44 42 56.03 - vertical turbine pumps - engineers comments & spco responses approved

Upload: spcoaustin

Post on 01-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    1/306

    476399_Submittal 14C Comments

    SUBMITTAL REVIEW COMMENTS

    DATE: 9/18/14 PROJECT: Thomas E. Taylor HSPS and StoneHill PS Improvements Project

    SUBMITTAL

    NO.:14C PROJECT NUMBER: 476399

    SPECIFICATION

    SECTION:44 42 56.03 PAGE:  Page 1 of 1

    SUBMITTAL TYPE: SHOP DRAWINGS SAMPLE

    1. APPROVED 3. PARTIAL APPROVAL, RESUBMIT AS NOTED

    2. APPROVED AS NOTED 4. REVISE AND RESUBMIT

    5. INFORMATIONAL

    Item: Taylor HSPS VTP Full Submittal

    NO. COMMENT

    RELATED

    SPEC PARA./

    DRAWING

    REVIEWER’S

    INITIALS

    1. The supplemental attachment submitted (and attached to these comments)

    addresses our comments. There are no further comments.TN

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    2/306

     

    SMITH

    PUMP

    COMPANY, INC. 

    301 &B I

    (800) 2998909 (254) 7760377

    , 76712

    FA (254) 7760023

    TORSIONAL FREQUENCY ANALYSIS 

    PROJECT 169737-01

    For

    Dake ConstructionOn the

    Upper Trinity Regional Water DistrictRTWS Thomas E. Taylor

    Service Pump Station

    VERTICAL TURBINEPUMP P-06-02-09

    May 07, 2014

    Revision A - June 18, 2014Revision B – Aug. 25, 2014Revision C – Sept. 5, 2014

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    3/306

     

    1

    H .

    ,

    . .

    F 1 & 1

    . (J)

    (K) .

    1 6 1200

    705 2.

    1 FEE F27E2 AGE. I

    155.68 2.

    1:

    .

    I (2)

    (/)

    C

    1 19090268 /

    2 C/

    3 /

    4 /

    5 /

    6 /

    7 /

    8 /

    9

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    4/306

     

    2

    1:

    J=705 2

    =19100000 / 

    =1050000 / 

    =540000 / 

    =1050000 / 

    J= 3.39 2

    J=1.06 2

    J=156 2

    J=0.545 2

    =1050000 / 

    J=0.545 2

    J=0.545 2

    J=0.545 2

    J=0.545 2

    =1050000 / 

    =1050000 / 

    =2880000 / 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    5/306

     

    3

    .

    . H

    .

    I G .

    416 11.2E+06 I.

    =  ∙   =  ∙  = ℎ    =     =    =    

    ∙()∙  

      = 8.6   516 C

    :

    (C) :

    2:

    . F (C H)

    1 516/8.6 I

    2 8728/914 I

    3 16750/1754 I

    4 25898/2712 I

    .

    F 2

    .

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    6/306

     

    4

    20% .

    , .

    1 .

    .

    . (CF) EC1698,

    880

    CF .

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    7/306

     

    5

    2:

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    8/306

     

    6

    &

    E

     = 10,800 =  ∙  ∙  ∙  ∙  ∙  ∙ ′  = 0.797 =   = 0.779 =   = 0.577 =   = 1.00 =    = 0.67 = −   = 0.75 = 99.9%  ′ = 60,000 = −   = 75,000 = ℎ ∙ 0.75 

     = 218 =     = 10,876 =  

    =   ∙   =   ∙∙∙ 

    − =  + 

      =  ∙ 1 −  

      416 .

    2.688, .

    G 100% 900 .

    H, 100% 780 . E

    F

    . A

    . A G 782 .

    E 27E .

    G .

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    9/306

     

    7

    F , 516

    650 19% . D 50%

    975 . 218

    7% . E G 5.7 516

    , .

    .

    . F 99.9% 0.75. B

    , 0.67.

    3.0.

    . I ,

    . H G 4.0 1.5 .

    3.0 .

    G

    G . 32630 ;

    218 2%. G 2.02

    ; G 6.0 .

    . A F 3A.

    3: &

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    10/306

     

    8

    E

     = 6,426 =  ∙  ∙  ∙  ∙  ∙  ∙ ′  = 0.886 =   = 0.736 =   = 0.577 =   = 1.00 =    = 0.67 = −   = 0.75 = 99.9%  ′ = 34,000 = −   = 50,250 = ℎ ∙ 0.75  = 73 =    = 3,628 =  

    =   ∙   =   ∙∙∙ 

    − =  + 

      =  ∙ 1 −  

      3.875 ,

    .

    E F

    . A

    . G 4.0 782 .

    3.0.

    G

    G . 10885 ;

    218 2%. G 4.0 . . A F 3B.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    11/306

     

    9

    3:

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    12/306

     

    10

    .

    H

    . I ,

    .

    .

    F 4 . E

    .

    4:

    F 5 8 . , .

    .

    8E+11

    7E+11

    6E+11

    5E+11

    4E+11

    3E+11

    2E+11

    1E+11

    0

    1E+11

    2E+11

    0 500 1000 1500 2000 2500 3000

                              

                       ,                         

    , /

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    13/306

     

    11

    5: 1

      : 516 (53.97 /)

    6: 2

      : 8728  (914.01 /) 

    4

    3.5

    3

    2.5

    2

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    1 2 3 4 5 6 7

                                                                                        

    ,

    8.59

    500

    400

    300

    200

    100

    0

    100

    1 2 3 4 5 6 7

                                

                                                            

    ,

    145.47

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    14/306

     

    12

    7: 3

      : 16750  (1754.01 /) 

    8: 4

      : 25898  (2712.01 /) 

     

    20% .

    .

    1500

    1000

    500

    0

    500

    1000

    1500

    1 2 3 4 5 6 7

                                                                                        

    ,

    279.16

    4000

    3000

    2000

    1000

    0

    1000

    2000

    3000

    4000

    1 2 3 4 5 6 7

                                                                                  

          

    ,

    431.63

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    15/306

     

    13

     

    (1) , E.J.,  ,C (1958).

    (2) , J.E., , C.., B, .G., , GH,

    E (2004).

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    16/306

    1

    Jason Popko

     

    From: Granger SmithSent: Thursday, September 18, 2014 5:38 PM

    To: Jason Popko; Larry WingoCc: Neal McCaigSubject: FW: Smith Pump responses to engineer's comments for Thomas Taylor UTRWD Vertical Pump Submittal Rev. 2

     

    Jason, Larry, 

    I spoke with Tony Naimey today, and reviewed Larry’s revised torsional analysis. 

    He was satisfied with the changes to Figure 2 (i.e. extend interference lines to ‘0’). 

    Once he understood that the torsional analysis included the motor in the Campbell diagram model, he dropped the 

    requirement for performing the torsional analysis on the motor shaft. 

    Bottom line

     is

     we

     have

     little

     risk

     if 

     we

     release

     the

     fabrications

     to

     the

     shop

     now.

     

    Things To Do 

    Send a formal submittal for approval responding to the engineer requests, and including the revised analysis. 

    Release the fabrications to the shop. 

    Regards, 

    Granger 

    L. 

    Granger 

    Smith, 

    P.E. 

    SMITH PUMP COMPANY, INC.

    301 M&B Industrial | Woodway, TX 76712 

    o 254.776.0377 | c 254.744.3143 | f  254.776.0023 

    www.smithpump.com 

    From: Granger SmithSent: Thursday, September 18, 2014 12:15 PMTo: Tony Naimey ([email protected])Cc: Larry Wingo; Beatriz Dongell ([email protected])Subject: FW: Smith Pump responses to engineer's comments for Thomas Taylor UTRWD Vertical PumpSubmittal Rev. 2

    Tony, 

    We are running out of  project time on this project because I haven’t started making the column and head 

    fabrications.  So, to expedite resolving and satisfying you requests I am reaching out to you.  I am asking for an 

    informal forum whereby Smith Pump can finish responding the CH2MHill comments. 

    As such, please see the entire e‐mail thread below.  Our modeler, Larry Wingo has complied with your require to 

    extend the interference lines in the Figure 2 diagram (see attached revised torsional analysis).  To be clear, I 

    have also included that revised diagram below. 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    17/306

    2

     

    We think the above figure along with the added dialogue in the revised report satisfies  your first need (restated 

    below from Brigit). 

    We are working on issuing a response to your  submittal  revision. Upon discussing the submittal  

    comments with our  VTP technologist, we would  like to see a supplemental  Figure 2A as an additional  

    drawing that  expands the Figure 2 Torsional  Resonance Interference Diagram  for  an expanded  

    interference diagram of  an operational  speed  range of  0‐1600 rpm. The  figure currently  shows only  800‐

    1600 rpm. Please let  me know  if  you have any  questions about  this request. 

    Our questions come from the second request which came from Brigit or Beatriz (I’m not sure) by phone to our 

    Jason 

    (restated 

    2

    nd 

    hand 

    below)… 

    Larry, the engineer   just  called  me and  said  he wants you to also do the same thing  for  the motor  

    shaft.  He said  we can submit  this as supplemental  data to the last  resubmittal. 

    The figure that we think applies to this request is included in the attached revised torsional analysis, and also 

    below… 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    18/306

    3

     

    Can you describe exactly  what  you need   for  the motor  shaft  review?  

    Regards, 

    Granger 

    L. 

    Granger 

    Smith, 

    P.E. 

    SMITH PUMP COMPANY, INC.

    301 M&B Industrial | Woodway, TX 76712 

    o 254.776.0377 | c 254.744.3143 | f  254.776.0023 

    www.smithpump.com 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    19/306

     

    SMITH

    PUMP

    COMPANY, INC.

     

    301 M&B Industrial(800) 299-8909 (254) 776-0377

    Waco, Texas 76712FAX (254) 776-0023

    SPCO responses to submittal review comments

    Submittal No. 14BProject Number: 476399Specification: 44 42 56.03

    1. Comment Response #10 (Flowserve will not have a vortex suppressor attachedduring any of the testing): Noted, since the suction vortex suppressor may not becompatible with the test tank. However, ensure pump suction hydraulics in the pumpmanufacturer's test bay meets the HIS requirements relative to suction hydraulics. Noresubmission required.

    Comment confirmed. No action required.

    2. Page 97: Reed Frequency Results: Pump Manufacturer shall perform an impact testto verify modal frequency locations upon installation of pump and motor at the projectsite. Pump manufacturer shall operate pump at steady state conditions at modal 5/6frequencies. The pump manufacturer shall measure and record vibration levels at thedischarge head. Once peak amplitudes have been established, the pump manufacturershall maintain steady state conditions for a period of not less than five minutes.Measured vibration limits shall validate that reed frequencies of the pump/motorstructure do not exceed the maximum specified values. If it is determined during fieldmeasurements that the pump/motor exceeds the maximum permissible vibration limits,the pump manufacturer shall be responsible for modifying the pumping unit structure as

    necessary for compliance with the project specification requirements.

    Smith Pump will do field testing at modes 5 and 6 and make any required modifications.

    3. Page 102: The lateral critical speed calculation report is not legible. Please reviseand resubmit.

    This might have been caused by something in the Adobe program. I have removed theoriginal and replaced it with a new file and I have also attached a separate copy of thefile for your review. Please contact me via e-mail at [email protected] if this fileis not coming through and we will make other arrangements to get a legible document.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    20/306

    4. Page 108 (Response Comment #16): Torsional Endurance: Analysis shall beconducted for both the pump and motor shaft, respectively. Modified Goodman analysisshall include the Goodman line, Factor of Safety = 2 (UTS/2 on the x-axis andEndurance limit/2 on the y-axis.

    Pump shaft critical cross section and material match the line shaft. Goodman analysisfor pump shaft is included in line shaft analysis. Goodman line Factor of Safety = 2 isadded to the chart.

    Separate fatigue analysis for motor shaft has been conducted and added after line shaftfatigue analysis.

    5. Page 108 (Response Comment #17): Indicate pump performance conditionsassociated with the calculated value for the mean stress and calculated value for thealternating stress. The modified Goodman diagram shall then demonstrate thatalternating stress combined to mean stress is below the Modified Goodman Line, Factor

    of Safety = 2 for both the pump and motor shafts, respectively.

    Fatigue analysis is conducted at maximum pump horsepower which occurs at fullspeed. This information is added to the report.

    Goodman design factor is 2.02 with stress concentration; Goodman design factor is 6.0without stress concentration.

    6. Vibration Switch: The submitted part number 376A-A3-C4-E does not meet thespecification in regards to the alarm contact. The contact shall be 10A SPDTMechanical Relay Contacts which is met on the start delay only model but not on themonitor and start model which is required for this project. Revise and resubmit.

    We will drop the Robert Shaw vibration switch in favor of the Metrix 440DR. Seeattached document for your review.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    21/306

    476399_Submittal 14B Comments_final

    SUBMITTAL REVIEW COMMENTS

    DATE: 8/20/14 PROJECT: Thomas E. Taylor HSPS and StoneHill PS Improvements Project

    SUBMITTAL

    NO.:14B PROJECT NUMBER: 476399

    SPECIFICATION

    SECTION:4 42 56.03 PAGE:  Page 1 of 1

    SUBMITTAL TYPE: SHOP DRAWINGS SAMPLE

    1. APPROVED 3. PARTIAL APPROVAL, RESUBMIT AS NOTED

    2. APPROVED AS NOTED 4. REVISE AND RESUBMIT

    5. INFORMATIONAL

    Item: Taylor HSPS VTP Full Submittal

    NO. COMMENT

    RELATED

    SPEC PARA./

    DRAWING

    REVIEWER’S

    INITIALS

    1. Comment Response #10 (Flowserve will not have a vortex suppressor

    attached during any of the testing): Noted, since the suction vortex suppressor

    may not be compatible with the test tank. However, ensure pump suction

    hydraulics in the pump manufacturer's test bay meets the HIS requirements

    relative to suction hydraulics. No resubmission required.

    TN

    2. Page 97: Reed Frequency Results: Pump Manufacturer shall perform an

    impact test to verify modal frequency locations upon installation of pump and

    motor at the project site. Pump manufacturer shall operate pump at steady-

    state conditions at modal 5/6 frequencies. The pump manufacturer shall

    measure and record vibration levels at the discharge head. Once peak

    amplitudes have been established, the pump manufacturer shall maintain

    steady state conditions for a period of not less than five minutes. Measured

    vibration limitits shall validate that reed frequency of the pump/motor

    structure do not exceed the maximum spedified values. If it is determined

    during field measurements that the pump/motor exceed the maximum

    permissible vibration limits, the pump manufacturer shall be responsible formodifying the pumping unit structure as necessary for compliance with the

    project specifiation requirements.

    TN

    3. Page 102: The lateral critical speed calculation report is not legible. Please

    revise and resubmit.TN

    4. Page 108 (Response Comment #16): Torsional Endurance: Analysis shall be

    conducted for both the pump and motor shaft, respectively. Modified

    Goodman analysis shall include the Goodman line, Factor of Safety = 2

    (UTS/2 on the x-axis and Endurance limit/2 on the y-axis.

    TN

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    22/306

    476399_Submittal 14B Comments_final

    5.Page 108 (Response Comment #17): Indicate pump performance conditions

    associated with the calculated value for the mean stress and calculated value

    for the alternating stress. The modified Goodman diagram shall then

    demonstrate that alternating stress combined to mean stress is below the

    Modified Goodman Line, Factor of Safety = 2 for both the pump and motor

    shafts, respectively.

    TN

    6.Vibration Switch: The submitted part number 376A-A3-C4-E does not meet

    the specification in regards to the alarm contact. The contact shall be 10A

    SPDT Mechanical Relay Contacts which is met on the start delay only model

    but not on the monitor and start model which is required for this project.

    Revise and resubmit.

    2.04 TH

    7.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    23/306

    \\FILESVR\Shares\Apps\2001PROJECTS\VERTICAL TURBINE\[FLSVTP-UTRWD Thomas Taylor - 27EN #####

    Shaft Critical Speed Calculations 

    The following is the equation used for calculating shaft critical speeds

    ( Fn above for Hinged/Hinged spans (H/H))

    Fn = 1.40 x (H/H) ( for Fixed/Hinged spans (F/H)) Fn = 1.9 x (H/H) ( for Fixed/Fixed spans (F/F))

    where:

    I = moment of inertia of cross-section (0.05xD4) (in4)

    E = modulus of Elasticity of material (lbs/in2) 25% This is the fire pump

    g = acceleration due to gravity 386 inches/sec2 20% Input special specifie

    L = Length of shaft between two consecutive bearings (in) = column length + length to bearing 20% Input special specifie

    n = order of natural frequency or critical speed (1st or 2nd)

    T = Axial thrust or force (lbs)

    Fn = Natural frequency ( cycles/unit time ) also critical speed ( rev/unit time )

    Fnn

     L 

    g

    w

     E I n

     L 

    T  

       

     

     

     

       

     

     

     

    30

      2

      

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    24/306

    Pump operating speed  1193

    Modulus of Elasticity 29000000

    Pump thrust 17038  

    Shaft Dia (D) 2 17/25 

    weight of shaft in lb/in 1.5795  

    Specified % OVER, from operating speed requirement 20%  --use 20% if nothing is specified in specifications

    Specified % UNDER, from operating speed requiremen 20%  --use 20% if nothing is specified in specifications

    Type Column Order of fn

    20% over operating speed = 1432 rpm of Length Critical (RPM)

    20% under operating speed = 954 rpm Span (in) Speed  

    Head flange to SB bearing F/H 34.25 1 15412  

    (hard bearing to rubber bearing)   2 61037  

    Max. Column Length (Input B64) H/H 54.75 1 4396  

    (rubber bearing to rubber bearing)   2 17150  

    Input 0 if Bearing Span type is not used.N/A = bearing span type not used in this pumping unitLengths for above table are nominal column lengths as used on the installation plan for submittalFor Fire Pumps, the specified % from operating speed requirements must be 25% above or below operatingspeed.

    Potential critical speed problem - indicates that the critcal speed for the selected bearing span is

    within specified critical speed range.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    25/306

     

    SMITH

    PUMP

    COMPANY, INC. 301 M&B Industrial 

    (800) 299‐8909  (254) 776‐0377 

    Waco, Texas 76712 

    FAX (254) 776‐0023 

    TORSIONAL FREQUENCY ANALYSIS 

    PROJECT 169737-01

    For

    Dake ConstructionOn the

    Upper Trinity Regional Water DistrictRTWS Thomas E. Taylor

    Service Pump Station

    VERTICAL TURBINEPUMP P-06-02-09

    May 07, 2014

    Revision A - June 18, 2014Revision B – Aug. 25, 2014

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    26/306

     

    Page | 1 

    TORSIONAL 

    FREQUENCY 

    ANALYSIS 

    METHOD 

    OF 

    CALCULATION 

    The torsional natural frequencies and the mode shapes of  this rotating train were calculated 

    using a computer program based on the Holzer Tabulation method. 

    The system is modeled using mass moments of  inertia for the impeller, the line shaft and 

    the motor. The motor is modeled with one mass moment of  inertia. 

    INPUT 

    DATA 

    The mass‐elastic data in Figures 1 & Table 1 represents the rotor system arrangement 

    for the calculation. The polar mass moments of  inertia (J‐values) and the torsional spring 

    constant (K‐values) are the used for the torsional natural frequency calculations. 

    The motor referenced in Table 1 is a 6 pole 1200 RPM motor operated at a variable 

    speed with rotor inertia of  705 lb‐ft2. 

    The pump

     referenced

     in

     Table

     1 is

     a FLOWSERVE

     FS

    ‐36ENM

    ‐‐2 STAGE.

     It

     has

     five

     vanes

     and

     total pump inertia of  155.68 lb‐ft2. 

    Table 1: Torsional Analysis Input Data 

    Span No.  Polar Moment of  

    Inertia (lb‐ft2) 

    Torsional Stiffness 

    (in‐lb/rad) 

    Component 

    1  705  19090268   Motor/Motor Shaft 

    2  3.386117   539874   Motor Coupling/Top Shaft 

    3  1.061864  1051448   Top Shaft/Line Shaft 

    4  0.545222  1051448   Line Shaft/Line Shaft 

    0.545222 

    1051448   Line Shaft/Line

     Shaft

     

    6  0.545222  1051448   Line Shaft/Line Shaft 

    7  0.545222  1051448   Line Shaft/Line Shaft 

    8  0.545222  2878340   Line Shaft/Pump Shaft 

    9  155.68  Pump 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    27/306

     

    Page | 2 

    Figure 1: Campbell Diagram 

    J=705 lb‐ft2 

    k=19100000 in‐lb/rad

    k=1050000 in‐lb/rad

    k=540000 in‐lb/rad

    k=1050000 in‐lb/rad

    J= 3.39 lb‐ft2

    J=1.06 lb‐ft2

    J=156 lb‐ft2 

    J=0.545 lb‐ft2

    k=1050000 in‐lb/rad

    J=0.545 lb‐ft2

    J=0.545 lb‐ft2

    J=0.545 lb‐ft2

    J=0.545 lb‐ft2

    k=1050000 in‐lb/rad

    k=1050000 in‐lb/rad

    k=2880000 in

    ‐lb/rad

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    28/306

     

    Page | 3 

    TORSIONAL 

    EXCITATION 

    FREQUENCY 

    The first

     frequency

     can

     be

     approximated

     using

     the

     equation

     below.

     This

     equation

     

    simplifies the entire system down to two masses at the ends of  a shaft that is acting as 

    spring. This number should be similar to the first frequency found using the Holzer 

    Tabulation method and acts as a check for the system. 

    In the following equation G is the modulus of  rigidity and R is radius of  the shaft. The 

    modulus of  rigidity used for the 416SS shafting is 11.2E+06 PSI. 

     ∙    ∙                 

    ∙∙  

      8.6  or 516 CPM TORSIONAL

     

    ANALYSIS 

    RESULTS 

    Natural 

    frequencies 

    and 

    mode 

    shapes: 

    The calculated torsional natural frequencies (CPM) for this rotor train are listed below: 

    Table 2: Results 

    Mode No.  Natural Frequency (CPM and Hz)  Separation Margin 

    1  516/8.6  No Interference 

    2  8728/914  No Interference 

    3  16750/1754  No Interference 

    4  25898/2712  No Interference 

    The calculated separation margin was established by using the shaft excitation that has the 

    smallest separation margin with respect to a given natural frequency. 

    The interference diagram in Figure 2 shows the first three calculated natural frequencies and 

    potential excitation modes. The system is considered satisfactory if  the torsional natural 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    29/306

     

    Page | 4 

    frequencies are 20% away from potential excitation modes. There are no interference points 

    within the specified margin, but a fatigue analysis will still be performed. 

    Figure 2: Torsional Resonance Interference Diagram 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    30/306

     

    Page | 5 

    TORSIONAL 

    ENDURANCE 

    EQUATIONS 

     – 

    LINESHAFTS 

    PUMP 

    SHAFT 

    Shear Endurance Strength 

      10,800  ∙  ∙  ∙  ∙  ∙  ∙ ′   0.797    0.779    0.577    1.00    0.67    0.75 99.9%  ′  60,000    75,000 ∙ 0.75 

      218     10,876     ∙    ∙∙∙   

     

       ∙ 1  

     Lineshafts and pump shaft are both 416 stainless steel.  Top of  the pump shaft is reduced to 

    lineshaft diameter, hence the same fatigue analysis applies to both. 

    Original Goodman

     fatigue

     calculations

     conservatively

     used

     100%

     of 

     the

     motor’s

     900

     hp.

     

    However, at 100% rpm and design head the pump only consumes 780 hp.  Examination of  

    Flowserve’s bowl power curve shows that design head and flow are identical to maximum 

    horsepower consumed by the pump. A small amount of  additional power is consumed by shaft 

    friction losses.  Adjusting the Goodman equations for 782 hp increases design factor. 

    Miscellaneous factor previously covered reliability and other factors.  Reliability is now broken 

    out as its own factor.  For 99.9% reliability the factor is 0.75.  Because reliability is now broken 

    out as its own factor, the miscellaneous factor changes to 0.67. 

    Stress concentration

     factor

     as

     used

     in

     calculations

     is

     3.0.

     This

     accounts

     for

     the

     stress

     increase

     

    found at keyways cut into shafts.  In this case however, lineshafts are threaded and do not have 

    keyways.  Hence Goodman design factor for lineshafts is 4.0 using stress concentration factor of  

    1.5 for threads.  The top shaft does have a keyway at the three piece motor coupling and 

    requires the 3.0 stress concentration factor. 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    31/306

     

    Page | 6 

    The stress analysis and fatigue evaluations were performed using a modified Goodman 

    equation and Gerber equation. Shaft stress is 32630 psi with stress concentration; alternating 

    stress is 218 psi using an amplitude ratio of  2%.  Goodman design factor is 2.02 after stress 

    concentration; 

    Goodman 

    design 

    factor 

    is 

    6.0 

    without 

    stress 

    concentration. 

    These 

    values 

    are 

    acceptable. A chart of  this data is shown in Figure 3A. 

    Figure 3A: Fatigue Life Chart  – Lineshafts & Pump Shaft 

    TORSIONAL ENDURANCE EQUATIONS  – MOTOR SHAFT 

    Shear Endurance Strength 

      6,426  ∙  ∙  ∙  ∙  ∙  ∙ ′ 

      0.886    0.736  

      0.577  

      1.00    0.67    0.75 99.9%  ′   34,000    50,250 ∙ 0.75 

      73    3,628  

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    32/306

     

    Page | 7 

      ∙    ∙∙

    ∙ 

     

     

     

     ∙ 1  

     

    Minimum motor shaft diameter is 3.875” at the coupling, that diameter is used in fatigue 

    calculations. 

    Examination of  Flowserve’s bowl power curve shows that design head and flow are identical to 

    maximum horsepower consumed by the pump. A small amount of  additional power is 

    consumed by shaft friction losses.  Goodman design factor is 4.0 at 782 hp. 

    Stress concentration factor as used in calculations is 3.0. 

    The stress analysis and fatigue evaluations were performed using a modified Goodman 

    equation and Gerber equation. Motor shaft stress is 10885 psi with stress concentration; 

    alternating stress is 218 psi using an amplitude ratio of  2%. Goodman design factor is 4.0 after 

    stress concentration. These values are acceptable. A chart of  this data is shown in Figure 3B. 

    Figure 3B: Fatigue Life Chart  – Motor Shaft 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    33/306

     

    Page | 8 

    ANGULAR 

    VELOCITY 

    vs. 

    TORQUE 

    The Holzer

     method

     for

     finding

     the

     natural

     frequencies

     of 

     a rotating

     assembly

     requires

     setting

     

    up spring equations and making iterative changes to an assumed angular input velocity to find 

    values where residual motion at the other end of  the assembly is zero. In other words, there is 

    no torque available to rotate anything that may be attached to the end of  the last shaft. When 

    residual torque is zero the assembly is vibrating in resonance with the input frequency. 

    Figure 4 is a graph of  these iterations. Each location where the plotted line crosses zero is a 

    natural frequency of  the system. 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    34/306

     

    Page | 9 

    Figure 

    4: 

    Angular 

    Velocity 

    vs 

    Torque 

    Figures 5 through 8 represent twisting of  the shaft along its length at one natural frequency. 

    These plots show relative angular displacement, not lateral motion. The point where rotary 

    vibration is minimum is located where the angular displacement line crosses zero. Maximum 

    stress occurs where line slope is maximum. 

    ‐8E+11

    ‐7E+11

    ‐6E+11

    ‐5E+11

    ‐4E+11

    ‐3E+11

    ‐2E+11

    ‐1E+11

    0

    1E+11

    2E+11

    0 500 1000 1500 2000 2500 3000

         R    e    s     i     d    u    a     l     T    o    r    q    u    e ,

         U    n     i    t     l    e    s    s

    Angular Velocity, Radians/Sec

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    35/306

     

    Page | 10 

    Figure 

    5: 

    1st

     

    Mode 

    Shape: 

    516 

    CPM 

    (53.97 

    rad/sec) 

    Figure 6: 2nd

     Mode Shape: 8728 CPM (914.01 rad/sec) 

    ‐4

    ‐3.5

    ‐3

    ‐2.5

    ‐2

    ‐1.5

    ‐1

    ‐0.5

    0

    0.5

    1

    1.5

    1 2 3 4 5 6 7

         R    e     l    a    t     i    v    e     A    n    g    u     l    a    r     D     i    s    p     l    a    c    e    m    e    n    t

    Shaft Sections, Motor to Bowl

    8.59 

    Hz

    ‐500

    ‐400

    ‐300

    ‐200

    ‐100

    0

    100

    1 2 3 4 5 6 7

         R    e     l    a    t     i    v    e     A

        n    g    u     l    a    r     D     i    s    p     l    a    c    e    m    e    n    t

    Shaft Sections, Motor to Bowl

    145.47 

    Hz

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    36/306

     

    Page | 11 

    Figure 

    7: 

    3rd

     

    Mode 

    Shape: 

    16750 

    CPM (1754.01 rad/sec) 

    Figure 

    8: 

    4rd

     

    Mode 

    Shape: 

    25898 

    CPM (2712.01 rad/sec) 

    CONCULSION 

    There are no torsional excitation modes within 20% of  this unit’s run speed. Shafting was 

    subjected to fatigue analysis and passed. 

    ‐1500

    ‐1000

    ‐500

    0

    500

    1000

    1500

    1 2 3 4 5 6 7

         R    e     l    a    t     i    v    e     A    n    g    u     l    a    r     D     i    s    p     l    a    c    e    m    e    n    t

    Shaft Sections, Motor to Bowl

    279.16 

    Hz

    ‐4000

    ‐3000

    ‐2000

    ‐1000

    0

    1000

    2000

    3000

    4000

    1 2 3 4 5 6 7

         R    e     l    a    t     i    v    e     A    n    g    u     l    a    r     D     i    s    p     l    a    c    e    m    e

        n    t

    Shaft 

    Sections, 

    Motor 

    to 

    Bowl

    431.63 

    Hz

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    37/306

     

    Page | 12 

    References 

    (1) Nestorides, E.J.,  A Handbook  on Torsional  Vibration,Cambridge Press (1958). 

    (2) Shigley, J.E., Mischke, C.R., Budynas, R.G., Mechanical  Engineering Design, McGraw‐Hill, 

    Seventh Edition

     (2004).

     

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    38/306

    Da 

    440 / 

    Document 1

    Rev. E (Dec 2

    Overvi

     

    Metrix 44

    provide ec

    vibration 

    use in non

    hazardous 

    internal el

    explosion‐

    Div 1 haza

    Options ar

    electrome

    to be used

    machine u

    provide a 

    discrete o

    independ

    discrete o

    (pre‐shutd

    separate 4

    provided 

    to PLCs, D

    control sy

    trended. 

    Vibration 

    velocity u

    an interna

    housing, p

    functionali

    use an ext

     

    * NOTE:

     Haz

    external sen

    or SM6100 i

    with a variet

    7295 and ex

     

    ash50 Elect

    04730 

    013) 

    ew 

    and 450 elec

    onomical, self 

    rotection.  Th

    ‐hazardous as 

    areas.  The 45

    ctronics as th

    proof  enclosu

    rdous areas. 

    e available for

    chanical relay 

    in an auto‐sh

    nder high vibr

    ingle alarm se

    tput.  DR vers

    nt alarm setp

    tputs, allowin

    own) and DA

    ‐20 mA propo

    n all switch m

    Ss, strip chart

    tems where v

    n both switch

    its.  The stand

    l acceleromet

    roviding comp

    ty.  The switc

    ernal accelero

    ardous area

     appr

    or is used with th

    stead, which are 

    of  external sens

    losion‐proof  wiri

    et ronic Vib

    ronic vibratio

    ‐contained, si

    e 440 switch is

    well as Class I 

    0 switch utiliz

    e 440, but fea

    e styles suitab

     electronic (tri

    outputs, allow

    tdown circuit

    ation conditio

    tpoint and cor

    ions provide t

    ints and corr

    g implementa

    GER (shutdo

    rtional output 

    odels, allowin

     recorders, or 

    ibration levels 

    es is monitore

    ard configurat

    r mounted in

    letely self ‐con

     may also be 

    meter if  desire

    vals are

     not

     avail

    e model 440.  Con

    approved for use i

    r types when Me

    g practices are u

    ration S

     switches 

    gle‐channel 

    suitable for 

    Div 2 

    s the same 

    ures 

    le for Class I 

    ac or FET) or 

    ing the switch

     that trips the 

    s.  SR version

    responding 

    sponding 

    ion of  ALERT 

    n) levels.  A 

    is also 

    connection 

    other process 

    can be 

    d in RMS 

    ion consists o

    ide the switch

    tained 

    onfigured to 

    d.* 

    ble when

     an

     

    sider models 450 

    n hazardous area

    rix sensor housin

    ed. 

    itches 

     

    Ap

    Vibr

    of  t

    440 Switch 

    The 440 switc

    approved for

     

    Div 2 hazardo

    enclosure car

    rating and us

    mounting pat

     

    450 Switch 

    The 450 switc

    internal elect

    but uses an e

    enclosure tha

    approved use 

    areas. The sta

    (4‐hole moun

    only available 

    cover.  The al

    (2‐hole moun

    only available 

    cover. Both e

    carry NEMA 4

     

    plicatio

    ation switches

    e following cr

    Only one or t

    required on

     a 

    A fully self ‐co

    required (sen

    alarming, and 

    Sufficient roo

    switch on the 

    and in the cor

    vibration leve

    h is CSA 

    use in

     Class

     I 

    us areas.  Its 

    ries a NEMA 4

    s a 3‐hole 

    tern. 

    h has the sam

    onics as the 4

    plosion‐proof 

    t permits CSA‐

    in Class I Div1 

    ndard enclosu

    ting pattern) i

    with a solid 

    ernate enclos

    ting pattern) i

    with a windo

    closure styles

    X ratings. 

    are an attract

    iteria apply: 

    o measurem

    machine. 

    ntained appro

    sing element, 

    outputs). 

    m exists to mo

    machine in th

    rect orientati

    ls indicative of 

     

    0, 

    re 

    ure 

    ive solution w

    nt points are 

    ach is desired 

    ignal conditio

    unt a vibratio

    e correct locat

    n such that th

     machinery 

    450 

    EXPL

    ENCLOSU

    450 (ALTERNA

    PROOF EN

    WINDO

    440 (NEMA 4X 

    hen all 

    or 

    ning, 

    ion 

    (STANDARD 

    SION PROOF 

    E, SOLID COVE

    TE EXPLOSION 

    CLOSURE, 

    COVER) 

    ENCLOSURE) 

    R) 

    81

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    39/306

     

    Document 1

    Rev. E (Dec 2

    malfu

    switc

      The fe

    syste

    financ

      A 4‐2

    impra

    or oth

    monit

    In situatio

    cannot be 

    may be m

    transmitte

    external s

    monitorin

    Seismic 

    M440/450 e

    for genera

    on a wide 

    machinery

    and 6,000 

    particularl

    rolling‐ele

    such mach

    the bearin

    substantia

    transducedoes not o

    related w

    problems, 

    machine, 

    of  seismic 

    protecting 

    the shaft v

    to the me

    given to th

    before rel

    measurem

    Why Mea

    When a d

    vibration 

    velocity is 

    Accelerati

    influenced

    04730 

    013) 

    nctions will ac

     mounting loc

    atures of  a m

     are not nece

    ially  justified. 

    mA vibration 

    ctical because

     

    er instrument

    oring the tran

    s where one 

    met, Metrix o

    re appropriat

    rs, single‐cha

    nsor, and mul

     systems. 

    easurements 

    lectronic vibra

    l‐purpose seis

    range of  rotati

     with rotative 

    rpm.  Seismic 

    well‐suited f 

    ent bearings 

    ines is usually 

    g to the beari

    l damping or a

    are 

    also 

    ablriginate at the

    ar and defect

    piping resona

    tc.  Metrix do

    measurement

    machinery wi

    ibration many

    surement loc

    e efficacy of  s

    ing substanti

    ents. 

    ure Velocity? 

    cision has be

    n the machin

    often the best

    n and displac

     by the freque

    Da

    ually be meas

    ation. 

    lti‐channel m

    ssary and can

     

    transmitter is 

    a PLC,

     DCS,

     S

    ation is not av

    mitter signal. 

    r more of  the

    fers other sol

    e, such as vibr

    nel monitors t

    ti‐channel API

    tion switches 

    ic vibration 

    ng and recipr

    speeds betwe

    measurement

    or machines t

    because shaft

    transmitted d

    g housing, wit

    ttenuation. Se

     

    to 

    measure 

    v shaft, such as

    , footing/ fou

    ces that are c

    es not recom

    s as the sole 

    h fluid‐film b

     not be faithfu

    tion.  Though

    uch a monitori

    lly or solely u

    n made to mo

     casing or sup

     parameter to 

    ement levels a

    ncy(ies) at wh

    tasheet  – 440 & 4

    urable at the 

    nitoring 

    ot be 

    ndesirable or

    ADA system,

     

    ilable for 

    se criteria 

    tions that 

    ation 

    hat accept an 

    670‐complian

    re intended 

    easurements

    cating 

    n 120 rpm 

    are 

    at incorporat

     vibration in 

    irectly throug

    hout 

    ismic 

    ibration 

    that 

    bearing‐

    dation 

    oupled to the 

    end the use 

    eans of  

    arings where 

    lly transmitte

     should be 

    ng strategy 

    on seismic 

    nitor seismic 

    port structure

    use. 

    re heavily 

    ich the 

    50 Electronic Vibr

     

    vibr

    less 

    and 

    mat

    to b

    freq

    Con“ov

    app

    relia

    the 

    bea

    shaf 

    Casi

    to 

    seis

    deciusu

    casi

    will 

    a m

    ene

    med

     

    tran

    the 

    bou

    prox

    mon

    For 

    spee

    vibr

    mea

    recosales

    assis

    asso

     

    ation Switches 

    tion is occurr

    influenced. T

    displacement 

    hematically, s

    e more consis

    uencies than 

    sequently, bro

    rall” or “unfilt

    opriate for m

    ble indicator 

    notable excep

    ings, which ar

    t‐observing pr

    ng displaceme

    ake directly, 

    ic velocity m

    sion when

     sel

    lly be whethe

    g acceleratio

    often be more

    re reliable in

    gy over a bro

    ium‐speed m

    NOTE: 

    For machine

    observing p

    effective vib

    ducers due to t

    ttenuation of  vi

    dary.  Accordin

    imity probes an

    itoring systems 

    achines with r

    ds above 6,000 

    tion occurs, ac

    surement than 

    mmended that

     professional w

    t with selection 

    ciated transmitt

    ing, while velo

    us, although a

    measurement

    ismic velocity

    ent over a wi

    ither displace

    adband (som

    ered”) velocit

    onitoring man

    f  damaging vi

    tion of  machin

    e usually bett

    oximity probe

    nt is not a pra

    nd is typically 

    easurement. 

    cting a seismi

    r to measure 

    .  As noted a

     appropriate 

    icator of  dam

    d frequency s

    chinery. 

    s with fluid‐film

    oximity probes

     

    ration measure

    he rotor dynam

    ibratory energy 

    gly, Metrix reco

    d associated 4‐

    for such applica

    lling element b

    rpm, and/or wh

    eleration may b

    elocity.  In such

    ou consult

     wit

    ho can review y

    of  the proper t

    er or monitorin

    Pag

    city levels are 

    cceleration, v

    s are all inter‐

     measuremen

    e range of  

    ment or accel

    times called

     

    measureme

     machines as 

    bratory energ

    es that use flu

    r addressed b

    s. 

    ctical measur

     just an integr

    s such, the p

    c measureme

    asing velocity 

    ove, casing v

    ecause it ten

    aging vibrator

    pectrum for l

     bearings, shaft

    will provide

     mo

    ments than seis

    ics of  the machi

    through a fluid‐

    mmends and pr

    0 mA transmitt

    tions. 

    earings and run

    ere impulsive c

    e a better 

    situations, it is 

    your nearest

     our application 

    ansducer type 

    g system. 

    2 of  16 

    much 

    locity, 

    related 

    s tend 

    ration. 

    ts are 

    , with 

    id‐film 

    ment 

    ted 

    imary 

    t will

     

    or 

    locity 

    s to be 

    w‐ to 

    re 

    mic 

    ne and 

    film 

    ovides 

    ers or 

    ning 

    asing 

    etrix and 

    nd 

    82

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    40/306

     

    Document 1

    Rev. E (Dec 2

    Featur

      One o

    The u

    one f 

    applic

    annu

    and/o

    appro

    machi

    with o

    pre‐s

    outpu

    devic

    limits 

    *The 4

    over/u

     

      LOCK

    An op

    suppr

    startu

    elevat

    condit

    specif 

    switc

    allowi

    rough 

    speed

    or trip

    or del

    speed

    affect

    allowi

    and tr

     

    * NOTE

    cannot 

    availabl

     

      Accep

    When

    the s

    rathe

    exter

    applic

    04730 

    013) 

    es and B

    r two indepe

    e of  two setp

    r SHUTDOWN

    ations where i

    ciate an ALER

    r maintenanc

    priate interve

    ne reaches SH

    nly a single se

    utdown warn

    t is connected 

    , and appropr

    are program

    0/450 switch pro

    der) alarms.

     

    UT (Power‐U

    ional LOCKO

    ssing alarm a

    p conditions 

    ed compared 

    ions.  When t

    ied, applying (

     suppresses al

    ng the machin

    running zone

     

    /load without 

    s, and withou

    ays that are su

     of  the machi

    ed while the s

    ng actual vibr

    ended at all ti

    : This delay is set 

    be adjusted in th

    e upon

     request

     a

    ts Internal or 

    ordered with 

    itch accepts a

     than using an

    al sensor opti

    ations as it all

    Da

    enefits 

    dently adjust

    ints* (one for

    ) is recommen

    t is desirable t

     condition to 

    personnel.  T

    tion to occur 

    UTDOWN leve

    tpoint are not 

    ings unless the

    to a PLC or ot

    iate pre‐shutd

    ed in the PLC. 

    ides only over‐ty

    p Alarm Inhibi

    T capability is 

    ctivation durin

    hen vibration 

    o normal run

    e LOCKOUT o

    or cycling) po

    arms for 20 s

    e to accelerat

    and reach

     ope

    generating sp

     the need to a

    itable for nor

    e.  The 4‐20m

    itch is in LOC

    tion levels to 

    es. 

    at the factory for 

    field.  Other dela

     Engineering

     Spe

    External Sens

    the external s

    n external acc

     internal accel

    on is recomm

    ws the senso

    tasheet  – 440 & 4

    ble setpoints

     ALERT and 

    ded for 

    o remotely 

    operators 

    his allows 

    before the 

    ls.  Switches 

    capable of  

    4‐20mA 

    er trending 

    own alarm 

    pe (not 

    t) capabilities

    available for 

    g machine 

    levels may be 

    ing 

    ption is 

    er to the 

    conds*, 

    through its 

    rating 

    rious alarms 

    lter setpoints 

    al running 

    output is no

    KOUT mode, 

    be displayed 

    0 seconds and 

    y times may be 

    ials. 

    nsor option, 

    elerometer 

    erometer.  Th

    nded for mos

     to be 

    50 Electronic Vibr

     

    ation Switches 

    mounted at t

    orientation o

    the larger mo

    switch compa

    vibration swit

    convenient lo

    Also, althoug

    survive harsh 

    and corrosion

    elevated tem

    location.  Use 

    temperatures 

    sensor locatio

    vibration swit

     

    When an exte

    internal accel

    completely se

    the switch to 

    measurement

    integrated ac

    configuration 

    room at the 

    switch, when 

    allows the sw

    serviced by pl

    switch’s inerti

    quality of  the 

    RMS amplitu

    True RMS det

    amplitude of  

    choice for ma

    overall vibrati

    waveform wit

    short‐duratio

    the wavefor

    trips on some 

    Easy to wire

    VDE‐approve

    accept #12 A

    Terminals use

    adjustable cla

    provide secur

    proof  connec

    e ideal meas

     the machine,

    unting footpri

    red to a senso

    ch to be moun

    cation for vie

     the

     440/450

     

    environments 

    , some machi

    eratures at th

    of  an external

     as high as 121

    n and 88° C (1

    ch location. 

    rnal sensor is 

    erometer can 

    lf ‐contained

     o

    be mounted d

     location and 

    eleration (vel

    is suitable wh

    easurement l

    the measure

    itch to be con

    ant personnel,

    al mass will n

    vibration mea

    e detection 

    ection is used 

    he vibration s

    ny machines a

    on energy con

    hout being ov

     “spikes” that

     and can lead 

    machines. 

    terminal stri

    G wire. 

    screw‐

    mping yoke to

    e, vibration‐

    ions. 

    Pag

    rement locati

     without conc

    t of  the vibra

    r.  It also allo

    ted in a more 

    ing and servi

    is packaged

     to

     of  dust, moist

    es may exhibi

    e preferred s

     sensor can all

    ° C (250° F) at

    90° F) at the 

    not practical, 

    e specified fo

    peration. This

    irectly at the 

    onitor vibrat

    city) units.  T

    en there is suf 

    ocation to mo

    ent location s

    eniently view

     and when th

    t compromis

    surement. 

    to measure th

    ignal.  RMS is 

    s it is sensitive

    tained in the 

    erly sensitive t

     may be conta

    to spurious al

    3 of  16 

    on and 

    ern for 

    ion 

    s the 

    ing. 

    ure, 

    nsor 

    ow 

    the 

    allows 

    ion in 

    is 

    ficient 

    unt the 

    till 

    ed and 

    the 

    good 

    to the 

    ined in 

    rms or 

    83

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    41/306

     

    Document 1

    Rev. E (Dec 2

     

      Simpl

      Flexib

    Discre

    annu

    switc

    04730 

    013) 

    , intuitive op

    Setpoint a

    color‐code

    between S

    ALARM (yel

    scale is

     gra

    percent) to 

    scale range

     

    LEDs adjac

    light imme

    above its s

     

    Independe

    screws are 

    each setpo

    3 seconds; 

    2‐15 secon

    spurious vi

    in false ala

    persist abo

    time delay 

    TEST positi

    allowable s

    activate LE

    persist 

    lonALARM an

    activate als

    to be teste

    le Discrete Ou

    te outputs ar

    ciate alarm co

     as part of  an 

    Da

    eration 

     justment kno

     to easily disti

    UTDOWN (re

    llow) settings. 

    uated in

     in/s

    quickly conve

    nt to each adj

    iately when a

    tpoint1. 

    nt time delay 

    provided imm

    nt knob.  Pres

    adjustable in t

    s. Time delay

    ration signals

    ms  – measure

    e setpoint fo

    o activate ala

    on forces mini

    etpoint; any vi

     immediately

    er 

    than 

    time 

    SHUTDOWN 

    o, allowing dis

    tput Types 

    used to exter

    nditions and t

    auto‐shutdow

    tasheet  – 440 & 4

    bs are 

    nguish 

    d) and 

    Adjustment 

    c (rather

     than

     switch full 

    ustment knob

     reading is 

    djustment 

    ediately belo

    et at factory t

    he field from 

    s ensure that 

    do not result 

    ment must 

    duration of  

    rm circuitry.

    mum 

    bration will 

    ; if  allowed to 

    elay, 

    the 

    utputs will 

    crete outputs 

    nally 

    o use the 

    n (i.e., trip) 

    50 Electronic Vibr

     

    ation Switches 

    circuit.  Switc

    discrete outp

    provide two d

    and one for S

    individually fi

    time delays a

    alarm or

     clos

    available disc

    specified at ti

    o  Mechani

    Mechani

    most app

    holding c

    state, ha

    used to s

    Relays ar

    o  Triacs 

    Triacs ar

    heavy AC 

    where m

    very high 

    recomm

    and are s

    output w

    PLC or D

    o  Solid‐Sta

    Solid‐stat

    applicati

    will be

     co

    PLC or D

    require n

    smaller l

    off  state. 

    not used,

    plated co

    with mec

    avoided. 

    Analog 4‐20

    All switches c

    proportional t

    4mA= 0% of  f 

    20mA = 100% 

    easy connecti

    other instrum

    display of  vib

    feature allow

    es with one s

    t.  Switches 

    iscrete output

    UTDOWN.  T

    ld‐configured

    d separate sh

     on

     alarm).

     A

    ete output fo

    me of  orderin

    al Relays 

    al relays are a

    lications as th

    urrent to rem

    e no leakage 

    itch a large v

    e SPDT and rat

     specifically

     in

    loads such as 

    mentary inru

    during startu

    nded for most

    pecifically disc

    ill connect to l

    S. 

    e (FET) Relay

    e relays are d

    ns where the 

    nnected to

     a l

    S.  Unlike tria

    o holding curr

    akage current

    Because mec

     arcing, oxidat

    ntacts, and ot

    hanical relays 

    A output stan

    me with an a

    o vibration ve

    ll scale (no vi

     of  full scale. 

    on to PLCs, SC

    entation for tr

    ation values. 

    users to easil

    Pag

    etpoint provid

    ith two setpoi

    s  – one for AL

    e outputs ca

     to have separ

    elf  states (ope

    y one

     of 

     thre

    mats can be 

    good choice f 

    y do not requ

    in in a particu

    urrent, and c

    ariety of  loads

    ed for 10A. 

    tended for

     sw

    electric motor

    sh current can

    .  They are no

     other applica

    ouraged whe

    ight loads suc

     

    signed prima

    discrete outp

    ight load,

     such

    s, solid‐state 

    nt and have 

    s (10 µA) whe

    anical contact

    ion, use of  gol

    er issues ass

    and light load

    dard 

    nalog 4‐20mA 

    locity where 

    ration) and 

    his output fa

    DA systems, 

    ending and re

    The “live zero

    y distinguish 

    4 of  16 

    e one 

    nts 

    RM 

    be 

    ate 

    n on 

    or 

    ire any 

    lar 

    n be 

    itching 

    be 

    tions, 

    the 

    as a 

    ily for 

    t(s) 

    as a 

    elays 

    uch 

    n in the 

    s are 

    d‐

    ciated 

    are 

    output 

    ilitates 

    and 

    mote 

    84

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    42/306

     

    Document 1004730  Datasheet  – 440 & 450 Electronic Vibration Switches  Page 5 of  16 

    Rev. E (Dec 2013) 

    between no vibration (4mA) and no power or 

    loop discontinuity (0mA). The output also 

    provides its own power, eliminating the need for 

    external 24Vdc loop supplies and allowing use of  

    “sinking” type I/O modules at the PLC, DCS, strip 

    chart recorder, or other instrumentation. 

      Remote Reset 

    Terminals are provided for remote reset, 

    allowing operators to reset the switch and 

    acknowledge alarms without leaving their 

    station. 

      No moving parts, high accuracy/repeatability 

    Unlike mechanical vibration switches, electronic 

    switches have no moving parts and do not rely 

    on internal mechanical tolerances for 

    establishing setpoints or measuring vibration. 

    Setpoints can be established with far better 

    accuracy and repeatability, and much smaller 

    changes in vibration can be detected. 

      Velocity Monitoring 

    Unlike mechanical switches which are inherently 

    acceleration sensing devices and require large 

    changes in g‐forces to trip, Metrix electronic 

    vibration switches sense vibration velocity  – a 

    more suitable measurement for most machines, 

    better able to detect both gross and subtle 

    changes in machinery condition.  Velocity is 

    monitored over a wide frequency band from 2Hz 

    to 1000Hz. 

    Specifications 

    All specifications are at +25C (+77° F) unless 

    otherwise noted. 

    Freq. Range  2  – 1000 Hz (120  – 60000 rpm)

    Amplitude 

    Range 

    See ordering option C (full scale 

    range) 

    Amplitude 

    Detector Type 

    RMS 

    Alarm Time 

    Delay 

    Field adjustable from 2‐15 seconds

    (factory default setting = 3 sec) 

    Analog Output Type

    4‐20mA (4mA=0% full scale, 

    20mA=100% full scale) 

    Accuracy 

    ±10%

     

    Max Allowable Load Resistance

    450 ohms 

    Setpoints Adjustment Location 

    Internally Accessible 

    Accuracy 

    ±10% of  setting 

    Repeatability 

    ±2% of  setting 

    Range / Engineering Units

    1.5 in/s models: 0.1 to 1.5 in/s

    3.0 in/s models: 0.2 to 3.0 in/s 

    40 mm/s models: 3 to 40 mm/s 

    80 mm/s models: 6 to 80 mm/s 

    Number 

    DR models: 2  (alarm & shutdown)

    SR models: one (shutdown only) 

    Power‐up 

    Timed Inhibit 

    (i.e., Lockout) 

    Optional (see ordering option H); 

    factory set at 20 seconds (non‐

    adjustable); invoked at initial 

    power up or by interrupting power 

    to the switch Auto Reset   Configurable; switch can be 

    configured with latching alarms 

    requiring manual reset or non‐

    latching alarms that automatically 

    reset when vibration falls back 

    below setpoint(s) 

    Remote Reset   Available via wiring terminals; 

    short terminals to 

    reset/acknowledge alarms. 

    Local Reset Model 440: Optional via local 

    pushbutton on switch housing (see ordering option F); remote reset 

    not available when local reset 

    specified. Local reset not 

    compatible with hazardous area 

    approvals. 

    Model 450: Local reset pushbutton 

    not available. 

    85

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    43/306

     

    Document 1004730  Datasheet  – 440 & 450 Electronic Vibration Switches  Page 6 of  16 

    Rev. E (Dec 2013) 

    Contact 

    Ratings 

    Triacs 

    Continuous 

    Current 

    5A 

    Surge & 

    Overload (Duty 

    cycle 

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    44/306

     

    Document 1004730  Datasheet  – 440 & 450 Electronic Vibration Switches  Page 7 of  16 

    Rev. E (Dec 2013) 

    Elevation Limit  2,000 m (6562 ft) above sea level

    Max. operating temperature must 

    be de‐rated 2% for every 305m 

    above 2000m 

    NOTE: Atmospheric pressure at elevations 

    ≥ 2000m reduces heat dissipation and must 

    be 

    accounted 

    for 

    when 

    determining 

    max. 

    operating temperature. 

    Mounting  Model 440: 

    3‐hole triangular pattern via 

    mounting bosses; uses ¼” 

    hardware; see Figure 1 

    Model 450 w/ solid cover (F≠9): 

    4‐hole square pattern; uses ¼” 

    hardware; see Figure 2. 

    Model 450 w/ lens cover (F=9): 

    4‐hole square pattern; uses ¼” 

    hardware; see Figure 2. 

    Agency 

    Certifications 

    Model 440: 

    CSA 

    Cl I Div 2 Grps B‐D

     

    Model 450: 

    CSA 

    Class I Div 1 Grps B,C,D 

    Class II Div 1 Grps E,F,G

    Class III 

    Weight  Model 440: 1.6 kg (3.5 lbs)

    Model 450: 2.7 kg (6.0 lbs) 

    87

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    45/306

     

    Document 1

    Rev. E (Dec 2

    Orderi

     

    440‐A‐BC

      440 Electr 

    S

      D 

    0  1

      2

      3 

    0

      2

      4 

    0

      1

      2

     4

    04730 

    013) 

    ng Infor

    E‐FGHI1 

    nic Vibration S 

    Number o 

    One alarm 

    R  Two alarm 

    Analog Pr 

    4‐20 mA(a 

    Scale Rang 

    0.1 

     – 

    1.5 

    in  0.2  – 3.0 in

      3  – 40 mm

      6  – 80 mm 

    Shutdown 

    Triac (5A, 

    Solid‐state 

    Electrome 

    Alarm Circ 

    None 

    Triac (5A, 

    Solid‐state 

    Electrome

    Da

    ation 

    witch 

    Alarm Setpoin

    setpoint 

    setpoints 

    portional Outp

    bsolute)4 

    e4 

    /sec 

    (RMS) 

    /sec (RMS) 

    /sec (RMS) 

    /sec (RMS) 

    Circuit Output5

    PST)6 

    switch (170 mA

    hanical relay (1

    uit Output2,5 

    PST)6 

    switch (170 mA

    hanical relay

     (1

    tasheet  – 440 & 4

    s2,3 

    ut 

    ,6 

    , 250 Vpk)7

    0A, SPDT) 

    , 250 Vpk)7

    0A, SPDT)

     

    50 Electronic Vibr

     

    SEE 

    ation Switches 

    OTES ON FOLLO

      Appro

    CSA A

     No

     ext

      No BN

    No Ap

      Extern

      No BN

    No Ap

      No ext

      Extern

    No Ap

      Extern

      Extern

      Input 

    0  115 Va

    230 Va

    2  24 Vdc

      Power

    0  None 

    2  20‐sec 

    Transd

    0  Intern

    5  Extern

    ING PAGE 

    vals / External 

    provals (Class I,

    ernal reset

     push

    C connector 

    rovals 

    al reset pushbut

    C connector 

    rovals 

    ernal reset push

    al BNC with 100 

    rovals 

    al reset pushbut

    al BNC with 100 

    Power

    c, 50/60 Hz 

    c, 50/60

     Hz

     

    ‐up Timed Inhi

    delay12

    ucer Option 

    l Acceleromete

    al Acceleromete

    Pag

    eset / BNC co

     Div 2, Gps B‐D)

    button 

    ton9 

    button 

    mV/g accel sig

    ton9 

    mV/g accel sig

    it (i.e., LOCKO

    r13 

    8 of  16 

    nector8

     

    al10 

    al10

     

    T)11

    88

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    46/306

     

    Document 1004730  Datasheet  – 440 & 450 Electronic Vibration Switches  Page 9 of  16 

    Rev. E (Dec 2013) 

    MODEL 440 ORDERING INFORMATION NOTES: 

    1.  Various other configurable options were available on 

    older Metrix or PMC/BETA 440 switches and may use 

    other digits and/or longer part numbers than those 

    shown here.  Consult the factory when ordering spares 

    for (or replacing) such switches. 

    2.  When a single alarm setpoint is ordered (A = SR), only a 

    shutdown circuit is provided and option E must be 0. 

    3.  Some older switches may simply be labeled “S” instead 

    of  “SR” and “D” instead of  “DR”. 

    4.  The analog proportional output (option B) is related to 

    scale range (option C) and will be 4mA when vibration 

    levels are at or below the bottom scale range.  4 mA = 

    bottom scale range and 20 mA = top scale range. 

    5. 

    For dual setpoint switches, the type of  output for 

    shutdown and alarm circuits must be the same.  For 

    example, a 440‐DR switch with a Triac shutdown circuit 

    (D=0) must also use a Triac alarm circuit (E=1). 

    6.  Triac output types are recommended when switching 

    medium power rated AC devices such as motor starters, 

    contactors, 

    and 

    relays. 

    However, 

    triacs 

    require 

    50mA 

    holding current and exhibit a leakage current of  1mA. 

    7.  Solid‐state switch output types are recommended for 

    connection to light loads such as discrete inputs on 

    PLCs or DCSs.  This output type is easier to interface as 

    it has virtually no leakage current (10 µA or less), and 

    does not require any holding current.  It also switches 

    AC or DC signals equally well. 

    8.  Approvals are not available when an external reset 

    pushbutton and/or BNC connector and/or external 

    accelerometer is specified. 

    9.  When an external reset pushbutton is supplied, the 

    remote reset terminals are not available for wiring. 

    10. 

    Although the switch monitors in RMS velocity units, the 

    signal at the optional BNC connector is unfiltered 

    100mV/g acceleration directly from the sensing 

    element. 

    11.  The optional Power‐up Timed Inhibit (LOCKOUT) 

    feature is invoked by initial application of  (or cycling) 

    primary power to the switch.  This feature inhibits 

    alarms from activating for 20 seconds.  This feature is 

    used primarily as a “startup delay” capability for 

    machines that exhibit elevated vibration levels during 

    startup relative to normal running levels.  To invoke 

    the feature in this manner, power to the switch should 

    be applied (or cycled) concurrent with machine startup. 

    12. 

    20‐sec delay is factory set and not adjustable.  Power‐

    up Inhibit state is not annunciated externally and the 

    switch will automatically resume normal alarming 

    functions after 20 seconds have elapsed. 

    13. 

    The external sensor option is not compatible with 

    hazardous area approvals.  Consider use of  model 450 

    or SM6100 instead and mount external sensor in Metrix 

    explosion‐proof  housing 7295‐002. 

    89

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    47/306

     

    Document 1

    Rev. E (Dec 2

    Outlin

     

    04730 

    013) 

    e Diagra

    Da

    Figure 

    (t

    tasheet  – 440 & 4

    1  – Model 4

    p cover rem

    50 Electronic Vibr

     

    0 Electronic 

    oved depicts

    ation Switches 

    Vibration S

     DR model).

    itch 

    Page 12 of  16 

    90

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    48/306

     

    Document 1

    Rev. E (Dec 2

    Produ

     

    Figure 4  ‐

    Figure 6  – 

    p

    04730 

    013) 

    t Photo

    Model 440‐

    Model 440 

    ushbutton (

    Da

     

    R with cove

    ith optional

    ption F=2 or 

    tasheet  – 440 & 4

    r removed. 

    local reset 

    8) 

    50 Electronic Vibr

     

    ation Switches 

    igure 5  ‐M

    Figure 7  – M

    output B

    del 450‐SR 

    F≠9  re

    odel 440 wit

    C connector 

    Page 

    ith standar

    moved.

    h optional b

    (option F=7 

    15 of  16 

    dome cove

    ffered 

    or 8) 

    91

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    49/306

     

    Document 1

    Rev. E (Dec 2

     

    Metrix In

    8824 Fall

    Houston,

    (281) 94

    www.me

    info@me

     

    Trademarks 

    respective o

    Data and

     sp

    notice. 

    © 2013 Met

    04730 

    013) 

    strument Co

    brook Drive 

    TX 77064 US

    ‐1802 

    trixvibration.

    trixvibration.

    used herein are t

    ners. 

    cifications subjec

    rix Instrument Co

    Da

     

    mpany 

    com 

    com 

    e property of  the

    t to

     change

     witho

    pany, L.P. 

    tasheet  – 440 & 4

    ir 

    ut 

    50 Electronic Vibr

     

    ation Switches  Page 16 of  16 

    92

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    50/306

     

    SMITH

    PUMP

    COMPANY, INC.

     

    301 M&B Industrial(800) 299-8909 (254) 776-0377

    Waco, Texas 76712FAX (254) 776-0023

    SPCO responses to submittal review comments

    Submittal No. 14AProject Number: 476399Specification: 44 42 56.03

    1 Vibration Switch: Indicate which options are to be furnished. Ordering information partnumber on page 3 does not meet the Specification requirements. Revise and resubmit.44 42 56.03 Paragraph 2.04. TH

    The cut sheet provided in the submittal is a general catalog sheet and not specific tothis or any project. The part number to be used on this specific project is as follows:376A-A3-C4-E. If there is another configuration that would be preferred please specify

    exactly which options would be preferred on this project.

    2 Footer correction: On pages 2 through 20 and any other page in the submittal thatincludes this error, the project title should be “Upper Trinity Regional Water DistrictThomas E. Taylor High Service Pump Station”.BB

    Noted: Correction has been made

    3 Page 4 (Table of Contents): Please clarify “may not be identical to the engineersspecifications” – Please disclose exactly what specification(s) will not match and why, at

    the beginning of this submittal.BB

    This is a general note in our submittal and does not reference any specific item, butshould apply to the whole submittal in general. All specific instances are clarified on thecomments and clarifications page.

    4 CLARIFICATION: Page 12: Revision 1 Submittal Comment #3. In section 2.01.F.6.bsays Hermetically sealed switch, if noted. Confirmation was requested that hermeticallysealed is not required for this application. Hermetically sealed switch is not required forthis application.

    TH

    Noted

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    51/306

    5 Based on last submittal response, all pump speed references should be consistentacross all instances and be 1193 rpm. Pages 29 and 33 of the submittal say 1185 rpm.BB

    Noted, corrections have been made.

    6 Test Procedure: Based on the flat pump curve between 8,000 and 11,000 rpm, duringpump testing, test at least at 1,000 gpm increments from 6,000 gpm to 16,000 gpm.BB

    Noted

    7 On the pump curve, the minimum continuous stable flow is identified; the maximumcontinuous stable flow should also be identified.BB

    The run out flow (~16,000 GPM) would qualify as the maximum continuous stable flow.

    8 On pump curve, bowl power is presumed to apply to the 20.61 in. rated diameterimpeller. Please confirm.BB

    Confirmed

    9 Confirm if FlowServe will be performing an NSPHr test.BB

    Flowserve will not be preforming NSPHr testing.

    10 Confirm if FlowServe will be testing with their suction strainer/vortex device.BB

    The vortex suppressor will not be attached during any of the testing.

    11 Testing Procedures: Procedure stated will be reading suction head with a ring on thesuction piping, which is not applicable for a VTP; should be measuring sump elevation.BB

    Noted

    12 Test Lab Layout: Alternate/optional location for control valve shown just upstream ofthe meter. This will not be allowed on test.BB

    Noted

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    52/306

    13 Page 83: Correct contractor name spelling on Discharge Head Engineering Analysisand Below Ground Dynamic Engineering Analysis; correct plant name spelling onTorsional Frequency Analysis and Discharge Head Reaction Loads pagesBB

    Noted. Corrections made.

    14 Motor is approved as submittedSH

    Noted. Motor was released 6-19-14 for production.

    15 Page 89 – Reed Frequency Results: Pump manufacturer shall proposemanufacturing modifications to change Modes 5 and 6 to be safely above the maximum1 X Mechanical running speed. VFD lockout of this frequency shall not be permitted.Reed frequencies of Modes 5 and 6 are too close to the maximum running speed of

    pumps.BB

    Noted. See attached revised analysis and additional information at end of analysis.

    16 Page 97 – Figure 2: Include 2 X Mechanical excitation frequency and verify nointersection within the defined Low (-20%) and High (+20%) operating speed range.Provide transient torsional stress calculation where 1 X Mechanical critical speed withMode 1 and demonstrate resultant alternating stress is within the Modified GoodmanLine with2:1 FS.TN

    Noted. See attached revised analysis.

    17 Page 98 – Figure 3: Indicate full calculation regarding the mean and alternating shaftstresses. Also, include transient shaft stress for the 1 X Mechanical and first naturalfrequency of the shaft demonstrating that shaft stress is below the Modified GoodmanLine with 2 SF. Further, provide UTS of shaft material used to determine the shaftendurance (y-axis) and ultimate shear (x axis) for the Goodman Diagram. Lastly,provide separate plot for the motor shaft.TN

    Noted. See attached revised analysis.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    53/306

    18 Page 104 – Base Reactions: Confirm axial load calculation incorporates additionalthrust from discharge piping associated with pipe stiffness and changes in diameterdownstream of the pump nozzle. Also, based on the structural Reed Frequency

     Analysis and operating vibration limits verify nozzle loadings are within the maximumlimits stipulated above.

    TN

    Confirmed. See attached revised analysis.

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    54/306

    Submittal 14A - VTP Full Comments

    SUBMITTAL REVIEW COMMENTS

    DATE: 6/2/14 PROJECT: Thomas E. Taylor HSPS and StoneHill PS Improvements Project

    SUBMITTAL

    NO.:14A PROJECT NUMBER: 476399

    SPECIFICATION

    SECTION:44 42 56.03 PAGE:  Page 1 of 2

    SUBMITTAL TYPE: SHOP DRAWINGS SAMPLE

    1. REVIEWED 3. PARTIAL APPROVAL, RESUBMIT AS NOTED

    2. REVIEWED AS NOTED 4. REVISE AND RESUBMIT

    5. INFORMATIONAL

    Item: Taylor HSPS VTP Full Submittal

    NO. COMMENT

    RELATED

    SPEC PARA./

    DRAWING

    REVIEWER’S

    INITIALS

    1 Vibration Switch: Indicate which options are to be furnished.

    Ordering information part number on page 3 does not meet the

    Specification requirements. Revise and resubmit.

    44 42 56.03

    Paragraph

    2.04.

    TH

    2Footer correction: On pages 2 through 20 and any other page in the

    submittal that includes this error, the project title should be “UpperTrinity Regional Water District Thomas E. Taylor High Service Pump

    Station”.

    BB

    3Page 4 (Table of Contents): Please clarify “may not be identical to the

    engineers specifications” – Please disclose exactly what specification(s)

    will not match and why, at the beginning of this submittal.

    BB

    4CLARIFICATION: Page 12: Revision 1 Submittal Comment #3. In

    section 2.01.F.6.b says Hermetically sealed switch, if noted.

    Confirmation was requested that hermetically sealed is not required for

    this application. Hermetically sealed switch is not required for this

    application.

    TH

    5 Based on last submittal response, all pump speed references should be

    consistent across all instances and be 1193 rpm. Pages 29 and 33 of the

    submittal say 1185 rpm.

    BB

    6Test Procedure: Based on the flat pump curve between 8,000 and

    11,000 rpm, during pump testing, test at least at 1,000 gpm increments

    from 6,000 gpm to 16,000 gpm.

    BB

    7On the pump curve, the minimum continuous stable flow is identified;

    the maximum continuous stable flow should also be identified.

    BB

  • 8/15/2019 44 42 56.03 - Vertical Turbine Pumps - Engineers Comments & SPCO Responses APPROVED

    55/306

    Submittal 14A - VTP Full Comments

    8On pump curve, bowl power is presumed to apply to the 20.61 in.

    rated diameter impeller. Please confirm.

    BB

    9Confirm if FlowServe will be performing an NSPHr test. BB

    10Confirm if FlowServe will be testing with their suction strainer/vortex

    device.

    BB

    11Testing Procedures: Procedure stated will be reading suction head with

    a ring on the suction piping, which is not applicable for a VTP; should

    be measuring sump elevation.

    BB

    12Test Lab Layout: Alternate/optional location for control valve shown

     just upstream of the meter. This will not be allowed on test.

    BB

    13Page 83: Correct contractor name spelling on Discharge Head

    Engineering Analysis and Below Ground Dynamic Engineering

    Analysis; correct plant name spelling on Torsional Frequency Analysis

    and Discharge Head Reaction Loads pages

    BB

    14Motor is approved as submitted SH

    15Page 89 – Reed Frequency Results: Pump manufacturer shall propose

    manufacturing modifications to change Modes 5 and 6 to be safely

    above the maximum 1 X Mechanical running speed. VFD lockout of

    this frequency shall not be permitted. Reed frequencies of Modes 5

    and 6 are too close to the maximum running speed of pumps.

    BB

    16Page 97 – Figure 2: Include 2 X Mechanical excitation frequency and

    verify no intersection within the defined Low (-20%) and High (+20%)

    operating speed range. Provide transient torsional stress calculation

    where 1 X Mechanical critical speed with Mode 1 and demonstrate

    resultant alternating stress is within the Modified Goodman Line with

    2:1 FS.

    TN

    17Page 98