2.76 / 2.760 lecture 3: large scale - mit opencourseware · 2020. 12. 31. · 2.76 multi-scale...

60
2.76 Multi-scale System Design & Manufacturing 2.76 / 2.760 Lecture 3: Large scale Big-small intuition System modeling Big history Big problems Flexures Design experiment 2.76 STM surface sensing 0 2 4 6 8 0 2 4 6 8 Gap [Angstroms] i tunnel [nA]

Upload: others

Post on 20-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2.76 Multi-scale System Design & Manufacturing

    2.76 / 2.760 Lecture 3: Large scaleBig-small intuition

    System modeling

    Big history

    Big problems

    Flexures

    Design experiment2.76 STM surface sensing

    0

    2

    4

    6

    8

    0 2 4 6 8Gap [Angstroms]

    i tunnel

    [nA

    ]

  • 2.76 Multi-scale System Design & Manufacturing

    Cross-scale couplingMacroMeso

    Micro

    Nano

    FunctionFormFlowsPhysicsFabrication

    GeometryMotion

    InterfacesConstraints

    Form

    Etc…

    MassMomentum

    EnergyInformation

    Flow

    Etc…

    ApplicationModelingLimiting

    Dominant

    Physics

    Etc…

    CompatibilityQualityRateCost

    Fabrication

    Etc…

    WhatWhoWhy

    Where

    Function

    Etc…

  • 2.76 Multi-scale System Design & Manufacturing

    Short experiment(1) What cross-scale incompatibilities (5Fs) do you notice?

    (2) What obstacles must be overcome to enable interaction between large/small?

    Time Limit: 5 minutesEmail results to me when time is calledBulleted points please

  • 2.76 Multi-scale System Design & Manufacturing

    DiscussionWhat was the nature of the trouble?

    Comment onStrainControl/sensingMomentumNoise

    What does this tell you about sensitivity and resolution / discretization?

  • 2.76 Multi-scale System Design & Manufacturing

    Stage 1: Synthesis & selectionBig issuesSelection

    Stage 2: Detailed designAnalysisOptimization

    MacroMeso

    Micro

    Nano

    FunctionFormFlowsPhysicsFabrication

  • 2.76 Multi-scale System Design & Manufacturing

    CakeOr

    Death ?Is this a difficult decision?

    Decision making is differentialDifference is indicated by modelModel is supported by relationship

    What determines quality of model?

  • 2.76 Multi-scale System Design & Manufacturing

    Modeling and decision makingDeterminism

    Does the system obey cause-effect (as observed)?Systematic error, random error

    RepeatabilityHow identical are repeated results?

    AccuracyHow close is the result to reality?

    Non-dimensional analysisQualitative & quantitativeRational process

    Everything

    Necessary & Sufficient

    Experienceor

    Relative importance

  • 2.76 Multi-scale System Design & Manufacturing

    Nano

    Micro

    Meso

    Macro

    NanoNano

    NanoMicro

    NanoMeso

    NanoMacro

    MicroNano

    MicroMicro

    MicroMeso

    MicroMacro

    MesoNano

    MesoMicro

    MesoMeso

    MesoMacro

    MacroNano

    MacroMicro

    MacroMeso

    MacroMacro

    Nano

    Micro

    Meso

    Macro

    I

    I

    I

    I

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    O

    O

    O

    O

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    44434241

    34333231

    24232221

    14131211

    Input-output mapping

    ( ) MuSSMuSS ISRGO ⋅=

    Conceptual

  • 2.76 Multi-scale System Design & Manufacturing

    Nano

    Micro

    Meso

    Macro

    A

    NanoNano

    A

    NanoMicro

    A

    NanoMeso

    A

    NanoMacro

    A

    MicroNano

    A

    MicroMicro

    A

    MicroMeso

    A

    MicroMacro

    A

    MesoNano

    A

    MesoMicro

    A

    MesoMeso

    A

    MesoMacro

    A

    MacroNano

    A

    MacroMicro

    A

    MacroMeso

    A

    MacroMacro

    Nano

    Micro

    Meso

    Macro

    I

    I

    I

    I

    SRCSRCSRCSRC

    SRCSRCSRCSRC

    SRCSRCSRCSRC

    SRCSRCSRCSRC

    O

    O

    O

    O

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅⎟⎟

    ⎞⎜⎜⎝

    ⎛⋅

    =

    44434241

    34333231

    24232221

    14131211

    44434241

    34333231

    24232221

    14131211

    Input-output mapping

    ( ) MuSSMuSS ISRGO ⋅=

    Equivalent

  • 2.76 Multi-scale System Design & Manufacturing

    Nano

    Micro

    Meso

    Macro

    Nano

    Micro

    Meso

    Macro

    I

    I

    I

    I

    O

    O

    O

    O

    −−−

    −−

    0369

    3036

    6303

    9630

    10101010

    10101010

    10101010

    10101010

    ~

    What might G look like?

    0369

    3036

    6303

    9630

    10101010

    10101010

    10101010

    10101010

    −−−

    −−

    =pG

    What does | Gp ij / G ij | look like?

    Why is this useful?

    How will we use it?

    “Ideal” or perfectscale interaction

    0369

    3036

    6303

    2063100

    10101010

    10101010

    10101010

    10101010

    −−−

    −−

    =G

  • 2.76 Multi-scale System Design & Manufacturing

    Example: STM

    ( )gapKeCi ⋅⋅−⋅= 2

    Is this the whole story?Figure by MIT OCW.

  • Nano

    Micro

    Meso

    Macro

    NanoNano

    NanoMicro

    NanoMeso

    NanoMacro

    MicroNano

    MicroMicro

    MicroMeso

    MicroMacro

    MesoNano

    MesoMicro

    MesoMeso

    MesoMacro

    MacroNano

    MacroMicro

    MacroMeso

    MacroMacro

    Nano

    Micro

    Meso

    Macro

    I

    I

    I

    I

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    O

    O

    O

    O

    44434241

    34333231

    24232221

    14131211

    Example: STM Signal

    NanoNano

    NanoMicro

    NanoMeso

    NanoMacro

    MicroNano

    MicroMicro

    MicroMeso

    MicroMacro

    MesoNano

    MesoMicro

    MesoMeso

    MesoMacro

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    44f44f43f43f42f42f41f41f

    34f34f33f33f32f32f31f31f

    24f24f23f23f22f22f21f21f

    Image removed for copyright reasons.Source: http://www.almaden.ibm.com

    gapKeCi 2

    Vibration Noise Noise

    Nano

    Micro

    Meso

    ONanoONano

    OMicroOMicro

    OMesoOMeso

    2.76 STM surface sensing

    0

    2

    4

    6

    8

    0 2 4 6 8Gap [Angstroms]

    i tunnel

    [nA

    ]

    Gain

    2.76 Multi-scale System Design & Manufacturing

  • Figure by MIT OCW.

  • 2.76 Multi-scale System Design & Manufacturing

    Nano

    Micro

    Meso

    Macro

    NanoNano

    NanoMicro

    NanoMeso

    NanoMacro

    MicroNano

    MicroMicro

    MicroMeso

    MicroMacro

    MesoNano

    MesoMicro

    MesoMeso

    MesoMacro

    MacroNano

    MacroMicro

    MacroMeso

    MacroMacro

    Nano

    Micro

    Meso

    Macro

    I

    I

    I

    I

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    SRfSRfSRfSRf

    O

    O

    O

    O

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    ⎛⎟⎟⎠

    ⎞⎜⎜⎝

    =

    44434241

    34333231

    24232221

    14131211

    Purpose of today

    Mechanical gain factors to make big machineswork with little machines

  • 2.76 Multi-scale System Design & Manufacturing

    What will this be applied to?MacroMeso

    Micro

    Nano

    FunctionFormFlowsPhysicsFabrication

    GeometryMotion

    InterfacesConstraints

    Form

    Etc…

    MassMomentum

    EnergyInformation

    Flow

    Etc…

    ApplicationModelingLimiting

    Dominant

    Physics

    Etc…

    CompatibilityQualityRateCost

    Fabrication

    Etc…

    WhatWhoWhy

    Where

    Function

    Etc…

  • 2.76 Multi-scale System Design & Manufacturing

    Early big machines made to

    work with the small

  • 2.76 Multi-scale System Design & Manufacturing

    Big machines working with the smallWhat is the most critical requirements for a large-scale machine to live in a MuSS?

    Motion stability, resolution, repeatability

    Two diagrams removedfor copyright reasons.

  • 2.76 Multi-scale System Design & Manufacturing

    Strain managementEverything is compliant

    •Strain error scales with size•Large scale parts are kinematic bullies

    Generally require “freedom to strain” to prevent over constraint & energy storage

    Generally seek to minimize strain

    Mechanism/fixture/structure design• Necessary & sufficient constraint topology → concepts• Exact constraint

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesHooke

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesBernoulli, Euler

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesWillis, Kelvin, Maxwell

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesMaxwell

    6 DOF

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s

    Exact constraint

    1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesAfter R.V. Jones

    1600s 1700sEarly1900s1800s 2002

    Instruments

    Reciprocity & relative stiffness

    Screw theory (instant centers)

    Beam theory

    Basic linear modular 4B modules

    Exact constraint

    F ~ k x

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesBlanding, Hale, Slocum

    1600s 1700sEarly1900s1800s 2002

    Instruments

    Reciprocity & relative stiffness

    Screw theory (instant centers)

    Beam theory

    Basic linear modular 4B modules

    Exact constraint

    F ~ k x

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machines

    Late1900s

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Culpepper, Slocum,. Shaikh, ‘98 ASME IMECCulpepper, Ph.D. 2000

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    =KK

    CMi||

    180

    270

    θr0

    K||

    x

    y

    K┴

    1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesCulpepper, Petri 2001

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesAwtar, Slocum, 2002

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    4B modules: 1-5 DOF

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

    Diagram removedfor copyright

    reasons.

  • 2.76 Multi-scale System Design & Manufacturing

    History of compliant machinesCulpepper, 2002

    Early1900s1800s 2002

    Reciprocity & relative stiffness

    Screw theory (instant centers)Basic linear modular 4B modules

    Exact constraint

    Elastic elements/mechanisms

    CoMeT synthesisConstraint metrics

    Constraint topology

    Hinge-specific researchModular constraint rules

    Non-linear 4BM

    Reconfigure

    Imperfect constraint

    Late1900s1600s 1700s

    Instruments

    Beam theoryF ~ k x

  • 2.76 Multi-scale System Design & Manufacturing

    Principles of cross-scale motion and constraint

  • 2.76 Multi-scale System Design & Manufacturing

    Design for compliant constraint1.Stability

    Maximize passive stability“Self-help” (symmetry & cancellation)

    2. EnvelopeStrain errors (compliance, thermal)Packaging

    3.ManufacturingMonolithicMinimum information

    4. ConstraintMaximize linear independenceParasitic errors

    yx

    z

    yx

    z

  • 2.76 Multi-scale System Design & Manufacturing

    Principle of symmetryStart-up thermal drift

    0 10 20 30-6

    -4

    -2

    0

    2

    4

    6x y zθx θy θz

    -30

    30

    Time [ minutes ]

    Line

    ar [

    nm ]

    Angular [ µradians

    ]

    20

    10

    0

    -10

    -20

    Thermal strain error

    Over constraint → Force

  • 2.76 Multi-scale System Design & Manufacturing

    Principle of cancellationKinematic path building blocks

    Straight linesRotation (instant centers)

    + =Kstiff

    Kcompliant

    δ1

    δ2 δdesired

    Kdesired

  • 2.76 Multi-scale System Design & Manufacturing

    Principle of center of stiffnessLoading mattersCenter of stiffness: Load = no rotation

    Tuning Block

    Figure by MIT OCW. After R. V. Jones.

  • 2.76 Multi-scale System Design & Manufacturing

    Actuator sensitivity & calibrationSource of errors

    Tolerance (5000 nm vs 1nm?)MountingMaterial propsStress stiffeningLinear assumptions

    Calibration and mapping…

    “Perfectly” Calibrated

    6

    5

    4

    3

    2

    1

    321

    654

    654

    654

    321

    321

    000000000000

    000000

    ∆∆∆∆∆∆

    =

    zzz

    yyy

    xxx

    zzz

    yyy

    xxx

    z

    y

    x

    CCCCCCCCCCCC

    CCCCCC

    zyx

    θθθ

    θθθ

    θθθ

    θθθ

    ActuatorStage C ∆⋅=δ

    Tab load [N]

    Displacement calibration plots

    Dis

    plac

    emen

    t [ µ

    m ] Rotation [ µ radians ]

    -2400

    -2000

    -1600

    -1200

    -800

    -400

    -60

    -40

    -20

    0

    20

    40

    60

    0 0.5 1.0 1.5 2.0

    0

    Measured x Measured zMeasured θx Measured θzLines = CoMeT

  • 2.76 Multi-scale System Design & Manufacturing

    Constraint-basedcompliant mechanism design

  • 2.76 Multi-scale System Design & Manufacturing

    Rules of constraintDOC = # of linearly independent constraints

    DOF = 6 - DOC

    Constraints have lines of action

    Lines of action intersect at instant centers

    Instant centers (via constraint) define motion

  • 2.76 Multi-scale System Design & Manufacturing

    Basic elements

    Bars Beams Plates

    Cross Beam Hinge Notch Hinge

    Diagrams removed for copyright reasons.Source: Blanding, D. L. Exact Constraint: Machine Design using Kinematic

    Principles. New York: ASME Press, 1999. ISBN: 0791800857

  • 2.76 Multi-scale System Design & Manufacturing

    Common precision constraint typesConstraints

    5 DOF

    3 planar DOF

    Diagrams removed for copyright reasons.Source: Blanding, D. L. Exact Constraint: Machine Design using Kinematic

    Principles. New York: ASME Press, 1999. ISBN: 0791800857

  • 2.76 Multi-scale System Design & Manufacturing

    Constraint and FreedomWhen connecting in series

    Add degrees of freedom with exception of redundant degreesExamples:

    Rod at end of plate & Rod on Rod

    Front View Side View Front View Side View

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…Diagram of automobile steering column,

    rack and rotor - removedfor copyright reasons.

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

    =

  • 2.76 Multi-scale System Design & Manufacturing

    1

    3 2δ2(r)→

    ||

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

  • 2.76 Multi-scale System Design & Manufacturing

    1

    3 2δ2(r)→

    K┴ -3K||-3

    θ

    δ┴ -2 δ||-2

    θ

    ||

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…1

    ||

    ||

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

    CoMeT: Compliant Mechanism Tool

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

    T

    θ

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

  • 2.76 Multi-scale System Design & Manufacturing

    Example: Constraint-based designConstraint-based compliant mechanism design

    STEP 2: Motion path decomposition

    STEP 3:Kinematic parametric concepts

    STEP 4:Constraint-motion addition rules

    STEP 5: Topology concept generation

    STEP 6: Concept selection phase I

    STEP 7: Size and shape optimization

    STEP 8: Concept selection phase II

    STEP 1: Design requirements

    Arcs, lines, rotation pts. sub-paths

    Motions, constraint metric, symmetry, etc.

    Serial, parallel, hybrid

    Path & constraint driven

    Path errors & over constraint

    Stiffness, load capacity, efficiency, etc…

    Direct comparison with design requirements

    Motion path, stiffness, load capacity, etc…

  • 2.76 Multi-scale System Design & Manufacturing

    Design activity

  • 2.76 Multi-scale System Design & Manufacturing

    ProblemDesign a mechanical filter which:

    Gij = 0.05 (factor of 20 filtering)Range of 0.5 mm with less than 5 micron PEEnvelope: 5 x 5 x 0.125 inches

    Give us enough information to:Understand your constraint topologyFabricate itAssume it is aluminum

    Email journal file at end of class

    You may ask any question at any time…

  • 2.76 Multi-scale System Design & Manufacturing

    AssignmentForm teams of 4 now, email members to TA

    by 5pm Friday

    Flexure reading (pp. 67-82 & 174-205)

    CoMeT tutorials 1 - 3

    Learn a CAD package (3 wks!!!)

    Create CoMeT model of your flexure, send to TA by Monday 9am

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 300 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice