20 28 2016 07 01 chinese journal of tissue engineering research july 1, 2016 vol.20, no.28 4234 p.o....

9
20 28 20160701 Chinese Journal of Tissue Engineering Research July 1, 2016 Vol.20, No.28 P.O. Box 10002, Shenyang 110180 www.CRTER.org 4234 www.CRTER.org 1990 570208 :R394.2 :B :2095-4344 (2016)28-04234-09 2016-04-06 ( 570208) . [J].201620(28):4234-4242. DOI: 10.3969/j.issn.2095-4344.2016.28.019 ORCID: 0000-0002-1918-8803() Karp (/ )3D stem cell, mesenchymal stem cells, preconditioning, homing, migration PubMed 2000 1 2015 9 72 (811151) 3D

Upload: others

Post on 17-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • �������� � 20 � � 28 � 20160701 �

    Chinese Journal of Tissue Engineering Research July 1, 2016 Vol.20, No.28

    P.O. Box 10002, Shenyang 110180 www.CRTER.org

    4234

    ����

    www.CRTER.org

    ������1990���

    ��������

    ���������

    ���������

    !"#��$�%&'(

    )*+,-./012

    3456789:

    ;?@AB�C#�

    %��$�DE�C#�

    F$��������

    ����������

    �����G

    570208

    �����:R394.2

    ���:B

    ����:2095-4344

    (2016)28-04234-09

    �����2016-04-06

    ��

    ���������������

    ��

    �������(����������������������� 570208)

    ������������. ���������������[J].������� �2016�20(28):4234-4242.

    DOI: 10.3969/j.issn.2095-4344.2016.28.019 ORCID: 0000-0002-1918-8803(���)

    �����

    ����

    ������������������������������ !"#$��%&'

    ()*+(,-Karp./01'234�5*+"#�6789:;:?$�@A

    "#�BC-01BCDEFG�HIJ8K�LMNOIP QR�NORSTNORU�VRW

    XYOI�Z[�YO-

    ���������������\]A"#^����%_`ab�cdef�abegh

    i4LMNOjkRlbmn(opabRqrstRuvtw/^uvxyRz{R�NO^M|

    l�)R�[N}~R�}~R3D�.�`ab]cdY3"#`ab

    w�`ab-

    ��

    ���01��"#}F����I����-*\�����fm

    01@A"#�}Fm�-`ab3%�01 ¡¢-

    ���]%����01�`ab%_£¤-

    ���¥¦stem cell, mesenchymal stem cells, preconditioning, homing, migration§3¨©ª«cd

    "¬5 PubMed®¯¨© 2000° 1±@ 2015° 9±�)`ab%����01�²

    ³�´µ+¶�·¸¹º 72»²³%_£¤-

    ���� �������\]A"#^����%_`ab�¼½%P01@ !"#

    ¾&¿À"#}Fmn-"#`abÁ��BÂÃx�Ä�ÅÆÇÈLMNOÅ.m�¾

    &%����01-����`ab�ÉÊ[N}~R�NOËÌ.�¥���

    �LMNO Q3mnÍ��BÇÈPÅÎ%A�01-̀ ab/3�ÏÐn

    )ÑÒÓÎÔÕÖ×-

    !"#�

    ���!"#!���!����!����!������!"#!��!��$%!&'(

    )*+,-.

    $�#�

    �����!"#!����

    %&'(�

    &'()*+,-.(811151)

    ����������������

    �������

    ��

    �����������

    ������������

    ���� !

    "#�3D$%�&'�!

    �����()*+,-��

    ./01234

    567839:

    ����;�

    ���������

    ��?@!

    "#�A;BC

    DE!

    FG�����

    ��7H6I�,JK

  • �����. ���������������

    ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

    4235

    www.CRTER.org

    Wang Guo-ren, Studying

    for master’s degree,

    Physician, Department of

    Urology, Affiliated Haikou

    Hospital, Xiangya School

    of Medicine, Central South

    University, Haikou 570208,

    Hainan Province, China

    Corresponding author:

    Bai Zhi-ming, M.D., Chief

    physician, Professor,

    Doctoral supervisor,

    Department of Urology,

    Affiliated Haikou Hospital,

    Xiangya School of

    Medicine, Central South

    University, Haikou 570208,

    Hainan Province, China

    Preconditioning strategies for promoting mesenchymal stem cell homing

    Wang Guo-ren, Bai Zhi-ming (Department of Urology, Affiliated Haikou Hospital, Xiangya School of

    Medicine, Central South University, Haikou 570208, Hainan Province, China)

    Abstract

    BACKGROUND: Homing is the initial and key procedure of stem cells-based tissue restoration. Current

    studies have shown that the inability to recruit bone marrow mesenchymal stem cells to target tissue with

    high efficiency remains a significant barrier to tissue restoration. Preconditioning strategy provides a new

    insight to promote stem cell homing.

    OBJECTIVE: To review preconditioning strategies for promoting the homing of stem cells.

    METHODS: In PubMed database, different combinations of terms from “stem cell, mesenchymal stem

    cells, preconditioning, homing, migration” served as search terms to retrieve articles referring

    preconditioning strategies for promoting mesenchymal stem cell homing published from January 2000 to

    September 2015. According to the inclusion criteria, 72 articles were selected for final review.

    RESULTS AND CONCLUSION: Pretreating target tissue or mesenchymal stem cells ahead of cell

    transplantation, known as tissue preconditioning or cell preconditioning, prominently promotes the homing

    of mesenchymal stem cells, therefore enhancing tissue restoration effect. Tissue preconditioning is

    designed to up-regulate expression of chemokines by varying the local microenvironment, thereby

    increasing homing ability of mesechymal stem cells. Mesenchymal stem cell preconditioning strategies, for

    example, gene modification and cytokine induction, are mainly to up-regulate expression of chemokine

    receptors on the surface of mesenchymal stem cells as effectors, and thus promote targeted cell homing.

    Overall, preconditioning strategy will bring great hope to apply stem cell therapy into the clinic.

    Subject headings: Mesenchymal Stem Cells; Transplantation; Tissue Engineering

    Funding: the Natural Science Foundation of Hainan Province, China, No. 811151

    Cite this article: Wang GR, Bai ZM. Preconditioning strategies for promoting mesenchymal stem cell

    homing. Zhongguo Zuzhi Gongcheng Yanjiu. 2016;20(28):4234-4242.

    0 �� Introduction

    ������������������

    ���������

    [1-3]

    ����� !"#

    [4-6]

    �$%

    &��'(�)/�)*+,- !"#

    [7-9]

    ./0�

    ������123*��� !"#�456,-

    *7�89:;

    [10]

    .?@ABCD�����

    ���� E�FG56�HI��������B

    JKL

    [11-12]

    MNOPQ

    [13]

    MNO���LR

    [14]

    MNO

    STUVWX

    [15-17]

    .

    YZ[�\]^_`4abcCD'BCD��

    �������defgh

    [18]

    ���4"#\]

    ^M������\]^i�_`.jklab��

    �������\]^_`bmno.

    1���������Data and methods

    1.1 ��������

    1.1.1 pqLrs PubMedLrs(http://www.ncbi.

    nlm.nih.gov/pubmed/).

    1.1.2 pqLrs�tu^v PubMedLrs�w

    Bxyz�{|}~jLrs�jLr�.

    1.1.3 pqMpq'pq� 4

    Mpqno�j�jk

    %nfpq�tuMpq�tu

    �pq���f~�pq_

    `.

    ���stem cell�mesenchymal stem cells�

    preconditioning�homing�migration.

    �������� stem cell�preconditioning�

    homing¡¢ stem cell�preconditioning�migration¡¢

      mesenchymal stem cells � preconditioning �

    homing¡¢ mesenchymal stem cells�preconditioning�

    migration¡�£¤"bmpq.

    �����2000Z1¥�2015Z9¥.

    1.2 ���������

    1.2.1 j¦t§ ¨�

    ��

    �1�©ªbm.

    1.2.2 j�¦t« ¬jkoc®¯'��

    �M��U\]^_`l������°.±²³M

    ²r�´�jk.µ¤�¶·�jtuY¸¹@U

    yzº»�j.

    1.2.3 ¼½�j ¾¿À«1UÁÂDMÃ-

    Dj.

    1.2.4 �ÄÅÆ ÇÈQpqÉÊ162Ëj�ÌÍ

  • �����. ���������������

    P.O. Box 10002, Shenyang 110180 www.CRTER.org

    4236

    www.CRTER.org

    ������������������

    ���������������� �!"#

    $%&'()*+,-./012���34567

    728��9�:;?�@ABC ��DE��

    >?�@AF&���G&BCH6IJ�C�:

    KL���G&BCMNOPQ�RQSTRUQ

    VWXYQZ[(S[)Q\]^3_���`a�

    ��bcJ��3

    2������Results �

    2.1 ���������� d%efgh�ij

    kfghO&��lmnokpqmnrstd

    %efghuv5wxyz{|u�}~�

    3Karp^

    [10]

    ij~fgh�z{�

    �}|uz{�3

    Lfgh�ij��5�ÚÛd%efgh�|u�:;�è�

    �ÈÉ(green fluorescent proteinGFP)�³Â��

    �y/ö÷CCL21®ö÷PBS��

    z>?W+CCL21ö÷z|uyÜ/�GFP

    +

    g

    ��PubMed���

    �������162��

    ����� 109

    �������

    ����

    ������72

    ����stem cell, mesenchymal stem cells,

    preconditioning, homing, migration

    � 1 ������

    � 2 �������������

    [28]

  • �����. ���������������

    ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

    4237

    www.CRTER.org

    h+� !r��³eghÌÆÂÃ1�é+w,-�d%

    efghijn:~õ�O&3Zhang^

    [38]

    o&(

    )é+~w,-õ�Ld%efghwdef

    gÓKLhijNj����NR�wijV

    �é+,-5NRz{§ghª«

  • �����. ���������������

    P.O. Box 10002, Shenyang 110180 www.CRTER.org

    4238

    www.CRTER.org

    5ghW¬CXCR4¯ÄijxÅW¶®¯

    kLd%efghij¢Ò.���¸¹Ô

    :3d%efgh./0ïðí˳Â"°Qgh

    ÂñL^¤�®d%efghW¬ÀÁÂÃxÅ

    ¢£:rîÚÄW¶'õ�wij3

    2.3.1 ³Â"° o&j²³j²�_´µô³

    Â?@ÚÛd%efghW¬xÅ?mA

    CXCR4W¶îÚ�d%efgh�ijW+�b

    ·�}õ�Ä�Nuv���NR6¸¢£3Chen

    ^

    [46]

    om+î¹>º3»��r³Â"°îÚ

    CXCR1

    [47]

    QCCR1W¶

    [48]

    V}¶µJõ�d%e

    fghij��3

    ¼ÀÁÂÃxÅd%efgh�gh½W¬

    nW¶Ä:-gh|uÕp�

  • �����. ���������������

    ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

    4239

    www.CRTER.org

    hõö÷ij�3

    Toma^

    [64]

    o&c¢£ÊøòÃùÅ�ú

    eé+ûd%efghW¬®()GLfgh

    é+�Qüª«§ýîô}�xy

    2HÁ3Kokhuis^

    [65]

    o&)[\÷WGLfg

    hé+w§ý !ÝÞ§ý�d%e

    fghõ�Ä�yz{|�"#O&ABãV

    �Âé+û�d%efghé+û[�5

    �³þ�fgh�()*Â�£3

    ���.ïW3()$��¯���B

    ã�mA�õ�t����Ä�¸¹Ô:kr

    !d%efghwQ/�

    [66]

    3Wei^

    [66]

    o&.

    ïW3()./0d%efgh5>Ögh

    CXCR4¯SDF-1 mRNA?@îÚÅ|uABV�

    d%efgh�|uWb·�SDF-1-CXCR4

    F�ZAMD3100Þ./0ïðbc?G�

    �@3

    V!pAø./0ïðO&¸¹��:;�

    �!È��P�ÄD3Ô/�0(õ./0

    ïð��0�@3

    ���������������������

    ������������������

    � �!����� !"#��$%&'()*��

    "�#$�+�,%&-./0)*�12��

    %&'(���345678 CNKI 9:;�

    ?@AB 3CDE�

    %&)*���7�1F!BG�HIJKG��L

    MNOPQRS��

    ���+�TU��VWXYZ[�\�]3^�_

    `Babc���\�]d��efgh�ijklmn

    oijpqrs�tN6uv�&wxyz�{|Y}~�

    #D��

  • �����. ���������������

    P.O. Box 10002, Shenyang 110180 www.CRTER.org

    4240

    www.CRTER.org

    %&,-���345�6,��

    4%&��

    4 �� References

    [1] Fuchs E, Segre JA. Stem cells: a new lease on life.

    Cell. 2000;100(1):143-155.

    [2] Horwitz EM, Le Blanc K, Dominici M, et al. Clarification

    of the nomenclature for MSC: The International

    Society for Cellular Therapy position statement.

    Cytotherapy. 2005;7(5):393-395.

    [3] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria

    for defining multipotent mesenchymal stromal cells.

    The International Society for Cellular Therapy position

    statement. Cytotherapy. 2006;8(4):315-317.

    [4] Chamberlain G, Fox J, Ashton B, et al. Concise review:

    mesenchymal stem cells: their phenotype, differentiation

    capacity, immunological features, and potential for

    homing. Stem Cells. 2007;25(11):2739-2749.

    [5] Deak E, Seifried E, Henschler R. Homing pathways of

    mesenchymal stromal cells (MSCs) and their role in

    clinical applications. Int Rev Immunol. 2010;29(5):514-

    529.

    [6] Fong EL, Chan CK, Goodman SB. Stem cell homing in

    musculoskeletal injury. Biomaterials. 2011;32(2):

    395-409.

    [7] Zhu XY, Lerman A, Lerman LO. Concise review:

    mesenchymal stem cell treatment for ischemic kidney

    disease. Stem Cells. 2013;31(9):1731-1736.

    [8] Cashman TJ, Gouon-Evans V, Costa KD.

    Mesenchymal stem cells for cardiac therapy: practical

    challenges and potential mechanisms. Stem Cell Rev.

    2013;9(3):254-265.

    [9] Chou SH, Lin SZ, Kuo WW, et al. Mesenchymal stem

    cell insights: prospects in cardiovascular therapy. Cell

    Transplant. 2014;23(4-5):513-529.

    [10] Karp JM, Leng Teo GS. Mesenchymal stem cell

    homing: the devil is in the details. Cell Stem Cell. 2009;

    4(3):206-216.

    [11] Rombouts WJ, Ploemacher RE. Primary murine MSC

    show highly efficient homing to the bone marrow but

    lose homing ability following culture. Leukemia. 2003;

    17(1):160-170.

    [12] Phinney DG, Prockop DJ. Concise review: mesenchymal

    stem/multipotent stromal cells: the state of

    transdifferentiation and modes of tissue repair-current

    views. Stem Cells. 2007;25(11):2896- 2902.

    [13] Chen J, Li Y, Wang L, et al. Therapeutic benefit of

    intravenous administration of bone marrow stromal

    cells after cerebral ischemia in rats. Stroke. 2001;

    32(4):1005-1011.

    [14] Wu J, Sun Z, Sun HS, et al. Intravenously administered

    bone marrow cells migrate to damaged brain tissue

    and improve neural function in ischemic rats. Cell

    Transplant. 2008;16(10):993-1005.

    [15] Freyman T, Polin G, Osman H, et al. A quantitative,

    randomized study evaluating three methods of

    mesenchymal stem cell delivery following myocardial

    infarction. Eur Heart J. 2006;27(9):1114-1122.

    [16] Omori Y, Honmou O, Harada K, et al. Optimization of a

    therapeutic protocol for intravenous injection of human

    mesenchymal stem cells after cerebral ischemia in

    adult rats. Brain Res. 2008;1236:30-38.

    [17] Bai ZM, Deng XD, Li JD, et al. Arterially transplanted

    mesenchymal stem cells in a mouse reversible

    unilateral ureteral obstruction model: in vivo

    bioluminescence imaging and effects on renal fibrosis.

    Chin Med J (Engl). 2013;126(10):1890-1894.

    [18] Yu SP, Wei Z, Wei L. Preconditioning strategy in stem

    cell transplantation therapy. Transl Stroke Res. 2013;

    4(1):76-88.

    [19] Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and

    differentiation of mesenchymal stem cells. J Cell

    Biochem. 2009;106(6):984-991.

    [20] Chen FM, Wu LA, Zhang M, et al. Homing of

    endogenous stem/progenitor cells for in situ tissue

    regeneration: Promises, strategies, and translational

    perspectives. Biomaterials. 2011;32(12):3189-3209.

    [21] Vanden Berg-Foels WS. In situ tissue regeneration:

    chemoattractants for endogenous stem cell

    recruitment. Tissue Eng Part B Rev. 2014;20(1):28-39.

    [22] Wynn RF, Hart CA, Corradi-Perini C, et al. A small

    proportion of mesenchymal stem cells strongly

    expresses functionally active CXCR4 receptor capable

    of promoting migration to bone marrow. Blood. 2004;

    104(9):2643-2645.

    [23] Sharma M, Afrin F, Satija N, et al. Stromal-derived

    factor-1/CXCR4 signaling: indispensable role in

    homing and engraftment of hematopoietic stem cells in

    bone marrow. Stem Cells Dev. 2011;20(6):933-946.

    [24] Zhu H, Mitsuhashi N, Klein A, et al. The role of the

    hyaluronan receptor CD44 in mesenchymal stem cell

    migration in the extracellular matrix. Stem Cells. 2006;

    24(4):928-935.

    [25] Sackstein R, Merzaban JS, Cain DW, et al. Ex vivo

    glycan engineering of CD44 programs human

    multipotent mesenchymal stromal cell trafficking to

    bone. Nat Med. 2008;14(2):181-187.

    [26] Zhang A, Wang Y, Ye Z, et al. Mechanism of

    TNF-α-induced migration and hepatocyte growth factor

    production in human mesenchymal stem cells. J Cell

    Biochem. 2010;111(2):469-475.

  • �����. ���������������

    ISSN 2095-4344 CN 21-1581/R CODEN: ZLKHAH

    4241

    www.CRTER.org

    [27] Ryu CH, Park SA, Kim SM, et al. Migration of human

    umbilical cord blood mesenchymal stem cells

    mediated by stromal cell-derived factor-1/CXCR4 axis

    via Akt, ERK, and p38 signal transduction pathways.

    Biochem Biophys Res Commun. 2010;398(1):105-110.

    [28] Marquez-Curtis LA, Janowska-Wieczorek A.

    Enhancing the migration ability of mesenchymal

    stromal cells by targeting the SDF-1/CXCR4 axis.

    Biomed Res Int. 2013;2013:561098.

    [29] Gao H, Priebe W, Glod J, et al. Activation of signal

    transducers and activators of transcription 3 and focal

    adhesion kinase by stromal cell-derived factor 1 is

    required for migration of human mesenchymal stem

    cells in response to tumor cell-conditioned medium.

    Stem Cells. 2009;27(4):857-865.

    [30] Lee MJ, Jeon ES, Lee JS, et al. Lysophosphatidic acid

    in malignant ascites stimulates migration of human

    mesenchymal stem cells. J Cell Biochem. 2008;104(2):

    499-510.

    [31] Shang YC, Wang SH, Xiong F, et al. Wnt3a signaling

    promotes proliferation, myogenic differentiation, and

    migration of rat bone marrow mesenchymal stem cells.

    Acta Pharmacol Sin. 2007;28(11):1761-1774.

    [32] Ponte AL, Marais E, Gallay N, et al. The in vitro

    migration capacity of human bone marrow

    mesenchymal stem cells: comparison of chemokine

    and growth factor chemotactic activities. Stem Cells.

    2007;25(7):1737-1745.

    [33] Ji JF, He BP, Dheen ST, et al. Interactions of

    chemokines and chemokine receptors mediate the

    migration of mesenchymal stem cells to the impaired

    site in the brain after hypoglossal nerve injury. Stem

    Cells. 2004;22(3):415-427.

    [34] Sasaki M, Abe R, Fujita Y, et al. Mesenchymal stem

    cells are recruited into wounded skin and contribute to

    wound repair by transdifferentiation into multiple skin

    cell type. J Immunol. 2008;180(4):2581-2587.

    [35] Zhou SB, Wang J, Chiang CA, et al. Mechanical

    stretch upregulates SDF-1α in skin tissue and induces

    migration of circulating bone marrow-derived stem

    cells into the expanded skin. Stem Cells. 2013;31

    (12):2703-2713.

    [36] Burks SR, Nguyen BA, Tebebi PA, et al. Pulsed

    focused ultrasound pretreatment improves

    mesenchymal stromal cell efficacy in preventing and

    rescuing established acute kidney injury in mice. Stem

    Cells. 2015;33(4):1241-1253.

    [37] Wu S, Li L, Wang G, et al. Ultrasound-targeted stromal

    cell-derived factor-1-loaded microbubble destruction

    promotes mesenchymal stem cell homing to kidneys in

    diabetic nephropathy rats. Int J Nanomedicine. 2014;9:

    5639-5651.

    [38] Zhang Y, Ye C, Wang G, et al. Kidney-targeted

    transplantation of mesenchymal stem cells by

    ultrasound-targeted microbubble destruction promotes

    kidney repair in diabetic nephropathy rats. Biomed Res

    Int. 2013;2013:526367.

    [39] Oron U, Tuby H, Maltz L, et al. Autologous bone-marrow

    stem cells stimulation reverses post-ischemic-

    reperfusion kidney injury in rats. Am J Nephrol. 2014;

    40(5):425-433.

    [40] Tuby H, Maltz L, Oron U. Induction of autologous

    mesenchymal stem cells in the bone marrow by

    low-level laser therapy has profound beneficial effects

    on the infarcted rat heart. Lasers Surg Med. 2011;

    43(5):401-409.

    [41] Aicher A, Heeschen C, Sasaki K, et al. Low-energy

    shock wave for enhancing recruitment of endothelial

    progenitor cells: a new modality to increase efficacy of

    cell therapy in chronic hind limb ischemia. Circulation.

    2006;114(25):2823-2830.

    [42] Qiu X, Lin G, Xin Z, et al. Effects of low-energy

    shockwave therapy on the erectile function and tissue of

    a diabetic rat model. J Sex Med. 2013;10(3):738-746.

    [43] Huang Z, Ma T, Ren PG, et al. Effects of orthopedic

    polymer particles on chemotaxis of macrophages and

    mesenchymal stem cells. J Biomed Mater Res A. 2010;

    94(4):1264-1269.

    [44] Gibon E, Yao Z, Rao AJ, et al. Effect of a CCR1

    receptor antagonist on systemic trafficking of MSCs

    and polyethylene particle-associated bone loss.

    Biomaterials. 2012;33(14):3632-3638.

    [45] Cao Z, Zhang G, Wang F, et al. Protective effects of

    mesenchymal stem cells with CXCR4 up-regulation in

    a rat renal transplantation model. PLoS One. 2013;

    8(12):e82949.

    [46] Chen W, Li M, Cheng H, et al. Overexpression of the

    mesenchymal stem cell Cxcr4 gene in irradiated mice

    increases the homing capacity of these cells. Cell

    Biochem Biophys. 2013;67(3):1181-1191.

    [47] Kim SM, Kim DS, Jeong CH, et al. CXC chemokine

    receptor 1 enhances the ability of human umbilical

    cord blood-derived mesenchymal stem cells to migrate

    toward gliomas. Biochem Biophys Res Commun. 2011;

    407(4):741-746.

    [48] Huang J, Zhang Z, Guo J, et al. Genetic modification of

    mesenchymal stem cells overexpressing CCR1

    increases cell viability, migration, engraftment, and

    capillary density in the injured myocardium. Circ Res.

    2010;106(11):1753-1762.

    [49] Meng F, Rui Y, Xu L, et al. Aqp1 enhances migration of

    bone marrow mesenchymal stem cells through

    regulation of FAK and β-catenin. Stem Cells Dev. 2014;

    23(1):66-75.

  • �����. ���������������

    P.O. Box 10002, Shenyang 110180 www.CRTER.org

    4242

    www.CRTER.org

    [50] Li P, Gao Y, Liu Z, et al. DNA transfection of bone

    marrow stromal cells using microbubble-mediated

    ultrasound and polyethylenimine: an in vitro study. Cell

    Biochem Biophys. 2013;66(3):775-786.

    [51] Shi M, Li J, Liao L, et al. Regulation of CXCR4

    expression in human mesenchymal stem cells by

    cytokine treatment: role in homing efficiency in

    NOD/SCID mice. Haematologica. 2007;92(7):897-904.

    [52] Fan H, Zhao G, Liu L, et al. Pre-treatment with IL-1β

    enhances the efficacy of MSC transplantation in

    DSS-induced colitis. Cell Mol Immunol. 2012;9(6):

    473-481.

    [53] Noiseux N, Borie M, Desnoyers A, et al.

    Preconditioning of stem cells by oxytocin to improve

    their therapeutic potential. Endocrinology. 2012;

    153(11):5361-5372.

    [54] Xinaris C, Morigi M, Benedetti V, et al. A novel strategy

    to enhance mesenchymal stem cell migration capacity

    and promote tissue repair in an injury specific fashion.

    Cell Transplant. 2013;22(3):423-436.

    [55] Zhu M, Feng Y, Dangelmajer S, et al. Human

    cerebrospinal fluid regulates proliferation and

    migration of stem cells through insulin-like growth

    factor-1. Stem Cells Dev. 2015;24(2):160-171.

    [56] Tsai LK, Leng Y, Wang Z, et al. The mood stabilizers

    valproic acid and lithium enhance mesenchymal stem

    cell migration via distinct mechanisms.

    Neuropsychopharmacology. 2010;35(11):2225-2237.

    [57] Kim YS, Noh MY, Kim JY, et al. Direct GSK-3β

    inhibition enhances mesenchymal stromal cell

    migration by increasing expression of β-PIX and

    CXCR4. Mol Neurobiol. 2013;47(2):811-820.

    [58] Najafi R, Sharifi AM. Deferoxamine preconditioning

    potentiates mesenchymal stem cell homing in vitro and

    in streptozotocin-diabetic rats. Expert Opin Biol Ther.

    2013;13(7):959-972.

    [59] Li S, Deng Y, Feng J, et al. Oxidative preconditioning

    promotes bone marrow mesenchymal stem cells

    migration and prevents apoptosis. Cell Biol Int. 2009;

    33(3):411-418.

    [60] Das R, Jahr H, van Osch GJ, et al. The role of hypoxia

    in bone marrow-derived mesenchymal stem cells:

    considerations for regenerative medicine approaches.

    Tissue Eng Part B Rev. 2010;16(2):159-168.

    [61] Liu H, Liu S, Li Y, et al. The role of

    SDF-1-CXCR4/CXCR7 axis in the therapeutic effects

    of hypoxia-preconditioned mesenchymal stem cells for

    renal ischemia/reperfusion injury. PLoS One. 2012;

    7(4):e34608.

    [62] Hu X, Wei L, Taylor TM, et al. Hypoxic preconditioning

    enhances bone marrow mesenchymal stem cell

    migration via Kv2.1 channel and FAK activation. Am J

    Physiol Cell Physiol. 2011;301(2):C362-372.

    [63] Wei JF, Wei L, Zhou X, et al. Formation of Kv2.1-FAK

    complex as a mechanism of FAK activation, cell

    polarization and enhanced motility. J Cell Physiol. 2008;

    217(2):544-557.

    [64] Toma C, Fisher A, Wang J, et al. Vascular endoluminal

    delivery of mesenchymal stem cells using acoustic

    radiation force. Tissue Eng Part A. 2011;17(9-10):

    1457-1464.

    [65] Kokhuis TJ, Skachkov I, Naaijkens BA, et al. Intravital

    microscopy of localized stem cell delivery using

    microbubbles and acoustic radiation force. Biotechnol

    Bioeng. 2015;112(1):220-227.

    [66] Wei FY, Leung KS, Li G, et al. Low intensity pulsed

    ultrasound enhanced mesenchymal stem cell

    recruitment through stromal derived factor-1 signaling

    in fracture healing. PLoS One. 2014;9(9):e106722.

    [67] Huang CH, Chen MH, Young TH, et al. Interactive

    effects of mechanical stretching and extracellular

    matrix proteins on initiating osteogenic differentiation

    of human mesenchymal stem cells. J Cell Biochem.

    2009;108(6):1263-1273.

    [68] Suhr F, Delhasse Y, Bungartz G, et al. Cell biological

    effects of mechanical stimulations generated by

    focused extracorporeal shock wave applications on

    cultured human bone marrow stromal cells. Stem Cell

    Res. 2013;11(2):951-964.

    [69] Sheu JJ, Lee FY, Yuen CM, et al. Combined therapy

    with shock wave and autologous bone marrow-derived

    mesenchymal stem cells alleviates left ventricular

    dysfunction and remodeling through inhibiting

    inflammatory stimuli, oxidative stress & enhancing

    angiogenesis in a swine myocardial infarction model.

    Int J Cardiol. 2015;193:69-83.

    [70] Huang X, Zhang F, Wang Y, et al. Design

    considerations of iron-based nanoclusters for

    noninvasive tracking of mesenchymal stem cell

    homing. ACS Nano. 2014;8(5):4403-4414.

    [71] Zhang Q, Nguyen AL, Shi S, et al. Three-dimensional

    spheroid culture of human gingiva-derived

    mesenchymal stem cells enhances mitigation of

    chemotherapy-induced oral mucositis. Stem Cells Dev.

    2012;21(6):937-947.

    [72] Won YW, Patel AN, Bull DA. Cell surface engineering

    to enhance mesenchymal stem cell migration toward

    an SDF-1 gradient. Biomaterials. 2014;35(21):

    5627-5635.