ℎ!  Summation  of  all  major  and  minor  losses  

Assuming  turbulent  flow  (as  will  be  determined  from  Re  in  the  experiment)  𝛼1=𝛼2=1    

Page 9: 440 Report_1 Copy

 

4  

Let’s  define  the  hydraulic  head  as  𝐻 =   !!  +  𝑧 +  !

!

!!  

The  equation  becomes:  H! = H! + h!  

Head  Losses:     ℎ! = ∑𝑓   !!× !!

!!+ 𝑘   !

!

!!  

Where:  

§ 𝑓:  Friction  loss  coefficient  

§ 𝐿:  Length  of  the  pipe  (m)  

§ 𝐷:  Diameter  of  the  pipe  (m)  

§ !!

!!:  velocity  head  (in  m)  

§ 𝑘:  minor  loss  coefficient  for  each  fitting  

Friction  Coefficient  𝑓 = !.!"

!"# !"!.!!!

!.!"!"!.!

!    

Reynolds  Number:    𝑅𝑒 = !"!  

Where:  

§ 𝜈:  Kinematic  Viscosity  =10-­‐6  m2/s  at  20°C  

§ Ks=  relative  roughness  (in  m).  

§ D=  diameter  of  pipe  (in  m).  

3.2 Underlying  assumptions  

There  are  3  main  assumptions  in  this  experiment:  

1) For   the   bend   and   contraction,   the   head   loss  𝑓   !!× !!

!!     is   neglected   because   L   is  

small  

2) 𝛼 = 1  

3) Assume  Ks=  0.3mm  

   

Page 10: 440 Report_1 Copy

 

5  

4. Experimental  Procedure  

4.1 Material:  

§ Hydraulic  Bench  with  adjustable  flow  

§ Pipes  of  different  sizes  and  fittings  equipped  with  valves  including:  

o 1  m  straight  pipe  

o A  contraction  with  an  angle  of  60o  

o A  threaded  90o  bend  

§ PC  interface  connected  to  two  sensors  

§ Stop  watch  

§ Measuring  tape  

4.2 Procedure  

a) Use  a  measuring  tape  to  measure  the  straight  pipe  length  

b) Record  the  necessary  dimensions  of  the  segments  under  study.  

c) Open  the  valve  for  the  rough  pipe  

d) Turn  on  the  pump  and  adjust  initial  flow  

e) Using  a  stopwatch,  record  the  time  needed  to  fill  10  Liters  in  the  tank  as  done  in  

figure  1.  

 

  Figure  1  Measuring  time  needed  to  fill  10  L  of  water  in  the  tank  

Page 11: 440 Report_1 Copy

 

6  

f) Place  the  sensors  at  the  start  and  end  points  of  the  segment  under  study  as  done  

in  figure  2.  

 

 

  Figure   2   Placing   the   sensors   on   the   end   points   of   the   segment   under  

study  

g) Reset   the   computer   program   and   record   the   values   for   the   pressure   heads   as  

done  in  figure  3.  

 

 

  Figure  3  Reading  pressure  head  values  from  the  software  

h) Open   the   valve   of   the   contraction   then   close   that   of   the   rough   pipe   to   avoid  

damaging  the  equipment.  

i) Repeat  steps  e  to  g  after  changing  the  flow  

Page 12: 440 Report_1 Copy

 

7  

j) Open   the   valve   of   the   pipe   line   including   the   bend   then   close   that   of   the  

contraction  

k) Repeat  the  steps  e  to  g  after  changing  the  flow  

l) Open  the  valve  of  the  straight  pipe  and  close  that  of  the  bend.  

m) Repeat  the  procedure  for  a  total  of  3  different  flow  rates.  

5. Data  Collected  

5.1 Straight  Pipe  trials  

Trials   Flow  Calculated  

(m3/s)  

hu  (cm)   hd  (cm)  

1   4.33E-­‐04   106   70  

2   6.60E-­‐04   217   151  

3   7.71E-­‐04   271   190  

  Length  (cm)   Diameter  (mm)    

  100   17    

Table  1  Data  collected  from  straight  pipe  trials  

5.2 Contraction  

Trials   Flow  Calculated  

(m3/s)  

hu  (cm)   hd  (cm)  

1   4.33E-­‐04   65   59  

2   6.60E-­‐04   128   116  

3   7.71E-­‐04   155   141  

  Diameter  1  (mm)   Diameter  2(mm)    

  40   25    

Table  2  Data  collected  from  contraction  trials  

Page 13: 440 Report_1 Copy

 

8  

5.3 Bend  

Trials   Flow  Calculated  

(m3/s)  

hu  (cm)   hd  (cm)  

1   4.33E-­‐04   78   70  

2   6.60E-­‐04   158   143  

3   7.71E-­‐04   193   175  

  Diameter  1  (mm)   𝚫𝒛(cm)    

  17   7    

Table  3  Data  collected  from  90  degree  bend  trials  

   

Page 14: 440 Report_1 Copy

 

9  

6. Calculation  and  Results  

6.1 Friction  Factor  results:  

Trial   V(m/s)   Re   fexperimental   ftheoretical   Error  (%)  

1   1.9056   32395   0.03306   0.04817   31.37  

2   2.9080   49437   0.02603   0.04761   45.32  

3   3.3968   57746   0.02341   0.04746   50.67  

Table  4  Calculations  of  Reynold’s  number,  friction  factors  and  percentage  error  

Sample  Calculation  based  on  trial  1:  

1) Velocity  :  𝑉 = !!= !.!!∗!"!!

!!∗ !.!"

! = 1.9056!!  

2) Experimental  friction  factor:  𝑓 = !!" !!!!! ∗!"!!

!!∗!= !∗!.!"#∗!.!"∗ !"#!!" ∗!"!!

!.!"#$!∗!= 0.03306      

3) Reynold’s  number:  𝑅𝑒 = !∗!!= !.!"#$∗!.!"#

!"!!= 32395      

4) Theoretical  friction  factor:  𝑓 = 0.25

log 𝐾𝑠3.7𝐷+

5.74𝑅𝑒0.9

2 =0.25

log 0.33.7∗17+

5.7426678.40.9

2  

5) 𝐸𝑟𝑟𝑜𝑟 = !experimental!!theoretical!theoretical

∗ 100 = !.!"#$%!!.!""!#!.!"#$%

∗ 100 = 31.37%  

6.2 Kc  results:  

Trial   Vu(m/s)   Vd(m/s)   Kcexperimental   Kctheoretical   Error  (%)  

1   0.3442   0.8811   0.6688   0.06   1014.7  

2   0.5253   1.3448   0.4547   0.06   657.8  

3   0.6136   1.5707   0.2660   0.06   343.3  

Table  5  Calculation  of  Kc  and  the  percentage  error  

Page 15: 440 Report_1 Copy

 

10  

Sample  Calculation  based  on  trial  1:  

1) Velocities:    

a.  V1 =𝑄𝐴  =  

!!!!!

 =  !∗!.!!∗!"!!

!(!"∗!"!!)!= 0.3442

m

s    

b. V1 =𝑄𝐴  =  

!!!!!

 =  !∗!.!!∗!"!!

!(!"∗!"!!)!= 0.8811

m

s  

2) !!!  +  !!

!

!!=   !!

!+  !!

!

!!+ 𝑘𝑐à  

 𝑉𝑑2

2𝑔𝑘𝑐 =

2𝑔𝑉22

ℎ𝑢 +𝑉𝑢2

2𝑔 − ℎd−𝑉𝑑2

2𝑔 = 2 ∗9.81

0.8811265 ∗ 10−2 +

0.34422

2 ∗ 9.81 − 59 ∗ 10−2 +

0.88112

2 ∗ 9.81

= 0.6688  

3) 𝐸𝑟𝑟𝑜𝑟 = !"experimental!!"theoretical!"theoretical

∗ 100 = 1014.7%  

 

6.3 Kb  Results:  

Trial   V(m/s)   Kbexperimental   Kbtheoretical   Error(%)  

1   1.906   0.8101   0.9   9.999  

2   2.908   0.5104   0.9   43.29  

3   3.397   0.4251   0.9   52.77  

Table  6  Calculations  of  Kb  and  percentage  error  

Sample  Calculation  based  on  trial  1:  

1) Kbexperimental:    !!!   + 𝑧1 =  !!!+ 𝑧2 + 𝑘𝑏  

!!!

2𝑔  à  

Kb = !!(!!!!!!  ∆!)!!

=!∗!.!" !"!!"!! ∗!"!!

!.!"#!= 0.8101  

2)  𝐸𝑟𝑟𝑜𝑟 = !"experimental!!"theoretical!"theoretical

∗ 100 = !.!"#"!!.!!.!

∗ 100 = 9.999  %  

   

Page 16: 440 Report_1 Copy

 

11  

7. Discussion  and  Analysis  

The  flow,  in  this  lab,  could  be  measured  in  two  different  ways.  The  first  one  is  obtained  

from   the   software   on   the   computer  while   the   second   one   can   be  measured  manually.  

The  ones  obtained  by  the  software  were  disregarded.  

It’s  notable  that  there  were  some  large  errors  in  the  determination  of  f,  Kc  and  Kb.    

7.1 General  Errors  

General  errors  include:  

• Inaccurate  measurement  of  the  flow  rate  manually  (  pressing  stop  watch  +-­‐  1-­‐2  s  

from  the  actual  time  needed  to  fill  10  L)  

• Precision  of  measuring  the  pipe  length  is  to  the  nearest  mm.  

7.2 Friction  Factor  

An  average  error  of  42.45%  is  a  rather  noticeable  one  (The  average  error  was  calculated  

by  referring  to  the  table  comparing  the  experimental  and  textbook  f).  This  error  might  

be  due  to  the  fact  that  we  assumed  a  roughness  of  0.3  mm  whereas  it  could  have  been  a  

different  value.      

7.3 Contraction  loss  coefficient  

An  average  error  of  672%  is  alarming  and  implies  the  occurrence  of  major  errors.  These  

errors  could  be  due  to  several  factors  including:  

• Neglecting  the  frictional  loss  f  along  the  contraction  pipe  

• Malfunctioning  of  the  sensors  in  calculating  the  pressure  heads  as  seen  in  figure  

4  where  the  technician  fixes  them  after  they  start  dripping  water.  

• The  valve  of  the  pipe  including  the  contraction  might  be  causing  increased  flow  

of  fluid  than  the  valve  of  the  straight  pipe.  Thus,  the  actual  value  of  Q  is  greater  

than   the   one   calculated   initially   for   the   first   pipe.   Doing   the   calculation   for   1  

percent   increase   in  Q   leads   to   an   error   of   964.9%   for   first   run.   Therefore,   the  

difference  in  error  is  49.8  %.  

Page 17: 440 Report_1 Copy

 

12  

 

  Figure  4  Technician  fixing  pressure  censors  

7.4 Bend  Loss  Coefficient  

An  average  error  of  35.35%  is  noticeable  but  it’s  more  acceptable  than  the  errors  faced  

in  contraction  and  friction  loss  trials.  This  error  could  be  due  to  the  following  factors:  

• Neglecting  the  frictional  losses  along  the  length  of  the  bend.  

• Also   the   flow  might   be   varied   in   the   transition   to   the   new   pipe   containing   the  

bend.    

8. Conclusions  

The  calculated  friction  and  loss  coefficients  for  the  pipe,  bend  and  contraction  had  large  

errors  relative  to  the  theoretical  ones  exceeding  10-­‐14  percent.  Therefore,  there  is  a  

need  to  question  the  quality  of  the  sensors  being  used  to  measure  the  pressure  heads  

especially  when  it  comes  to  the  contraction  section.  

 

The  errors  calculated  were  partially  a  result  of  several  factors:  malfunction  and  

inaccuracy  of  the  pressure  head  sensors,  assuming  of  Ks  instead  of  determining  the  

actual  value,  and  not  measuring  again  the  flow  after  the  transition  from  one  segment  to  

another.  

 

Page 18: 440 Report_1 Copy

 

13  

Acknowledgments  

Special  thanks  for  Mr.Rabih  our  lab  assistant  for  explaining  thoroughly  the  procedure  of  

the  experiment.  

Special  thanks  for  Dr.  Basha  for  explaining  the  continuity  and  energy  equations  in  class,  

and  explaining  their  usage  in  this  experiment.  

 

Page 19: 440 Report_1 Copy

 

14  

References    

Basha,  H.  (2013).  Hydraulics  &  Laboratory.  Beirut,  Lebanon.  

Page 20: 440 Report_1 Copy

 

15  

Appendix  

 

Table  7  Kc  values  for  contraction  of  different  angles  

 

Table  8  K  values  for  threaded  pipe  fittings  

 

 

Table  9  Ks  values  for  pipes  made  of  different  materials  

Page 21: 440 Report_1 Copy

 

16  

 

Table  10  Moody  Diagram