2028-15 joint ictp/iaea workshop on atomic and molecular data for...

59
2028-15 Joint ICTP/IAEA Workshop on Atomic and Molecular Data for Fusion Tilman MAERK 20 - 30 April 2009 Universitat Innsbruck, Institut fuer Physik, 81 Technikerstrasse, A-6020 Innsbruck Austria Molecular Processes in Plasmas

Upload: others

Post on 17-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 2028-15

    Joint ICTP/IAEA Workshop on Atomic and Molecular Data forFusion

    Tilman MAERK

    20 - 30 April 2009

    Universitat Innsbruck, Institut fuer Physik, 81 Technikerstrasse, A-6020Innsbruck

    Austria

    Molecular Processes in Plasmas

  • Tilmann MärkUniversität Innsbruck

  • Tyrol

    Vienna

    ItalySlowenia

    SlowakiaGermany

    Czech republicSw

    itzer

    land

    Hungary

  • Institut für Ionenphysik und Angewandte PhysikEURATOM

    ÖAW

    Ion Physics / Plasma Physics

    Clusterphysics, Biomolecules

    Mass Spectrometry

    Environmental Physics and Analysis

    http://info.uibk.ac.at/ionenphysikhttp://info.uibk.ac.at/ionenphysik

  • E. Alizadeh, F. Ferreira da Silva, F. Zappa, A. Mauracher, M. Probst, S. Denifl, A. Bacher, T. D. Märk, P. Limao-Vieira, P. Scheier, Dissociativeelectron attachment to nitromethane. Int. J. Mass. Spectrom. 1-3/271 (2008) 15-21 PDF; doi:10.1016/j.ijms.2007.11.004; IF:2.337

    A. Mauracher, P. Sulzer, E. Alizadeh, S. Denifl, F. Ferreira da Silva, M. Probst, T. D. Märk, P. Limao-Vieira, P. Scheier, Electron attachment studiesto musk ketone and high mass resolution anionic isobaric fragment detection. Int. J. Mass. Spectrom. 1-3/277 (2008) 123-129 PDF; doi:10.1016/j.ijms.2008.06.006; IF:2.411

    S. Ptasinska, E. Alizadeh, P. Sulzer, R. Abouaf, N. J. Mason, T. D. Märk, P. Scheier, Negative ion formation by low energy electron attachment to gas-phase 5-nitrouracil. Int. J. Mass. Spectrom. 1-3/277 (2008) 291-295 PDF; doi:10.1016/j.ijms.2008.06.008; IF:2.411

    P. Sulzer, E. Alizadeh, A. Mauracher, T. D. Märk, P. Scheier, Detailed dissociative electron attachment studies on the amino acid proline. Int. J. Mass. Spectrom. 1-3/277 (2008) 274-278 PDF; doi:10.1016/j.ijms.2008.06.001; IF:2.411

    Elahe AlizadehPhD student6268 / Lab: [email protected]

    Masoomeh Mahmoodi-DarianPhD student6268 / Lab: [email protected]

  • Data acquisition (processes, properties) Data analysis and assessmentData compilation (ADAS, IAEA)

    1. Intrinsic fundamental interest2. Provide data needed for plasma modelling

    and diagnosis and other applications3. Radiation damage

    Elementary processes considered:Inelastic electron interactions withatoms/molecules/nanoparticles(ionization and attachment)

    Institutfür

    Ionenphysik

    EURATOMÖAW

  • AB + e → AB+ ionization→ A+ + B dissociative ionization→ AB* excitation→ ……

    Inelastic low-energy electroninteraction with molecules

    AB + e → AB-# electron capture

  • Dissociative Electron Attachment

    Dissociative electron attachment AB + e- => AB-* => A- + B can be described via the formation of a temporary negative ion AB-*. The electron in this molecular anion state AB- (also called the resonant state) can autodetach with a finite lifetime (related to the width of the resonance), leaving behind a vibrationally excited neutral molecule. On the other hand, if the lifetime of the resonance is long enough, the anion AB- can dissociate into A+B-, leading to the process of dissociative electron attachment.

  • AB + e → AB-# transient negative ion

    Electron attachment to molecules

    AB-# → AB + e autodetachmentAB-# → AB- stabilization

    AB-# → A + B- DEA

    -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

    2

    4

    6

    8

    10

    ion

    yiel

    d (a

    rb. u

    nits

    )

    electron energy (eV)

    Positive ion productioncross sections

    DEA

  • 4.Photons

  • 0 2 4 6 80

    1

    2

    3

    4

    5

    Ionization with e- release: H+ impact [17]

    Total ionization:

    e- impact [8] Direct ionization:

    H+ impact (present data) Ionization with e- release:

    H+ impact [10]

    Cro

    ss s

    ectio

    n (1

    0-20

    m2 )

    Velocity (vBohr)

    H2O + p+ → ions + p+ DI

    H2O + p+ → ions + H EC

  • Origin of life (photosynthesis)

    Life in space

    Radiation damage at a molecular level

    Improved radiation therapy

  • In space electrons are released via photon matter interactions (photo effect and photo ionization): origin of life

  • High-energy projectiles release in matter ~40000 electrons per MeV deposited energy with kinetic energies below 20eV: radiation damage

    0 10 20 30 40 50 60

    N(E

    ), σ(

    E) (a

    rb. u

    nits

    )

    Energy (eV)

    Secondaryelectron tail

    Electroncross sectioni

    oniza

    tion

    DEA

  • 0 10 20 30 40 50 60

    N(E

    )× σ

    (E) (

    arb.

    uni

    ts)

    Energy (eV)

    ionization

    Low-energy electrons have high damage cross sections

    DEA

  • The genotoxic effects of ionizing radiation(α,β,γ,Χ) in living cells (therapeutic, diagnostic) are not only due to the primaryimpact.

    The genotoxic effects of ionizing radiation(α,β,γ,Χ) in living cells (therapeutic, diagnostic) are not only due to the primaryimpact.

    Single and double strand breaks may beinduced by secondary species: =secondary electrons with kinetic energiesbelow about 20 eV thermalized and sol-vated by inelastic collisons within

  • OutlineEURATOM

    ÖAW

    Part I: FundamentalsA. Ionization processes and Ions producedB. Ionization mechanisms

    Part II: Kinetics and energetics for theproduction of cations and anions

    Part III: Electron attachment

  • EURATOMÖAW

    Direct Ionization – Indirect ionization

    Stable ions – unstable (metastable) ionsSingly-charged ionsMultiply-charged ionsParent ions – fragment ionsCations - anions

    Part I: FundamentalsA. Ionization processes and Ions produced

  • Electron-Particle Interaction

    e + cluster : ♦ multiple collisions♦ intra-cluster reactions

    e + atom : ♠ electronic excitation

    e + molecule : ♠ electronic excitation♠ vibrational excitation♠ rotational excitation♠ dissociation

  • Electron-Particle Interaction

    Primary ionization eventEnergy storage and disposalFinal reaction products

    ABC + e → [ABC+]* → A+ + BC + KER

  • A + e → A + e elastic scatteringA* + e excitationA** + e double excitation (A** → A+ + e)A+ + 2e ionizationA+* + 2e excited ion (A+* → A++ + e)A++ + 3e double ionizationA- + hv attachment

    Electron impact ionization processes

  • AB + e → AB + e elastic scatteringAB* + e excitationAB** + e double excitation (AB** → AB+ + e)AB+ + 2e ionizationAB+* + 2e excited ion (AB+* → AB++ + e)AB++ + 3e double ionizationAB- + hv attachment (AB- → A- + B)

    Electron impact ionization processes

    AB + e → AB(v,k) + e vibrational, rotational excitationA + B dissociationA+ + B + 2e dissociative ionizationA+ + B + + 3e dissociative double ionizationA+ + B+- + e ion pair formationA++ +B + 3e double dissociative ionization

  • Direct and indirect ionization processes

  • 200 300 400 500 600 70010-1

    100101102103104105106

    C605+

    C603+ C 60

    +C602+

    Ion

    c urr

    ent (

    Hz)

    Mass per charge (Thomson)

    C 4+60

    C60 + e → parent & fragment ions (200 eV)

  • 102 1030

    10

    20

    30Io

    n sig

    nal (

    Hz)

    Mass per charge (Thomson)

    13C212C15

    2+

    13C

    12C

    1612C

    17

    2+

    ,13

    C21

    2 C33

    4+

    13C

    12C

    334+

    ,12

    C34

    4+ ,12

    C 516

    +

    13C

    12C

    506+

    13C

    12C

    425+

    12C

    435+

    13C212C58

    7+

    &

    13C12C597+

    12C607+

    C60 + e → multiply charged ions

  • EURATOMÖAW

    Part I: FundamentalsB. Ionization mechanisms

    1. Franck Condon principle

    2. Unimolecular dissociation

  • H2 + e → H2+

    → H+

    H2+H2+

    H2+

    →H + H+

    Internuclear distance in 10-8 cm

    V(r) in eV

    d = 0.586

    15.4 eV adiabatic ionization energy !!

    18.1

    Ionization mechanism I: The Franck Condon principle

    E=100 eV: v=6x108cm/s; t=s/v=10-8/6x108 ~ 2x10-17s « tv~10-14s

  • The Franck Condon principle

    Electron impact ionization: mechanism

    Reflection principle

    Franck Condon Factors

  • Electron impact ionization: mechanism

    The Franck Condon Range and different Cases

    E=100 eV: v=6x108cm/s; t=s/v=10-8/6x108 ~ 2x10-17s « tv~10-14s

  • Electron impact ionization: mechanism

    The Franck Condon principle

  • 15.424 (15.47)

    18.09 (18.08)

    H2 + e → H2+

    → H+

    H2+H2+

    H2+

    →H + H+

    Distance in 10-8cm

    V(r) in eV

    BE (H-H+) = 2.666 eV

    av

  • AE and BE of molecules

  • HEM data analysis:O3 + e → O3+(O3)2 + e → (O3)2+

    Fit function: σ(E) = b + σo ·(E-IE)p

    1

    10

    100

    7 8 9 10 11 12 13 14-3

    0

    3

    6

    9

    O3+/O3

    Corrected electron energy (eV)

    Ion

    sign

    al (

    arb.

    uni

    ts)

    (O3)2+/(O3)n

    ΑΕ: 12.70 ± 0.02 eV

    ΑΕ: 10.10 ± 0.2 eV

  • HEM data analysis:O3 + e → O3+(O3)2 + e → (O3)2+

    D(O3- O3): 0.13 eV

    D(O3+- O3): 2.70 eV

    10.10(22) eVIE((O3)2

    +)

    O3+ + O3

    (O3)2

    (O3)2+

    O3+

    O3

    12.70(2) eVIE(O3

    +)

    Binding energy of ozone dimer ion:

  • „dimer geometry“

    „twisted boat“

    „O2 – O4+ “

  • Photoelectron spectroscopy:Adiabatic & vertical IE

  • Photoelectron spectroscopy:Adiabatic & vertical IE

  • (AB…CD) + e → → parent & fragment ions

    (AB…CD)+* → → →→ A+ + BCD* → A+ + B + CD→ AB+* + CD* → A+ + B + CD

    A + B+ + CD→ A + BCD+* → A + B+ + CD

    A + B + CD+→ AB* + CD+ → A + B + CD+

    Ionization mechanism II: Vibrational predissociation

    Decay paths for parent ion formed: If the the molecular ion is complexenough so that Lissajous motion on the potential energy hypersurface issufficiently complicated, the existence of metastable ions can berationalized in the framework of QET or RRKM.

  • Ionization of alkenes:

    CnH2n+2 + e →parent & fragment ions

    Ionization mechanism II: Vibrational predissociation

  • C3H8 + e → parent & fragment ions(decay paths & relative abundance in mass spectrum)

    Ionization mechanism II: Vibrational predissociation

  • AE = 43.7 eVIE = 7.6 eV

    BE + KS

    C60 + e →

    C60+ C58+

  • Final result for the C60+ binding energy

    Experiment: 17 Measurements - which have been analysed by using the complete today’s knowledge- yield a binding energy(mean value) of

    10.0 ± 0.2 eVTheory: A.D.Boese and G.E.Scuseria have carried out very accurate

    D(ensity)F(unctional)T(heory) calculations and obtain for the ionicC60+ binding energy

    10.2 eV

    Binding energy (10 eV) larger than ionization energy (7.6 eV) !!!

  • Infrared multiphoton excitation, dissociation and ionization of C60 , M.Hippler, M.Quack, R.Schwarz, G.Seyfang, S.Matt, T.D.Märk, Chem.Phys.Lett. 278(1997)111

    500 hν ≈ 61 eV

    emovie

  • Unimolecular (metastable) dissociation

    3 major mechanisms:

    1. Vibrational (statistical) predissociation

    2. Electronic predissociation

    3. Tunneling through a (rotational) barrier

  • Electronic predissociation: Transition forbidden by (i) some selection

    rule or (ii) hindered by small overlap integral

    SH2 + e → [SH2+]*

    [SH2+]* → S+ + H2

  • Tunneling through a barrier

  • 0.5 1.0 1.5 2.0 2.5-0.5

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    Ene

    rgy

    (eV

    )

    RN(1)-H (Å)

    (U-H)+Hπ2*

    Dipole bound state

    (U-H)-+H

    σ*(N1-H)

    01

    0 1 20

    1

    2

    3

    Cro

    ss s

    ectio

    n (1

    0-20

    m2 )

    Electron energy (eV)

    2

    ν=2

    3

    ν=3

    U + e → (U-H)- + H

    Schematic potential energy curves for uracilalong the N1-H streching coordinate. DBS: Kaufmann, Bowen, Schermann

    ν3: N Feshbach Resonance: H atomtunneling will be rapid (broad width)ν2: NFR: barrier for tunneling large, lifetime longer and narrower width

    1

    (U-H)-

    Tunneling of H from N1 site, throughpotential barrier formed by avoided curvecrossing of the dipole bound state and theantibonding σ*(N1-H) anion state

    Stretching coordinate

  • Tunneling through barrier

    Veff effective potential energycombination of V plusrotational energy of diatomic

    V potential for L=0

    J =K=Lrotational quantum number

  • Electron impact ionization: mechanism

    Time evolution of the ionization process

  • Electron impact ionization: mechanism

    Time evolution of the ionization

    process

    Play: Yes