2 applied processes and techniques

22
2. Applied processes and techniques In this chapter the applied processes and techniques are qualitatively described. Chapter 3 covers the quantitative aspects of consumption and emission levels. The chemical, thermodynamic and kinetic principles are not explained. For this, reference is made to literature relevant to the subject [Ullmann’s, 1996] or [KirkOthmer, 1991]. The chloralkali industry produces chlorine and caustic solution (sodium or potassium hydroxide) simultaneously by means of decomposition of a solution of salt in water. Along with the chlorine and the caustic solution, hydrogen is produced. An industrial chloralkali production unit comprises a series of operations, structured as shown in Figure 2.1. In the chloralkali electrolysis process, a chloridesalt solution is decomposed electrolytically by direct current. Most of the time sodium chloride is used in the process in western Europe and less frequently potassium chloride (about 34% of the chlorine production capacity). Other processes such as the electrolysis of hydrochloric acid or the electrolysis of molten sodium chloride are applied, but these only account for about 3% of total chlorine production capacity in Europe. The electrolysis of molten sodium salts which is applied to obtain sodium and for which chlorine is only a coproduct is described in the BAT Reference document on nonferrous metals, as sodium is an alkali metal. There are three basic processes for the electrolytic production of chlorine, the nature of the cathode reaction depending on the specific process. These three processes are the diaphragm cell process (Griesheim cell, 1885), the mercury cell process (Castner–Kellner cell, 1892), and the membrane cell process (1970). Each process represents a different method of keeping the chlorine produced at the anode separate from the caustic soda and hydrogen produced, directly or indirectly, at the cathode [Ullmann’s, 1996]. The basic principle in the electrolysis of a sodium chloride solution is the following: At the anode, chloride ions are oxidised and chlorine (Cl 2 ) is formed. At the cathode: In the mercury process a sodium/mercury amalgam is formed and hydrogen (H 2 ) and hydroxide ions (OH ) are formed by the reaction of the sodium in the amalgam with water in the denuder. In membrane and diaphragm cells, water decomposes to form hydrogen (H 2 ) and hydroxide ions (OH ) at the cathode. For all processes the dissolving of salt, sodium chloride, is: NaCl Na + + Cl The anode reaction for all processes is: 2 Cl (aq) Cl 2 (g) + 2 e The cathode reaction is: 2 Na + (aq) +2 H 2 O + 2e H 2 (g) + 2 Na + (aq) + 2 OH (aq) The overall reaction is: 2 Na + (aq) + 2 Cl (aq) + 2 H 2 O 2 Na + (aq) + 2 OH (aq) + Cl 2 (g) + H 2 (g)

Upload: joao-das-coves

Post on 15-Nov-2015

221 views

Category:

Documents


1 download

DESCRIPTION

Cloro Alki processes techiniques

TRANSCRIPT

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 1/22

    2.Appliedprocessesandtechniques

    Inthischaptertheappliedprocessesandtechniquesarequalitativelydescribed.Chapter3coversthequantitativeaspectsofconsumptionandemissionlevels.

    Thechemical,thermodynamicandkineticprinciplesarenotexplained.Forthis,referenceismadetoliteraturerelevanttothesubject[Ullmanns,1996]or[KirkOthmer,1991].

    Thechloralkaliindustryproduceschlorineandcausticsolution(sodiumorpotassiumhydroxide)simultaneouslybymeansofdecompositionofasolutionofsaltinwater.Alongwiththechlorineandthecausticsolution,hydrogenisproduced.Anindustrialchloralkaliproductionunitcomprisesaseriesofoperations,structuredasshowninFigure2.1.

    Inthechloralkalielectrolysisprocess,achloridesaltsolutionisdecomposedelectrolyticallybydirectcurrent.MostofthetimesodiumchlorideisusedintheprocessinwesternEuropeandlessfrequentlypotassiumchloride(about34%ofthechlorineproductioncapacity).Otherprocessessuchastheelectrolysisofhydrochloricacidortheelectrolysisofmoltensodiumchlorideareapplied,buttheseonlyaccountforabout3%oftotalchlorineproductioncapacityinEurope.

    TheelectrolysisofmoltensodiumsaltswhichisappliedtoobtainsodiumandforwhichchlorineisonlyacoproductisdescribedintheBATReferencedocumentonnonferrousmetals,assodiumisanalkalimetal.

    Therearethreebasicprocessesfortheelectrolyticproductionofchlorine,thenatureofthecathodereactiondependingonthespecificprocess.Thesethreeprocessesarethediaphragmcellprocess(Griesheimcell,1885),themercurycellprocess(CastnerKellnercell,1892),andthemembranecellprocess(1970).Eachprocessrepresentsadifferentmethodofkeepingthechlorineproducedattheanodeseparatefromthecausticsodaandhydrogenproduced,directlyorindirectly,atthecathode[Ullmanns,1996].

    Thebasicprincipleintheelectrolysisofasodiumchloridesolutionisthefollowing:

    Attheanode,chlorideionsareoxidisedandchlorine(Cl2)isformed.

    At thecathode: In themercury process a sodium/mercury amalgam is formed and hydrogen (H2) and hydroxide ions (OH) are formed by thereactionofthesodiumintheamalgamwithwaterinthedenuder.Inmembraneanddiaphragmcells,waterdecomposestoformhydrogen(H2)andhydroxideions(OH)atthecathode.

    Forallprocessesthedissolvingofsalt,sodiumchloride,is:

    NaCl Na++Cl

    Theanodereactionforallprocessesis:

    2Cl(aq) Cl2(g)+2e

    Thecathodereactionis:

    2Na+(aq)+2H2O+2e H2(g)+2Na+(aq)+2OH(aq)

    Theoverallreactionis:

    2Na+(aq)+2Cl(aq)+2H2O 2Na+(aq)+2OH(aq)+Cl2(g)+H2(g)

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 2/22

    Figure2.1:Flowdiagramofthethreemainchloralkaliprocesses

    basedon[KirkOthmer,1991],[Ullmanns,1996]

    ThemaincharacteristicsofthethreeelectrolysisprocessesarepresentedinTable2.1.

    Mercury Diaphragm Membrane

    Causticquality High,

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 3/22

    Figure2.2:Simplifiedschemeofchlorineelectrolysiscells

    after[Dutchreport,1998]

    2.1Themercurycellprocess

    ThemercurycellprocesshasbeeninuseinEuropesince1892andaccountedin1999for58%oftotalproductioninwesternEurope.AsshowninFigure2.3,themercurycellprocessinvolvestwo"cells".Intheprimaryelectrolyser(orbrinecell),purifiedandsaturatedbrinecontainingapproximately25%sodiumchlorideflowsthroughanelongatedtroughthatisslightlyinclinedfromthehorizontal.Inthebottomofthistroughashallowfilmofmercury(Hg)flowsalongthebrinecellcocurrentlywiththebrine.Closelyspacedabovethecathode,ananodeassemblyissuspended.

    Electriccurrentflowingthroughthecelldecomposesthebrinepassingthroughthenarrowspacebetweentheelectrodes,liberatingchlorinegas(Cl2)attheanodeandmetallicsodium(Na)atthecathode.Thechlorinegasisaccumulatedabovetheanodeassemblyanddischargedtothepurificationprocess.

    Asitisliberatedatthesurfaceofthemercurycathode,thesodiumimmediatelyformsanamalgam[KirkOthmer,1991].Theconcentrationoftheamalgamismaintainedat0.20.4%Na(byweight)sothattheamalgamflowsfreely,0.3%isthereferencefigurein[Gest93/186,1993].Theliquidamalgamflowsfromtheelectrolyticcelltoaseparatereactor,calledthedecomposerordenuder,whereitreactswithwaterinthepresenceofagraphitecatalysttoformsodiumhydroxideandhydrogengas.Thesodiumfreemercuryisfedbackintotheelectrolyserandreused.

    Thereactionintheelectrolyseris:2Na++2Cl+2Hg 2NaHg+Cl2(g)

    Thereactioninthedecomposeris:2NaHg+2H2O 2Na++2OH+H2(g)+2Hg

    Thebrineanolyteleavingthecellissaturatedwithchlorineandmustbedechlorinatedbeforebeingreturnedtothedissolvers.

    Thesodiumhydroxideisproducedfromthedenuderataconcentrationofabout50%themaximumvaluereportedis73%[Ullmanns,1996].However,industryreportsstatethatnoplantinEuropeisknowntobeoperatingabove50%.

    Thedecomposermayberegardedasashortcircuitedelectricalcellinwhichthegraphitecatalystisthecathodeandsodiumamalgamtheanode.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 4/22

    Foritsoperation,themercurycelldependsuponthehigheroverpotentialofhydrogenversusmercurytoachievethepreferentialreleaseofsodiumratherthanhydrogen.However,impuritiesthatcanappearonthemercurysurfacemaylackthisovervoltageprotectionandcancauselocalisedreleaseofhydrogenintothechlorine(hydrogencanformanexplosivemixture(>4%H2)inchlorineorair).Thepresenceofeventraceamountsofcertainmetals,suchasvanadium,cancausethereleaseofdangerousamountsofhydrogen.

    Mercurycellsareusuallyoperatedtomaintaina2122%(byweight)concentrationofsaltinthespentbrinedischargedfromtheelectrolyser.Thiscorrespondstothedecompositionof1516%ofthesaltduringasinglepass.Furthersaltdecompositiontoalowerconcentrationinthebrinewoulddecreasebrineconductivity,withtheattendantlossofelectricalefficiency.

    Aportion,orinsomecasesall,ofthedepletedbrineissubsequentlydechlorinated,resaturatedwithsolidsalt,andreturnedtothecellbrinefeed.Somefacilitiespurgesmallamountsofbrinesolutionandusenewbrineasmakeupinordertopreventthebuildupofimpurities,mainlysulphate,inthebrine.Figure2.3showsaflowdiagramofthemercurycell.

    Figure2.3:Flowdiagramofmercurycelltechnology

    2.1.1Themercurycathodeelectrolyseranddecomposer

    Thecellismadeofanelongated,slightlyinclinedtroughandagastightcover.Thetroughismadeofsteel,anditssidesarelinedwithaprotective,nonconductivecoatingtopreventcontactwiththeanolyte,toconfinebrinecathodecontacttothemercurysurface,andtoavoidthecorrosiveactionoftheelectrolyte.Modernelectrolysersare12.5mwideand1025mlong.Asaresult,thecellareatodaycanbegreaterthan30m2.Thesizeofthecellscanbevariedoverabroadrangetogivethedesiredchlorineproductionrate.Atthedesignstage,computerprogramscanbeusedtooptimisethecellsize,numberofcells,andoptimumcurrentdensityasafunctionoftheelectricitycostandcapitalcost[Ullmanns,1996].Thesteelbaseismadeassmoothaspossibletoensuremercuryflowinanunbrokenfilm.Intheeventofabreakinthemercurysurface,causticsodawillbeformedonthebare(steel)cathode,withsimultaneousreleaseofhydrogen,whichwillmixwiththechlorine.Becausehydrogenandchlorinecanformahighlyexplosivemixture,greatcareisnecessarytopreventhydrogenformationinthecell.

    Characteristicsofthecathode:Thecathodeismadebyashallowlayerofmercurywhichflowsfromoneextremityofthecelltotheotherbecauseoftheslightinclinationfromthehorizontalofthecell.

    Characteristicsoftheanode:Electrolyticcellanodesweremadeofgraphiteuntilthelate1960sinwesternEuropewhenanodesoftitaniumcoatedwithrutheniumoxide(RuO2)andtitaniumoxide(TiO2)weredeveloped.TheuseofRuO2andTiO2coatedmetalanodesreducesenergyconsumptionbyabout10%andtheirlifeexpectancyishigher.Inrecentyearstherehavebeencompetitivedevelopmentsindetailedanodegeometry,allwiththeaimofimprovinggasreleaseinordertoreduceohmiclossesandincreasethehomogeneityofthebrinetoimproveanodecoatinglife.

    An"endbox"isattachedtoeachendoftheelectrolyser.Theendboxincorporatescompartmentsforcollectingthechlorinegasandweirsforseparatingthemercuryandbrinestreams,washingthemercuryandpermittingtheremovalofthickmercury"butter"thatisformedbyimpurities.[KirkOthmer,1991]

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 5/22

    Thewholeelectrolyserisinsulatedfromthefloortopreventstraygroundcurrents.Usually,severalelectrolysersareplacedinseriesbymeansofelectricallyconnectingthecathodeofoneelectrolysertotheanodesofthenextelectrolyser.Individualcellscanbebypassedformaintenanceandreplacement.

    Theelectrolyserisoperatedatatemperatureofapproximately7080C.Atthistemperature,theconductivityofthebrinesolutionandthefluidityofthemercuryarehighercomparedtooperationatambienttemperature.Thetemperaturecanbeachievedbypreheatingthesaturatedbrinewithsteamandisincreasedintheelectrolyserbytheheatofresistance.

    Thedecomposeroperatesatatemperatureofapproximately90130C,whichiscausedbythechemicalreactionsinthedecomposerandtheinputofwarmamalgamfromtheelectrolyser.

    2.1.2Decompositionoftheamalgam

    Theamalgamisdecomposedinhorizontaldecomposers,alongsideorbeneaththecell(Figure2.4)ormoreoften,sinceca.1960,inverticaldecomposers(ordenuders),atoneendofthecell(Figure2.5).Industrialdecomposersareessentiallyshortcircuitedelectrochemicalprimarycells.Themostcommoncatalystisgraphite,usuallyactivatedbyoxidesofiron,nickelorcobaltorbycarbidesofmolybdenumortungsten.

    Figure2.4:Mercurycellswithhorizontaldecomposer

    [LeChlore,1996]

    Themercuryprocesshastheadvantageoverdiaphragmandmembranecellsthatitproducesachlorinegaswithnearlynooxygen,anda50%causticsodasolution.However,mercurycellsoperateatahighervoltagethandiaphragmandmembranecellsand,therefore,usemoreenergy(causticsodaconcentrationexcluded).Theprocessalsorequiresapurebrinesolutionwithlittleornometalcontaminantstoavoidtheriskofexplosionthroughhydrogengenerationinthecell.Theamalgamprocessinherentlygivesrisetoenvironmentalreleasesofmercury.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 6/22

    Figure.5:Mercurycellswithverticaldecomposer

    [LeChlore,1996]

    2.2Thediaphragmcellprocess

    Thediaphragmprocesswasdeveloped in the1880s in theUSAandwas the first commercialprocessused toproducechlorineandcaustic soda frombrine.InNorthAmerica,diaphragmcellsarestill theprimarytechnology,accountingforroughly70%ofallUSAproduction.Theprocessdiffersfromthemercurycellprocessinthatallreactionstakeplacewithinonecellandthecelleffluentcontainsbothsaltandcausticsoda.Adiaphragmisemployedtoseparatethechlorineliberatedattheanode,andthehydrogenandcausticsodaproduceddirectlyatthecathode.Withoutthediaphragmtoisolatethem,the hydrogenand chlorinewould spontaneously ignite and the caustic sodaand chlorinewould react to form sodiumhypochlorite (NaClO), with furtherreactiontoproducesodiumchlorate(NaClO3)[KirkOthmer,1991].

    Thediaphragmisusuallymadeofasbestosandseparatesthefeedbrine(anolyte) fromthecausticcontainingcatholyte.Purifiedbrineenters theanodecompartmentandpercolatesthroughthediaphragmintothecathodechamber.Thepercolationrateiscontrolledbymaintainingahigherliquidlevelintheanodecompartmenttoestablishapositiveandcarefullycontrolledhydrostatichead.Thepercolationrate isdeterminedasacompromisebetweena lowrate thatwould produce a desirably high concentration of caustic soda in the catholyte (which provides the cell effluent) and a high rate to limit backmigrationofhydroxylionsfromcatholytetoanolyte,whichdecreasescathodecurrentefficiency[KirkOthmer,1991].

    In the diaphragm cell, saturated brine (about 25% NaCl) is decomposed to approximately 50% of its original concentration in a pass through theelectrolyserascompared toa16%decompositionof salt perpass inmercury cells.Heating causedbypassageof current through the diaphragm cellraisestheoperatingtemperatureoftheelectrolyteto8099C.

    When graphite anodes were used, the diaphragm became inoperable after 90100 days due to plugging of the diaphragm by particles of graphite.Nowadays,allplants in theEuropeanUnionusemetalanodesand the lifetimeof thediaphragm isoveroneyear.Theirservice lifehasalso increasedbecause their compositions have changed. At the beginning the diaphragms were made of asbestos only and were rapidly clogged by calcium andmagnesium ions coming from the brine. Asbestos was chosen because of its good chemical stability and because it is a relatively inexpensive andabundantmaterial.Beginningintheearly1970s,asbestosdiaphragmsbegantobereplacedbydiaphragmscontaining75%asbestosand25%of fibrousfluorocarbonpolymer of high chemical resistance. These diaphragms, trade namedModified Diaphragms, are more stable. The polymer stabilises theasbestos,whichinitselflowerscellvoltageandalsoallowsfortheuseoftheexpandableanode[LeChlore,1995][Ullmanns,1996].Chrysotileasbestos("whiteasbestos")istheonlyformofasbestosusedindiaphragmcells.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 7/22

    Figure2.6:Typicaldiaphragmelectrolysiscell

    [USEPA,1995]

    Bothdiaphragmandmembranecells for theproductionof chlorineand sodiumhydroxideare classifiedas eithermonopolar or bipolar. The designationdoes not refer to the electrochemical reactions that take place, which of course require two poles or electrodes for all cells, but to the electrolyserconstructionorassembly.Therearemanymorechloralkaliproductionfacilitieswithmonopolarcellsthanwithbipolarcells.Themonopolarelectrolyserisassembledsothattheanodesandcathodesarearrangedinparallel.Asaresultofthisconfiguration,allcellshavethesamevoltageofaboutthreetofourvoltsupto200cellscanbeconstructedinonecircuit.Bipolarelectrolysershaveunitassembliesoftheanodeofonecellunitdirectlyconnectedtothecathodeofthenextcellunit,thusminimisingintercellvoltageloss.Theseunitsareassembledinseries.

    Alldiaphragmcellsproducecellliquorthatcontainsca.11%causticsodaand18%sodiumchloride.Thissolutionisevaporatedto50%NaOHbyweightatwhichpointallof thesalt,exceptaresidual1.01.5%byweight,precipitatesout.Thesaltgenerated isverypureand is typicallyused tomakemorebrine. This high quality sodium chloride is sometimes used as a raw material for an amalgam or membrane process. A flow diagram of a possibleintegratedsiteisshowninFigure2.7onpage*.

    Low concentrations of oxygen in chlorine are formed by electrolytic decomposition of water and hypochlorous acid (from the reaction of chlorine withwater).

    Precipitationofmagnesiumandcalciumhydroxidesonthecatholytesideofthediaphragmmayalsocreateblockingproblems.Hydrochloricacidisoftenadded to thebrine to removeCO2 itmayalsobeadded to thebrineentering theanodecompartment to reducebackmigrationofhydroxyl ionsand tosuppressformationofhypochlorousacid.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 8/22

    Figure2.7:Flowdiagramofintegrationofmembraneormercuryanddiaphragmprocesses

    Diaphragmcellshavetheadvantageof:

    operatingatalowervoltagethanmercurycells

    operatingwithlesspurebrinethanrequiredbymembranecells

    Whenusingasbestosdiaphragms,thediaphragmprocessinherentlygivesrisetoenvironmentalreleasesofasbestos.

    2.2.1Diaphragmwithoutasbestos

    Duetothepotentialexposureofemployeestoasbestosandemissionsintheenvironment,effortsarebeingexpandedtoreplacetheasbestoswithotherdiaphragmmaterials.

    Developmentofnonasbestosdiaphragmsstartedinthemiddleofthe1980sandsomecompanieshavenowsucceededinoperatingwiththem.Thebasisofthematerialusedisthesameinalldiaphragmsdevelopedfreeofasbestos,i.e.afluorocarbonpolymer,mainlyPTFE(polytetrafluoroethylene).ThedifferenceslieinthefillersusedandthewaythehydrophobicPTFEfibresaretreatedanddepositedinordertoformapermeableandhydrophilicdiaphragm(seeSection4.3.2.).

    2.2.2Activatedcathodes

    Manydifferenttypesofactivatedcathodiccoatingareunderdevelopment inordertoreducethepowerconsumptionof thecell.Thesehavetoberobustbecausethepowerfulwaterjetusedtoremovethediaphragmfromthecathodemeshcanadverselyaffectthecathode.

    An industrial application of "integrated precathode" diaphragm has been conducted (full scale) and has been found to contribute to saving energy byreducingelectricpowerconsumptionandimprovingcurrentefficiency.Thelifetimeofthediaphragmhasalsobeenfoundtobeimprovedbyintroductionoftheprecathode.

    2.3Themembranecellprocess

    Inthe1970s,thedevelopmentofionexchangemembranesenabledanewtechnologytoproducechlorine:themembraneelectrolysisprocess.Thefirstionexchangemembranesweredevelopedatthebeginningofthe1970sbyDuPont(Nafion),followedbyAsahiGlass(Flemion)whichinstalledthefirstindustrialmembraneplantinJapanin1975duetothepressureofJapaneseenvironmentalregulations.NonchloralkalirelatedmercurypollutioninMinamatadrovetheauthoritiestoprohibitallmercuryprocessesandJapanwasthefirstcountrytoinstallthemembraneprocessonamassivescaleinthemid1980s.

    Today,itisthemostpromisingandfastdevelopingtechniquefortheproductionofchloralkalianditwillundoubtedlyreplacetheothertwotechniquesin

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 9/22

    time.Thiscanbededucedfromthefactthatsince1987practically100%ofthenewchloralkaliplantsworldwideapplythemembraneprocess.Thereplacementofexistingmercuryanddiaphragmcellcapacitywithmembranecellsistakingplaceatamuchslowerratebecauseofthelonglifetimeoftheformerandbecauseofthehighcapitalcostsofreplacement.

    Inthisprocess,theanodeandcathodeareseparatedbyawaterimpermeableionconductingmembrane.Brinesolutionflowsthroughtheanodecompartmentwherechlorideionsareoxidisedtochlorinegas.Thesodiumionsmigratethroughthemembranetothecathodecompartmentwhichcontainsflowingcausticsodasolution.Thedemineralizedwateraddedtothecatholytecircuitishydrolysed,releasinghydrogengasandhydroxideions.Thesodiumandhydroxideionscombinetoproducecausticsodawhichistypicallybroughttoaconcentrationof3235%byrecirculatingthesolutionbeforeitisdischargedfromthecell.Themembranepreventsthemigrationofchlorideionsfromtheanodecompartmenttothecathodecompartmenttherefore,thecausticsodasolutionproduceddoesnotcontainsaltasinthediaphragmcellprocess.Depletedbrineisdischargedfromtheanodecompartmentandresaturatedwithsalt.Ifneeded,toreachaconcentrationof50%causticsoda,thecausticliquorproducedhastobeconcentratedbyevaporation(usingsteam).

    Thecathodematerialusedinmembranecellsiseitherstainlesssteelornickel.Thecathodesareoftencoatedwithacatalystthatismorestablethanthesubstrateandthatincreasessurfaceareaandreducesovervoltage.CoatingmaterialsincludeNiS,NiAl,andNiNiOmixtures,aswellasmixturesofnickelandplatinumgroupmetals.Theanodesusedaremetal.

    Themembranesusedinthechloralkaliindustryarecommonlymadeofperfluorinatedpolymers.Themembranesmayhavefromoneuptothreelayers,butgenerallyconsistoftwolayers.Oneoftheselayersconsistsofperfluorinatedpolymerwithsubstitutedcarboxylicgroupsandisadjacenttothecathodicside.Theotherlayerconsistsofperfluorinatedpolymerwithsubstitutedsulphonicgroupsandisadjacenttotheanodicside.Togivethemembranemechanicalstrength,themembraneisgenerallyreinforcedwithPTFEfibres.Themembranesmustremainstablewhilebeingexposedtochlorineononesideandastrongcausticsolutionontheother.Thegeneraleconomiclifetimeofchloralkalimembranesisapproximatelythreeyears,butrangesbetween25years[EuroChlorreport,1997].

    Membranecellshavetheadvantageofproducingaverypurecausticsodasolutionandofusinglesselectricitythantheotherprocesses.Inaddition,themembraneprocessdoesnotusehighlytoxicmaterialssuchasmercuryandasbestos.Disadvantagesofthemembraneprocessarethatthecausticsodaproducedmayneedtobeevaporatedtoincreaseconcentrationand,forsomeapplications,thechlorinegasproducedneedstobeprocessedtoremoveoxygen.Furthermore,thebrineenteringamembranecellmustbeofaveryhighpurity,whichoftenrequirescostlyadditionalpurificationstepspriortoelectrolysis(seeparagraphonbrinepurification).

    Figure2.8:Diagramofamembraneprocess

    Membranescellscanbeconfiguredeitherasmonopolarorbipolar.Asinthecaseofthediaphragmcellprocess,thebipolarcellshavelessvoltagelossbetweenthecellsthanthemonopolarcells.However,thenumberofcellsconnectedtogetherinthesamecircuitislimited.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 10/22

    Figure2.9:Explodedviewofamonopolarmembraneelectrolyser

    [Source:DeNora]

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 11/22

    Figure2.10:Viewofamembranecellroomequippedwithbipolarelectrolysers

    (Source:HoechstUhde)

    2.4Auxiliaryprocesses

    Apart from the cells, which remain the heart of the chlorine production line, there are other processing steps or equipment, common to amalgam,diaphragmandmembranetechnologies.Theseare:

    saltunloadingandstorage

    brinepurificationandresaturation

    chlorineprocessing

    causticprocessing

    hydrogenprocessing.

    2.4.1Saltunloadingandstorage

    Thebrineusedinthemercurycellandmembraneprocessesisnormallysaturatedwithsolidsalt,althoughsomeinstallationsusesolutionminedbrineonaoncethroughbasis(i.e.nobrinerecirculation).

    Brineisgenerallyproducedbythedissolvingoffreshsaltinwaterordepletedbrinefrommercuryandmembraneprocesses.Thebasicrawmaterialisusuallysolidsalt:rocksalt,solarsalt,orvacuumevaporatedsaltfrompurifyingandevaporatingsolutionminedbrine.

    Generallythesaltisstoredinasealedareaequippedwitharoof.Becauseofitshighpuritythevacuumsaltinparticularneedstobeprotected.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 12/22

    2.4.2Brinepurificationandresaturation

    2.4.2.1Brinepurification

    Ascanbeseen inFigure2.1onpage10, thebrinepurificationprocess consistsof aprimary system formercury and diaphragm technologies and anadditionalsecondarysystem formembrane technology.Thisoperation isneeded toavoidanyundesirablecomponents (sulphateanions,cationsofCa,Mg, Ba andmetals) that can affect the electrolytic process. The quality of the rawmaterial and the brine quality requirements for each of the threetechnologiesdeterminethecomplexityofthebrinetreatmentunit.

    Primarypurification

    Precipitation

    The initialstageofpurificationusessodiumcarbonateandsodiumhydroxide toprecipitatecalciumandmagnesium ionsascalciumcarbonate(CaCO3)andmagnesium hydroxide (Mg(OH)2). Metals (iron, titanium, molybdenum, nickel, chromium, vanadium, tungsten) may also precipitate as hydroxideduringthisoperation.Theusualwaytoavoidmetalsistospecifytheirexclusioninthepurchaseandtransportspecificationforthesalt.Sodiumsulphateiscontrolledbyaddingcalciumchloride(CaCl2)orbariumsaltstoremovesulphateanionsbyprecipitationofcalciumsulphate(CaSO4)orbariumsulphate(BaSO4).Precipitationofbariumsulphatecantakeplacesimultaneouslywith theprecipitationofcalciumcarbonateandmagnesiumhydroxide,whereastheprecipitationofcalciumsulphaterequiresaseparatevessel.

    Filtration

    Theprecipitatedimpuritiesareremovedbysedimentation,filtrationoracombinationofboth.Theseparatedfiltercakeisgenerallyconcentratedto5060%(althoughafigureof6080%isreportedintheliterature)solidscontentinrotarydrumvacuumfiltersorcentrifugesbeforedisposal.[Ullmanns,1996]

    Thepurifiedbrineshouldcontainideally[Ullmanns,1996]:

    Ca:

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 13/22

    (Source:AsahiGlassCO)

    Thesecondarybrinepurificationconsistsofapolishfiltrationstepandbrinesofteninginanionexchangeunit:

    Thesecondaryfiltrationgenerallyconsistsofcandletype,plateframeorpressureleaffilters(eitherwithorwithoutcellulosebasedprecoat)inordertosufficientlyreducethesuspensionmatterandprotecttheionexchangeresinfromdamage.

    Theionexchangechelatingresintreatmentisdesignedtodecreasethealkalineearthmetalstoppblevel.Table2.2indicatesthespecificationsrequiredformetals,SO4andotherimpurities.Thesespecificationscanvaryiftheuserswanttooperateatalowcurrentdensity(

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 14/22

    electrolyticcell.Ifconcentratedinliquidformindownstreamprocesses,NCl3mayexplodewithdisastrousresults.

    NitrogencompoundsinthebrineisthemainsourceofNCl3.Rocksalt,inparticularsolutionminedsaltusingsurfacewaters,willcontainvaryinglevelsofammoniumandnitratesalts,whereastheuseofvacuumsaltinthebrinerecyclecircuitwillgiveverylowlevelsofNCl3,exceptwhereferrocyanidesareaddedtoavoidcaking.Also,thewaterqualitymayvary,inparticularifsurfacewaterisused.Thetotalconcentrationofnitrogencompoundsinthebrineshouldbecheckedregularly.ChlorinationatapHhigherthan8.5orhypochloritetreatmentofthebrineishowever,capableofdestroyingalargeproportionoftheammoniumsaltimpurity.[Gest76/55,1990]

    MethodstoremoveNCl3fromchlorineafteritisformedaredescribedinSection4.1.6.

    Figure2.12:Viewofchelateresintowersinasecondarybrinepurificationsystem

    (photographsuppliedbyAsahiGlassCo)

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 15/22

    Figure2.13:Viewofpolishingfiltersinasecondarybrinepurificationsystem

    (photographsuppliedbyAsahiGlassCo)

    2.4.2.2Brineresaturationanddechlorination

    Mercuryandmembranesystemsusuallyoperatewithbrinerecirculationandresaturation.Thereare,however,3wastebrinemercuryplantsand1wastebrinemembraneplantoperatinginwesternEurope.

    Somediaphragmcelllineshaveaoncethroughbrinecircuit,whilstothersemploybrinesaturationusingthesaltrecoveredfromthecausticevaporators.

    Inrecirculationcircuits,thedepletedbrineleavingtheelectrolysersisfirstdechlorinated:

    Partiallyforthemercuryprocess(leavingactivechlorineinthebrinekeepsthemercuryinionicformandreducesthepresenceofmetallicmercuryinthepurificationsludge)

    Totallyforthemembraneprocess(necessaryherebecausetheactivechlorinecandamagetheionexchangeresinsofthesecondarybrinepurificationunit).

    Forthispurpose,thebrineissenttoanairblownpackedcolumnorissprayedintoavacuumsystemtoextractthemajorpartofthedissolvedchlorine.

    Nosuchdechlorinationtreatment isrequiredfor thediaphragmsystemsinceanychlorinepassingthroughthediaphragmreactswithcausticsoda in thecatholytecompartmenttoformhypochloriteorchlorate.

    Forthemembraneprocess, there isapreliminarystageofhydrochloricacidaddition(to reachpH22.5) inorder toachievebetterchlorineextraction.Afurtherstageisalsonecessarytoeliminatethechlorinecompletelythisisdonebypassingthebrinethroughanactivatedcarbonbedorbyinjectionofareducingagent(e.g.sulphite).

    Ifthesaturationismadewithimpuresalt(followedbyaprimarypurificationsteponthetotalbrineflow),thepHofthebrineisthenbroughttoanalkalinevaluewithcausticsoda,toreducethesolubilisationofimpuritiesfromthesalt.Ifthesaturationismadewithpuresalt(withsubsequentprimarypurificationonasmallpartoftheflow),thereisnoalkalisationstepatthatlevel(onlyinthepurificationphase).

    Depletedbrinefromthemercuryandmembranecells,withaconcentrationof210250g/l,dependingonthetechnology,currentdensityandheatbalanceofthecell,isresaturatedbycontactwithsolidsalttoachieveasaturatedbrineconcentrationof310315g/l.

    Inthecaseofdiaphragmcells,thecatholyteliquor(1012%NaOH,15%NaCl)goesdirectlytothecausticevaporatorswheresolidsaltand50%causticarerecoveredtogether.Freshbrinecanbesaturatedwithrecycledsolidsaltfromthecausticevaporatorsbeforeenteringthediaphragmelectrolysers.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 16/22

    Resaturatorscanbeeitheropenorclosedvessels.

    ThepHofthebrinesenttotheelectrolysersmaybeadjustedtoanacidicvalue(pH4)withhydrochloricacidinordertoprotecttheanodecoating,tokeepthe formation of chlorate at a low level and to decrease the oxygen content in the chlorine gas. Hydrochloric acid can also be added in the anodiccompartments of membrane cells to further reduce the content of oxygen in the chlorine, especially for electrolysers with older membranes (poorerperformances)The(bi)carbonatesintroducedwiththesaltaredecomposedbytheseacidadditions,producinggaseouscarbondioxide.

    2.4.3Chlorineproduction,storageandhandling

    Generally,before the chlorine can be used, it goes through a series of processes for cooling, cleaning, drying, compression and liquefaction. In someapplications,itcanbeusedasadrygaswithoutneedforliquefaction.Veryoccasionallyitcanbeuseddirectlyfromtheelectrolysers.Ageneral flowofchlorinefromtheelectrolyserstostorageispresentedinFigure2.14.

    Figure2.14:Theflowofchlorinefromtheelectrolyserstostorage

    [EuroChlorreport,1997]

    Thechlorineprocessusuallytakeshot,wetcellgasandconvertsittoacold,drygas.Chlorinegasleavingtheelectrolysersisatapproximately8090Candsaturatedwithwatervapour.Italsocontainsbrinemist,impuritiessuchasN2,H2,O2,CO2andtracesofchlorinatedhydrocarbons.Electrolysersareoperatedatessentiallyatmosphericpressurewithonlyafewmilliatmospheresdifferentialpressurebetweentheanolyteandthecatholyte.

    Cooling

    Intheprimarycoolingprocess,thetotalvolumeofgastobehandledisreducedandalargeamountofmoistureiscondensed.Coolingisaccomplishedineitheronestagewith chilledwater or in two stageswith chilledwater only in the second stage.Care is taken to avoid excessive cooling because, ataround 10 C, chlorine can combine with water to form a solid material known as chlorine hydrate. Maintaining temperatures above 10 C prevents

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 17/22

    blockagesinprocessequipment.

    Twomethodsaremostfrequentlyusedtocoolchlorinegas:

    1. Indirectcoolingthroughatitaniumsurface(usuallyinasinglepassverticalshellandtubeexchanger).Theresultantcondensateiseitherfedbackintothebrinesystemofthemercuryprocessordechlorinatedbyevaporationinthecaseofthediaphragmprocess.Thismethodcauseslesschlorinetobecondensedorabsorbedandgenerateslesschlorinesaturatedwaterfordisposal.[BrienWhite,1995]

    2. Directcontactwithwater.ThechlorinegasiscooledbypassingitdirectlyintothebottomofatowerinwhichthepackingisdividedintotwoSections,for2stagecooling.Waterissprayedintothetopandflowscountercurrenttothechlorine.Thecoolingwatershouldbefreeoftracesofammoniumsaltstoavoidtheformationofnitrogentrichloride.Thismethodhastheadvantageofbettermasstransfercharacteristicsandhigherthermalefficiency.

    Closedcircuitdirectcoolingofchlorinecombinestheadvantagesofthetwomethods.Thechlorineladenwaterfromthecoolingtoweriscooledintitaniumplatecoolersandrecycled.Thesurpluscondensateistreatedexactlylikethecondensatefromindirectcooling.

    Followingprimarycooling,chlorinegasisdemistedofwaterdropletsandbrineimpurities.Impuritiesareremovedmechanicallybyusingspecialfilters,orbymeansofanelectrostaticprecipitator.Chlorineisthenpassedtothedryingtowers.

    Drying

    Chlorinefromthecoolingsystemismoreorlesssaturatedwithwatervapour.Thewatercontentistypically13%.Thismustbereducedinordertoavoiddownstreamcorrosionandminimisetheformationofhydrates[BrienWhite,1995].

    Dryingofchlorineiscarriedoutalmostexclusivelywithconcentratedsulphuricacid[Ullmanns,1996].Dryingisaccomplishedincountercurrentsulphuricacidcontacttowerswhichreducethemoisturecontenttolessthan20ppm[Stenhammar].Drychlorineleavingthetopofthedryingtowerpassesthroughhighefficiencydemisterstopreventtheentrainmentofsulphuricaciddroplets.Thespentacidusuallybecomesawasteproductorrequiresreprocessingifitisreused.Forexample,ithastobedechlorinatedbyairblowingandmaybereconcentratedbeforebeingsoldorusedforeffluenttreatment.

    Compression

    Afterdrying,chlorinegasmightbescrubbedwithliquidchlorineortreatedwithultravioletirradiationtoreducelevelsofnitrogentrichlorideandthenitmaybecompressedinavarietyofcompressors:

    sulphuricacidliquidringcompressorsatlowpressures(~4bar)

    monoormultistagecentrifugalcompressors(5barorhigher)

    reciprocatingcompressors(>11bar)

    screwcompressors(variouspressures)

    Becauseofheatbuildup fromcompression,multistageunitswithcoolersbetweenstagesareusuallynecessary.Compressor sealsaregenerally fittedwithapressurisedpurgetoinhibitleakageofchlorinetotheatmosphere[UKGuidancenote,1993].

    Toavoidnoise,whichisquiteimportantevenforlowpressures,chlorinecompressorsshouldbesoundinsulated.

    Liquefaction

    Liquefactioncanbeaccomplishedat different pressureand temperature levels, at ambient temperature andhighpressure (for example 18 Cand712bar),atlowtemperatureandlowpressure(forexample35Cand1bar)oranyotherintermediatecombinationoftemperatureandpressure.

    Thechosenliquefactionpressureandtemperatureinfluencethechoiceofcoolingmediaandthesafetyprecautionsnecessarytooperatesafely.However,theefficiencyof liquefaction is limitedbecausehydrogen isconcentrated in theresidualgasand itsconcentrationneeds tobekeptbelowtheexplosivelimits.

    Thechoiceof thecoolingmediuminacertainstageof the liquefactiondependsonthetemperatureof thechlorine.When the temperature issufficientlyhigh,watercanbeusedasan indirect coolingmedium.When the temperature is relatively low, other coolingmedia such asHCFCs orHFCs (indirectcooling),ammonia(indirectcooling)orliquidchlorine(directcooling)areused.

    Thetemperatureofthechlorinegasinacertainstagedependsmainlyontheinitialtemperatureandonthepressureincreaseduringcompression.Alargepressureincreasegenerallyenableswatercooling,butimpliesanincreasedhazardrisk.Chlorinetemperaturehastobekeptwellbelowthepointwhereitreactsspontaneouslyanduncontrollablywithiron(approx.120oC).

    Constructionmaterialsmustbechosentosuittheconditionsunderwhichchlorineisbeinghandled:

    Wetordry

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 18/22

    Gasorliquid

    Temperature

    Pressure

    In termsof safety, it is very important to avoid, during compression and liquefaction, any possibility ofmixing chlorinewith oils or greaseswhich arereactiveasregardschlorine.

    Table2.3showsthepossibletradeoffbetweendifferenttypesofchlorinegasliquefaction,coolingmethodsappliedandsafetyaspects.

    Liquefactionsystem

    Coolingmedium

    Safetyaspect

    Storage

    Highpressure(716bar)andhightemperatures Water Highprecautions

    Lowestenergycostsbuthighmaterialcosts

    Mediumpressure(26bar)andmediumtemperatures(between10and20C)

    WaterHCFC/HFCorammonia

    Moderateprecautions

    Moderateenergyand

    materialcosts

    Normalpressure(~1bar)andlowtemperatures(below40C)

    MainlyHCFC/HFCorammonia

    Precautions1

    Cryogenicstorageofliquidchlorineispossible.Highenergyandlowermaterialcosts

    1.Attentionmustbepaidtotheincreasedsolubilityofothergasesatlowtemperatures,especiallycarbondioxide

    Table2.3:Possibletradeoffinchlorinegasliquefaction

    basedon[Ullmanns,1996],[Dutchreport,1998]

    Handlingandstorage

    Chlorineisliquefiedandstoredatambientorlowtemperature.Theliquidchlorinefromthebulktankcanbeusedasafeedstockforonsiteprocessesorloadedintocontainers,roadorrailtankers.Becauseofthehightoxicityofchlorine,thestorageareamustbecarefullymonitoredandspecialcaremustbetakenduringloadingoperations.

    2.4.3.1Dealingwithimpurities

    Chlorinegasfromtheelectrolysiscellsmaycontainimpuritiessuchasnitrogentrichloride(NCl3),bromine(Br2),halogenatedhydrocarbons(CXHYXZ),carbondioxide(CO2),oxygen(O2),nitrogen(N2)andhydrogen(H2).

    Nitrogentrichloride,bromineandhalogenatedhydrocarbonspredominantlydissolveintheliquidchlorine,whereasthenoncondensablegases(CO2,O2,N2,H2)remaininthegasphaseandincreaseinconcentrationduringchlorineliquefaction.Tracesofsulphuricacid,ferricsulphate,ferricchlorideand/orcarbontetrachloridemightalsobepresentinthegasphaseafterdryingandliquefactionofchlorine.

    Specialattentionshouldbepaidtothefollowingimpurities:

    Water

    Allmetalsareattackedbywetchlorinewiththeexceptionoftitaniumandtantalum.Titaniumcanonlybeusedinwetchlorineconditionsitspontaneouslycombustsindrychlorine.

    Hydrogen

    Allthreetechnologiesproducehydrogenwhichcanformanexplosivemixture(>4%H2)inchlorineorair.Light,frictionandgasdepressurisationmaybringenoughenergytoinitiatethereactionatambienttemperature.Chlorinegasisanalysedregularlytoensuretheabsenceofanexplosivemixture.

    Nitrogentrichloride

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 19/22

    Nitrogentrichlorideisformedduringtheelectrolyticproductionofchlorine,duetosidereactionsbetweenthechlorineandvariousnitrogencompoundsinthebrinesolution.1ppmofNH3inbrineisenoughtogive>50ppmNCl3inliquidchlorine.Inplantswhichusedirectcontactwatercoolingofthechlorinegasbeforedryingandcompression,NCl3mayalsobeformedifthewaterispollutedwithnitrogencompounds[Gest76/55,1990].

    Nitrogentrichlorideischaracterisedbyitsutmostinstability.ExperimentalresultsshowthataconcentrationofNCl3greaterthan3%byweightatambienttemperatureiscapableofaccelerateddecompositionwhichisstronglyexothermic.

    NCl3hasahigherboilingpointthanchlorineandanyNCl3presentinthechlorinegaswillconcentrateintheliquidphaseinachlorineliquefactionprocess.AnyevaporativehandlingofliquidchlorineispotentiallydangerousduetotheselectiveconcentrationofNCl3intheliquidphase.

    MethodstoremoveNCl3fromchlorinearedescribedinSection4.1.6.

    Bromine

    Thequantityofbrominepresentdependsonthequalityofthesaltused.Itsconcentrationisgenerallyhigherifchlorineisobtainedbyelectrolysingpotassiumchloridetoobtainpotassiumhydroxide.Bromine,likewater,canacceleratethecorrosionofthematerials.

    Noncondensablegases(CO2,O2,N2,H2)

    Thereareseveralwaystodealwiththenoncondensablegases,dependingonthelayoutofthechlorineliquefactionunit.Somearedescribedbelow.

    DilutionwithairandproductionofweakNaOCl

    Duringchlorinegascompressionandcooling,mostofthechlorinegasiscondensed.However,thenoncondensablegases(H2,CO2,O2,N2)increaseinconcentration.Bydilutingtheremainingchlorinegaswithair,theconcentrationofhydrogencanbekeptbelowtheexplosionlimit.Thisallowsadditionalliquefactionofchlorinegas.Theremaininggasesafterliquefaction(socalled"tailgas")havetobepurgedfromthesystem.Thetailgasstillcontainsasignificantamountofchlorine,andthegasisthereforenormallyledtothechlorinedestruction/absorptionunit.

    Productionofhydrochloricacid

    Insteadofdilutingtheremaininggasesafterpartialcondensationofthechlorinegas,thehydrogencanberemovedfromthesystembymeansofareactionwithchlorinegasinacolumn.Thisremovesvirtuallyallthehydrogenandyieldsgaseoushydrochloricacid,whichexistsharmlesslywiththechlorinegasandcanberecoveredinahydrochloricacidunit.Theremainingchlorinegascannowsafelybefurthercondensed.Thetailgaseswithsomechlorinegasandtheremainingnoncondensablegases(CO2,N2,O2)willbepassedthroughahydrochloricacidunit.ThissolutioncanbechosenifHClisasaleableproductorifitcanbeusedasafeedstockfordownstreamproduction,suchasferricchloride.

    2.4.3.2Thechlorineabsorptionunit

    Thepurposeofatypicalchlorineabsorptionsystemistwofold:

    1. Tocontinuouslyabsorbchlorinegasarisinginstreamssuchastailgasfromliquefaction,airblownfromwastebrineorchlorinecondensatedechlorinationandalsowetanddrymaintenanceheaders.Upto5%,butnormallylessthan1%,oftheplantproductionisabsorbedinthisway.

    2. Toabsorbthefullcellroomproductionduringemergencyforanadequateperiod,usuallynotlessthan15to30minutes,toenablecorrectivemeasurestobetakenortheplanttobeshutdowninasafemanner.Gravityfedheadtanksorpumpssuppliedwithbackuppowersuppliesmaybeusedtogiveincreasedreliabilityandoperationunderpowerfailureconditions.

    Theabovefunctionscouldbeundertakeninseparatepurposebuiltunits,providingtheintegrityofthesystemsismaintainedbyhavingbackupscrubbers.All gaseous vents contaminated or potentially contaminated with chlorine thus pass into the atmosphere through caustic scrubbing towers containingpackingirrigatedwithcausticsoda.Heatisgeneratedbytheabsorptionreactionandtemperaturesshouldnotbeallowedtoincreaseaboveabout30Ctoavoid formation of sodium chlorate instead of sodiumhypochlorite solution. To avoid overheating during a fullscale relief, the fresh caustic soda feedsolutionshouldnotbestrongerthanabout12%byweight.Highercausticconcentrationscanbeusedprovidingadequatecooling is installed,butthere isanincreasedriskofsolidsdepositionandblockage.

    Tailgasfromthechlorineliquefactionunitcontainsresidualchlorineandcarbondioxide,whichareabsorbedinthecaustic,andhydrogen,whichisdilutedwithairtolessthan4%byvolumetoavoidflammablemixtures.

    Optimum design of scrubbing systemsmust include high reliability, automatic operation in emergencies, and countercurrent flow of liquid and gas toachievelowexitconcentrations.Ifsaleisnotpossible,efficientdecompositionofthesodiumhypochloriteproducedintosodiumchloridecanbeachievedusinganickelcatalyst.

    2.4.4Causticproduction,storageandhandling

    Sodiumhydroxide(causticsoda)isproducedinafixedratioof1.128tonnes(as100%NaOH)pertonnechlorineproduced.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 20/22

    Figure2.15:Viewofcausticproductionandstorage

    [OxyChem,1992]

    Thecausticsodasolutionfromthethreetechnologiesistreatedinslightlydifferentwaysduetothedifferenceincompositionandconcentration.

    Inthemercurycellprocess,50%causticsodaisobtaineddirectlyfromthedecomposers.Thecausticsodaisnormallypumpedthroughacooler,thenthroughamercuryremovalsystemandthentotheintermediateandfinalstoragesections.Insomecasesthecausticisheatedbeforefiltration.Themostcommonmethodforremovalofmercuryfromcausticsodaisaplate(orleaf)filterwithcarbonprecoat.Undernormaloperatingconditions,mercurycellcausticsoda(as100%NaOH)contains20100ppmofsodiumchlorideand4060gHg/kgNaOH.

    Inthecaseofdiaphragmandmembranetechnologiesthecausticsodaisconcentratedbyevaporationbeforefinalstorage.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 21/22

    Figure.16:Theflowtostorageofcausticsodafromthedifferenttechnologies

    Basedon[OxyChem,1992]

    Steamisusedasthesourceofevaporativeenergy.Thepresenceofsaltinthediaphragmcellliquorrequiresthattheevaporatorisequippedwithscraperbladesorotherdevicestodrawofftheprecipitatedsalt.Thishighqualitysodiumchloridecanthenbeusedtoenrichdepletedbrine,sometimesitisusedasarawmaterialforanamalgamormembraneprocess.Theresiduallevelofsodiumchlorideinsodiumhydroxidefromdiaphragmcellisabout1%andsodiumchlorate0.1%.Forthisreason,itisunsuitableforcertainendapplicationssuchasthemanufactureofrayon.

    Saltandsodiumchlorateinthecausticsodafromdiaphragmcellscanbereducedbyammoniaextractiontoincreasemarketability,butatincreasedcost.

    Thecausticsodafrommembranecellsisofhighquality,althoughthecausticsodaproduced(usuallyaround33%NaOH)needsconcentrationto50%NaOHforsomeapplications.Thesaltcontentofthemembranecellcausticsodaliesbetween20100ppm(in100%NaOH),butisonaverageslightlyhigherthanmercurycellcaustic(seeTable2.1).

    Insomeplantsthecausticsodaisfurtherconcentratedtoa73%solutionandto100%assolidcausticprillsorflakes.

    Somechloralkaliproductionfacilitiescancombinethecausticproductionprocessfrommercuryandmembranecellsinordertominimiseenergycosts.Itispossibletofeed33%causticfromthemembranecellstothedecomposertoproduce50%causticwithouttheneedforevaporation.

    Storageandhandling

    Becauseofitshighlyreactiveandcorrosiveproperties,causticsodamaycorrodecontainersandhandlingequipment.Constructionmaterialsmustbesuitedtothecausticsodahandledandstored.

    Sodiumhydroxidesolutionsrequiresteamorelectricalheatingwheretemperaturescanfallbelowtheupperfreezingpoint.Frozenpipelinespresentbothsafetyandenvironmentalriskswhenattemptsaremadetounblockthem.SafetymeasuresaresetoutinChapter4.

    Storagetanksmaybelinedinordertominimiseironcontaminationoftheproductortoavoidstresscorrosioncrackingthetank.Tanksareusuallyincludedinprocedurestopreventoverfloworspillageofcausticsoda.Suchproceduresincludecontainmentandmitigation.

    Itshouldbenotedthatdissolvedhydrogengascanbereleasedintothevapourspaceabovetheliquidinstoragetanks.Tanksarenormallyventedfromthehighestpoint.Testingforanexplosivemixtureofhydrogeninairnormallyprecedesanymaintenanceactivityinthearea.

  • 3/24/2015 2APPLIEDPROCESSESANDTECHNIQUES

    http://www.ineris.fr/ippc/sites/default/interactive/brefca/bref_gb_ptmo.htm 22/22

    2.4.5Hydrogenproduction,storageandhandling

    Hydrogen isproduced ina fixed ratioof28kgper tonnechlorineproduced.Hydrogen leaving the cells is highly concentrated (>99.9%by volume) andnormallycooledtoremovewatervapour,sodiumhydroxideandsalt.Thesolutionofcondensedsaltwaterandsodiumhydroxideiseitherrecycledasbrinemakeup or treated with other waste water streams. In the mercury cell process, hydrogen has to be treated to remove mercury. Primary cooling atambienttemperatureiscarriedoutattheelectrolyser,allowingmercuryvapourtocondenseintothemainmercurycircuit.Furthercoolingtakesplaceatalaterstageusinglargeheatexchangersandcondensateissentformercuryrecovery.

    Hydrogenmaybedistributedtousersusingboosterfansorfedtothemaincompressionplant.Themainhydrogencompressionplantusuallycomprisesanumberofcompressorsandagasholder (surgechamber).Thehydrogengasholder is incorporated into thesystem tominimise fluctuations in thegaspressurefromtheprimarystage.Thehydrogenproductgasstreamisalwayskeptpressurisedtoavoid ingressofair.Allelectricalequipmenttakenintothehydrogencompressionplantareamustbe"intrinsicallysafe",i.e.theequipmentwillnotproduceaspark.Areliefvalveisnormallyprovidedwithinthesystemtorelievehighpressuretoatmosphere.

    Hydrogenisnormallyanalysedforoxygencontentthecompressionwillshutdownautomaticallyincriticalsituations[EuroChlorreport,1997].

    The hydrogen is in general used for onsite energy production. It is burnt as a fuel, either by the company operating the chlorine plant or by anothercompany towhom ithasbeensoldasa fuel.Someorall of it canalsobeusedonsite in the caseof integrated sitesor sold toother companiesaschemicalfeedstock(productionofhydroxylamines,hydrochloricacid,hydrogenperoxide,sodiumsulphite,forexample).