432 project

Upload: sahil-pal

Post on 03-Apr-2018

228 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/28/2019 432 Project

    1/19

    CE 432 Wastewater Treatment Plant Design

    Sewer Design, edit bolded values: S, n, conduit fill ratio e.g. .75, Qavg (MGD) and the factors

    Given:S = .005 ft/ft, n=.003, conduit 3/4 full BOD 5 250

    S(ft/ft) = 0.005 SS 220

    n = 0.013 Total P 9

    conduit fill ratio = 0.75 NH3-N as 30

    Q avg, MDG = 15

    Q peak hourly, factor 2.5

    Q min, factor 0.4

    Find: D, Vmin, Vmax

    D, inches = 40.28 Use next larger commerically available size, subsequent d's and V's bas

    Vmax, fps = 8.15

    davg, inches 28.56

    Vavg, fps = 3.46

    dmin, fps = 20.26

    Vmin, fps = 2.08

    Waste Flows

    Design Flow Factor MGD CFS GPM

    Q avg 1 15.00 23.21 10417

    Q peak 2.5 37.50 58.01 26042

    Q min 0.4 6.00 9.28 4167

    Calculate the pipe diameter

    d/D= 0.75

    q = 2cos-1

    (1-(2d/D))= 240.00

    q, radians 4.19A=(D

    2/8)(q-sin(q))

    R=(D/4)(1 - sin(q)/qr)

    AR2/3

    =(D8/3

    / (8*42/3)

    )(q-sin(q)(1 - sin(q)/qr)2/3

    (q-sin(q)(1 - sin(q)/qr)2/3

    = Qn(8*42/3

    )/ [ (1.486)*D8/3

    *S1/2

    ]

    D based on peak flow = [ Qn(8*42/3

    )/ (1.486)S1/2

    (q-sin(q))(1 - sin(q)/qr)2/3

    ]3/8

    D, feet = 3.36

    D, inches = 40.28 Use next larger commercially available size

    Calculate the maximum velocity based on the peak hourly flow

    A=(D2/8)(q-sin(q))

    d for max flow, ft 30.21

    d/D= 0.75q = 2cos

    -1(1-(2d/D))= 240.00

    q, radians 4.19

    A, ft2

    = 7.12 Based on calculated D, not next larger commerically available size

    Vpeak, fps = 8.15

    Calculate the average velocity based on the average flow

    d for avg flow, ft = 2.38 Based on calculated D, not next larger commerically available size

  • 7/28/2019 432 Project

    2/19

    d for avg flow, inches 28.56

    d/D= 0.71

    q = 2cos-1

    (1-(2d/D))= 229.47

    q, radians 4.00

    A, ft2

    = 6.71

    Vavg, fps = 3.46

    Calculate the minimum velocity based on the minimum flow

    d for min flow, ft = 1.69 Based on calculated D, not next larger commerically available size

    d for min flow, inches 20.26

    d/D= 0.50

    q = 2cos-1

    (1-(2d/D))= 180.68

    q, radians 3.15

    A, ft2

    = 4.46

    Vmin, fps = 2.08

  • 7/28/2019 432 Project

    3/19

    for Qpeak hourly and Qmin.

    ed on the calculated value shown.

  • 7/28/2019 432 Project

    4/19

    CE 432 Wastewater Treatment Plant Design

    Bar Screens

    Given: Provide 2 (1+1) mechanical screens, q=75, bars space = 1.0 inches, Vmax = 3.0 fps, Vavg = 2fps, V

    q, degrees = 0.005Vmax, fps = 0.013

    Vavg, fps = 0.75

    Vmin, fps =

    Find:

    1. Bar rack dimensions

    2. Chamber dimensions

    d in the rack at peak flow

    headloss through the rack

    draw a dimensional plan and profile of the bar screen structure

    Waste Flows

    Design Flow Factor MGD CFS

    Q avg 1 15.0 23.21Q peak 2.5 37.5 58.01

    Q min 0.4 6.0 9.28

  • 7/28/2019 432 Project

    5/19

    in =1.3 fps

  • 7/28/2019 432 Project

    6/19

    CE 432 Waste water treatment plant design

    Grit

    Chamber

    Waste characteristics BOD 5 250

    Design Flow MGD CFS SS 220

    Ave Q 12 18.60 Total P 9

    Peak Q 25 38.75 NH3-N as N 30

  • 7/28/2019 432 Project

    7/19

    D. Primary

    CE 432 Waste water treatment plant design

    mg/l

    Waste characteristics BOD 5 250

    Design Flow MGD CFS SS 220

    Ave Q 12 18.60 Total P 9

    Peak Q 25 38.75 NH3-N as N 30

    Plant Effluent Qualities (mg/l) L/W ratio 4

    BOD 5 20

    SS 20

    VSS/SS ratio 0.65

    Module D-- Primary Treatment

    BOD 5 SS

    Percent Removal 34 63

    Effluent (mg/l) 165 81.4

    Design Criteria

    No. of Tanks 2

    Detention Time 1.5 hours min.

    SOR 800 gpd/sf

    Calculations

    1 Tank Dimensions

    Tank Area = Q/ SOR= 15000 sf total or 7500 sf each tank

    Tank Vol = Q * DT 750000 gal total or 375000 gal ea tank

    Tank Depth = V/A = 6.68 ft plus 2 ft freeboard

    A = Wx L = W x 4 W W= 43.3 use 40 ft

    L = A/W= 187.5 ft use 190 ft

    Page 7

  • 7/28/2019 432 Project

    8/19

  • 7/28/2019 432 Project

    9/19

    E. AS

    Q Xo + Qr Xr = ( Q+Qr) X

    Q Xo X Xr Qr Qr/Q

    Qr=Q X / ( Xr-X) 12 0 2800 10000 4.67 0.39

    MG

    E5 Waste Activated Sludge Rate

    Method A. Calculated from Cell Residence time

    C V X Xr Xe

    C = V X/(QwXr+QeXe) 10 2.53 2800 10000 13

    Qw =(VX/C-QeXe)/Xr= 0.0553301 MG

    WAS--VSS (lbs/day)= 4615

    WAS--SS (lbs/day) = 5768

    Method B. Calculate from BOD removal Px = Yobs Q ( So-Se) 8.34

    Y Kd C Yobs

    Yobs = Y / ( 1+kd C) 0.6 0.06 10 0.375

    Q So Se Px

    Biomass 12 165 7.4 5916

    SS 7394

    WAS --SS (lbs/day) = Px - Q Xe 8.34 = 5393

    Use the larger of two methods WAS--SS = 5768 lbs/day

    E-6 RAS and WAS Pumps Tot Q Q/pump Qp/Pump

    MG gpm gpm

    no. of RAS pumps 3 4.67 1080 2251

    no of WAS pumps 2 0.055 58 120

    (WAS pumps 8 hr/d)

    E-7 Oxygen Requirements O2 = C BODu - BODu in Px + N BODu

    Q So Se f C BODu

    C BOD = Q ( So-Se) 8.34 / f 12 165 7.4 0.684 23070

    Px (SS lb/d) Biodg/SS BOD in WAS

    BOD in WAS = 1.42 Px (biod) 5916 0.65 5460

    O2 (lbs/d) = 17610 For ave flow

    36688 For peak flow

    Page 9

  • 7/28/2019 432 Project

    10/19

    E. AS

    E-8 Compressor Requiement

    Air requirement at STP ( 14.7 psi and 68 F)

    lbs/cf O2/Air Vol O2/Air Wt air wt(lb/d) air (lb/sec) air (scfm)

    Air 0.0752 0.21 0.23 76566 0.886 707

    Air requirement= air /transfer efficiency transfer eff = 0.128 6.923 5524

    Air requirement at Qp 14.42 11508

    Compressor HP = [WRT/(550 n e) ][(P2/P1)**n-1] Sized at Qp

    W (lb/sec) n e P2 (psia) P1(psia) R T (R)

    14.42 0.283 0.8 24.7 13.7 53.3 570

    Total Each compressor

    Av disch P 19.7

    no of compressor

    HP max 639 6 106

    Check MIxing scfm V (1000 cf) scfm/1000cfm T tank P ave tank

    Ave Q (scfm/1000 cf aeration vol) 5524 339 16.3 560 17.9

    At Qp 34.0

    cfm/scfm* cfm/1000cfm *Vt=(Pstp/Pt)x (Tt/Tstp) Vstp

    Ave flow 0.87 14.2 Range 20-30

    At peak flow 29.5

    E-9 Calculate numuber of diffusers (Ts/Ts) Vs

    From M&E p. 562 T 10-7, typical values 3.3-10 cfm per diffuser

    Use diffuser with 5 cfm/diffuser at Qp Ceramic Disc Grids

    number of diffusers = 2302

    number of diffuser per tank= 575

    L n Spacing(ft) spacing(in)

    Coarse bubble spiral Diffuser spacing = L/n

    Grid Spacing =sqrt( tank area/ no of diffusers) = 3

    E-10 F/M Ratio So Q F (lbs/d)

    F (lb/d) = Sox Qx 8.34 165 12 16513

    MLVSS V M

    M(lbs) = MLVSS V 8.34 2800 2.53 59155.7

    F/M ratio = 0.28 Typical range 0.2-0.4

    Page 10

  • 7/28/2019 432 Project

    11/19

    E. AS

    E-11 Organic Loading ( #BOD/d per 1000 cf aetation volume)

    F ( lbs/d) 16513

    V ( 1000 cf) 339

    F/V 48.8 Typical range 50-120

    Alternate I. Trickling Filter

    Es = 100/(1+0.0085 sqrt(W/VF)) V = Volume in Acre-Ft W = BOD applied lbs/d

    V = W/F [(100/Es-1)/0.0085]^(-2) Es= BOD removal Efficiency

    Es=100*(So-Se)/So

    F = (1+R)/(1 + 0.1 R)**2

    R = Recirculaiton ratio

    Es R F W V (AC-Ft) V ( cf)

    Calculate V 88 2.0 2.08 16513 30.10 1,311,216

    # filters Depth (ft) SF each Diam ( ft)

    Filter Dimensions 6 6 36423 215

    Alternate II. RBC See Text Figure 10-39

    Hydraulic loading depends in soluble BOD in influent and total BOD in effluent.

    Influent total BOD 165 mg/l Assume 70% soluble

    Influent soluble BOD 115.5

    Effluent total BOD 20

    Hydraulic loading rate 1.6 gpd/sf From Fig 10-39 , P. 634

    Calculate A required 7500000 SF

    Check Organic Loading 2.20 lbs/d per 1000 SF Typical range 2- 3.5

    Each shaft provides 140 MSF( average value) for shaft length 27 ft

    No of shafts required 54

    No of shafts per train 4

    No.of shafts per train 13.4

    Page 11

  • 7/28/2019 432 Project

    12/19

    E. AS

    Page 12

  • 7/28/2019 432 Project

    13/19

    E. AS

    Page 13

  • 7/28/2019 432 Project

    14/19

    E. AS

    Page 14

  • 7/28/2019 432 Project

    15/19

    F. Final Clar

    Module F. Final Clarifier

    Qp SOR SL

    Design Criteria (MGD) (gpd/sf) (#/d per sf)

    at Qp 25 1500 50

    at Q ave 12

    Area required for clarification = Q/SOR = 16667 SF

    Note: See P.588. Q excludes Qr becasue return sludge is drawn off the bottom, therefore,

    does not contibute to overflow rate.

    Area required for thickening = Total SS lbs/d / SL

    Qr/Q Qp (Q+Qr) peak MLSS Total SS

    Total solids (lb/d) 0.39 25 34.72 3500 1013541.7

    Area required for thickening (SF) = 20271 Use the higher area for design

    d DT (h) ave DT (h) pk

    Detention time = A d / (Q+Qr) 10 2.2 1.05

    No. of circular tanks= 4

    Tank dimensions A Dia

    Each Tank 5068 80

    Module G. Gravity Thickener

    # tanks SLR SOR Thicken S

    Design Criteria lbs/d/sf gpd/sf % solids

    2 10 800 8%

    Sludge Quantity SS(mg/l) Q SS (lbs/d) VSS/SS VSS(lbs/d)

    SS in WW 220 12 22018 0.7 15412

    WAS ( From E-5) 5768 0.80 4615

    Total Sludge 27786 20027

    Total A Each A Diam (ft)

    Circular Tank Dimensions 2779 1389.2881 42

    SS (lb/d) SG Solid % V (cf/d) Depth (ft/d)

    Volume of Thickend Sludge 27786 1.01 8% 5511 2.0

    Blanket(ft) Rmvl(ft/d) SVI

    Sludge Volume Ratio = V of sludge blanket/ V sludge removal 8 2.0 4.0

    Typical range of SVI is 0.5-20. If SVI > 20, Bulking sludge.

    Page 15

  • 7/28/2019 432 Project

    16/19

    CE 432 Waste water treatment plant design

    Gravity

    Thickener

    Waste characteristics BOD 5 250

    Design Flow MGD CFS SS 220

    Ave Q 12 18.60 Total P 9

    Peak Q 25 38.75 NH3-N as N 30

  • 7/28/2019 432 Project

    17/19

    H. Ana Dig

    Module H. Anaerobic Digester

    Design Criteria

    # Tank T digester T slud in T earth T air DT VSS load

    oF days lb VSS/d/cf

    3 95 50 40 40 15 0.2

    SS (lbs/d) VSS/SS VSS(lbs/d) V (cf/d)

    Primary sludge 22018 0.7 15412

    Biosludge 5768 0.8 4615

    Total sludge 27786 0 20027 5511

    1 Tank Dimensions

    Volume required for hyd loading = 82664 cf

    Volume required for VSS loading= 100134 cf Use the higher value

    Digester Dimensions

    #Tank V (cf) each Depth(ft) A each Daim

    Each Tank 3 33378 30 1113 38

    2 Energy Production

    Assumptions

    15 cf gas per lb solids destroued

    600 BTU per cf gas

    50% of VSS applied are destroyed

    TSS app Fix SS VSS appl VSS destr Gas prod E prod

    #/d #/d #/d #/d cf/d MBTU/d

    27786 7759 20027 10013 150201 90121

    Digested Sludge Characteristics

    VSS FS TSS ( lbs/d)

    10013 7759 17772

    3 Energy Requirements for Digester Heating (BTU/d)

    Total Heat Req( Ht) = Heat req to raise temp of sludge ( Hs) + Heat req to compensate for loss ( Hl)

    Hs = P ( #/d sludge dry solids) x ( 100/ps) ( Td-Ts) x (1/24 )x Cp

    ps=% solids Cp = sp heat of sludge Td= temp of digester Ts = temp of sludge

    P ps Td Ts Cp Hs (BTU/hr)

    Cal Hs 27786 8% 95 50 1 651229

    Page 17

  • 7/28/2019 432 Project

    18/19

    H. Ana Dig

    Hl= C ( Coef of heat flow) x A ( contact area) x ( T d- To) To is temp of outside

    Cal Hl C Td To A Hl

    Dry earth 0.08 95 40 3338 14686

    Air ( Cover) 0.3 95 40 3338 55074

    Air ( walls) 0.3 95 40 10642 175591

    Wet earth 0.26 95

    Total heat loss 245351

    Total Heat requirements ( BTU/h) = Hs + Hl = 896580

    Page 18

  • 7/28/2019 432 Project

    19/19

    I. Sludge Dewater

    Module I Sludge Dewatering

    Disgested Sludge TSS (lbs/d) 17772

    1 Solid Loading Rate for filter drum 4 #/hr per sf

    Filter Drum Area (sf) = 185

    2 Chemical Requirements

    Dose lbs/d

    Lime 8% 1422

    Ferric Chloride 2% 355

    3 Volume of Sludge Cake

    Total Weight of sludge cake = 19550

    Solid content of sludge cake = 18%

    SG of dry solids is assumed to be 2

    Calculate SG of sludge 1.18

    Volume of sludge cake (cf/d) 1475

    Page 19