1dr k n prasanna kumar, 2prof b s kiranagi ...while we do resort to concept formulation, related...

67
International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 1 ISSN 2250-3153 www.ijsrp.org A DEFACTO –DEJURE MODEL FOR POSITRONS,STELLAR NUCLOSYNTHESIS,QUANTUM COHERENCE,SIMULATION,OBJECTIVE REALITY,QUANTUM DECOHERENCE,VIRTUAL PHOTONS ,PHOTON TUNNELLING,ENZYMES ,SPACE TIME ,INCREASE IN SPEED OF CHEMICAL REACTIONS(SVERDUPAND SEMNOV’S NUMBER)AND QUANTUM TUNNELING 1 DR K N PRASANNA KUMAR, 2 PROF B S KIRANAGI AND 3 PROF C S BAGEWADI ABSTRACT: There exists differential relations, contiguous similarities; in compassable anti generalities, pre suppositional resemblances, dialectic transformation, portmanteau incompatibilities between different structures of stellar nucleosynthesis that occurs in stars, positrons, and Eulerian kinematic description thereof, calls for the attention of both simulation and Quantum coherence, Quantum Gravity and Objective reality. Despite the crying need for the same, and lack of comprehensive envelope of expression, there seems to be contential staticity and presciential dynamism in so far as these aspects are considered. Atrophied asseveration in stellar nucleosynthesis and environmental decoherence are probably most endearing attributions that call for both rational Leibneizism and Socratic subjectivity and of course discourse relativity. An evolutionist model is expounded with configurational entropy and morphological entity for these variables and we look at the system dispassionately without being disturbed by the state of the system. There is no clamor for participatory seriotological sermonisations or an orientation towards pedagogical pontification. We just state the facts and leave the rest to others to do the divergential affirmation, disjunctive synthesis,. While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort to glorification or mortification of the thesis. Warts et al are presented without any hesitation, reservation, compunction or contrition, which probably is the testimony for the fact that human knowledge is limited and all the needs to be explored stretches in front like an ocean with all its cacophonous mendacious moorings and thromboses unbenedictory singularities with splashed contours and stigmatized boundaries. =========================================================================== Parameters taken in to consideration are: (1) Positrons (2) Stellar Nucleosynthesis (3) Simulation (4) Quantum Coherence (5) Quantum Gravity (6) Objective reality (7) Enzymes (8) Space-time (9) Virtual photons (10) Photonic tunneling(and visibility thereof) (11) Acceleration in Chemical reactions (12) Quantum Tunneling

Upload: others

Post on 01-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 1

ISSN 2250-3153

www.ijsrp.org

A DEFACTO –DEJURE MODEL FOR POSITRONS,STELLAR NUCLOSYNTHESIS,QUANTUM COHERENCE,SIMULATION,OBJECTIVE REALITY,QUANTUM DECOHERENCE,VIRTUAL PHOTONS ,PHOTON

TUNNELLING,ENZYMES ,SPACE TIME ,INCREASE IN SPEED OF CHEMICAL REACTIONS(SVERDUPAND SEMNOV’S NUMBER)AND

QUANTUM TUNNELING

1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI AND 3 PROF C S BAGEWADI

ABSTRACT: There exists differential relations, contiguous similarities; in compassable anti generalities, pre suppositional resemblances, dialectic transformation, portmanteau incompatibilities between different structures of stellar nucleosynthesis that occurs in stars, positrons, and Eulerian kinematic description thereof, calls for the attention of both simulation and Quantum coherence, Quantum Gravity and Objective reality. Despite the crying need for the same, and lack of comprehensive envelope of expression, there seems to be contential staticity and presciential dynamism in so far as these aspects are considered. Atrophied asseveration in stellar nucleosynthesis and environmental decoherence are probably most endearing attributions that call for both rational Leibneizism and Socratic subjectivity and of course discourse relativity. An evolutionist model is expounded with configurational entropy and morphological entity for these variables and we look at the system dispassionately without being disturbed by the state of the system. There is no clamor for participatory seriotological sermonisations or an orientation towards pedagogical pontification. We just state the facts and leave the rest to others to do the divergential affirmation, disjunctive synthesis,. While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort to glorification or mortification of the thesis. Warts et al are presented without any hesitation, reservation, compunction or contrition, which probably is the testimony for the fact that human knowledge is limited and all the needs to be explored stretches in front like an ocean with all its cacophonous mendacious moorings and thromboses unbenedictory singularities with splashed

contours and stigmatized boundaries.

===========================================================================

Parameters taken in to consideration are:

(1) Positrons

(2) Stellar Nucleosynthesis

(3) Simulation

(4) Quantum Coherence

(5) Quantum Gravity

(6) Objective reality

(7) Enzymes

(8) Space-time

(9) Virtual photons

(10) Photonic tunneling(and visibility thereof)

(11) Acceleration in Chemical reactions

(12) Quantum Tunneling

Page 2: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 2

ISSN 2250-3153

www.ijsrp.org

POSITRONS AND STELLAR NUCLEOSYNTHESIS: MODULE NUMBERED ONE

NOTATION :

𝐺13 : CATEGORY ONE OF STELLAR NUCLEOSYNTHESIS

𝐺14 : CATEGORY TWO OF STELLAR NUCLEOSYNTHESIS

𝐺15 : CATEGORY THREE OF STELLAR NUCLEOSYNTHESIS

𝑇13 : CATEGORY ONE OF POSITRONS

𝑇14 : CATEGORY TWO OF POSITRONS

𝑇15 :CATEGORY THREE OF POSITRONS

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO:

Note: Every film is simulation. Every thought is simulation.

============================================================================

=

𝐺16 : CATEGORY ONE OF SIMULATIONS

𝐺17 : CATEGORY TWO OF SIMULATIONS

𝐺18 : CATEGORY THREE OF SIMULATIONS

𝑇16 :CATEGORY ONE OF QUANTUM COHERENCE

𝑇17 : CATEGORY TWO OF QUANTUM COHERENCE

𝑇18 : CATEGORY THREE OF QUANTUM COHERENCE

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE:

=============================================================================

𝐺20 : CATEGORY ONE OF OBJECTIVE REALITY

𝐺21 :CATEGORY TWO OF OBJECTIVE REALITY

𝐺22 : CATEGORY THREE OF OBJECTIVE REALITY

𝑇20 :CATEGORY ONE OF QUANTUM DECOHERENCE

𝑇21 :CATEGORY TWO OF QUANTUM DECOHERENCE

𝑇22 : CATEGORY THREE OFQUANTUM DECOHERENCE

Page 3: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 3

ISSN 2250-3153

www.ijsrp.org

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR:

============================================================================

𝐺24 : CATEGORY ONE OFENZYMES

𝐺25 : CATEGORY TWO OF ENZYMES

𝐺26 : CATEGORY THREE OF ENZYMES

𝑇24 :CATEGORY ONE OF SPACE TIME

𝑇25 :CATEGORY TWO OF SPACE TIME

𝑇26 : CATEGORY THREE OF SPACETIME

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS:MODULE

NUMBERED FIVE:

=============================================================================

𝐺28 : CATEGORY ONE OFPHOTONIC TUNNELING

𝐺29 : CATEGORY TWO OF PHOTONIC TUNNELING

𝐺30 :CATEGORY THREE OF PHOTONIC TUNNELING

𝑇28 :CATEGORY ONE OF VIRTUAL PHOTONS

𝑇29 :CATEGORY TWO OFVIRTUAL PHOTONS

𝑇30 :CATEGORY THREE OF VIRTUAL PHOTONS

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION:MODULE

NUMBERED SIX:

=============================================================================

𝐺32 : CATEGORY ONE OF QUANTUM TUNNELING

𝐺33 : CATEGORY TWO OF QUANTUM TUNNELING

𝐺34 : CATEGORY THREE OFQUANTUM TUNNELING

𝑇32 : CATEGORY ONE OF ACCELERATION IN CHEMICAL REACTIONS

𝑇33 : CATEGORY TWO OFACCELERATION IN CHEMICAL REACTIONS

𝑇34 : CATEGORY THREE OFACCELERATION IN CHEMICAL REACTIONS

=============================================================================

==

π‘Ž13 1 , π‘Ž14

1 , π‘Ž15 1 , 𝑏13

1 , 𝑏14 1 , 𝑏15

1 π‘Ž16 2 , π‘Ž17

2 , π‘Ž18 2 𝑏16

2 , 𝑏17 2 , 𝑏18

2 : π‘Ž20

3 , π‘Ž21 3 , π‘Ž22

3 , 𝑏20 3 , 𝑏21

3 , 𝑏22 3

π‘Ž24 4 , π‘Ž25

4 , π‘Ž26 4 , 𝑏24

4 , 𝑏25 4 , 𝑏26

4 , 𝑏28 5 , 𝑏29

5 , 𝑏30 5 , π‘Ž28

5 , π‘Ž29 5 , π‘Ž30

5 ,

Page 4: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 4

ISSN 2250-3153

www.ijsrp.org

π‘Ž32 6 , π‘Ž33

6 , π‘Ž34 6 , 𝑏32

6 , 𝑏33 6 , 𝑏34

6

are Accentuation coefficients

π‘Ž13β€² 1 , π‘Ž14

β€² 1 , π‘Ž15β€² 1 , 𝑏13

β€² 1 , 𝑏14β€² 1 , 𝑏15

β€² 1 , π‘Ž16β€² 2 , π‘Ž17

β€² 2 , π‘Ž18β€² 2 , 𝑏16

β€² 2 , 𝑏17β€² 2 , 𝑏18

β€² 2

, π‘Ž20β€² 3 , π‘Ž21

β€² 3 , π‘Ž22β€² 3 , 𝑏20

β€² 3 , 𝑏21β€² 3 , 𝑏22

β€² 3 π‘Ž24

β€² 4 , π‘Ž25β€² 4 , π‘Ž26

β€² 4 , 𝑏24β€² 4 , 𝑏25

β€² 4 , 𝑏26β€² 4 , 𝑏28

β€² 5 , 𝑏29β€² 5 , 𝑏30

β€² 5 π‘Ž28β€² 5 , π‘Ž29

β€² 5 , π‘Ž30β€² 5 ,

π‘Ž32β€² 6 , π‘Ž33

β€² 6 , π‘Ž34β€² 6 , 𝑏32

β€² 6 , 𝑏33β€² 6 , 𝑏34

β€² 6

are Dissipation coefficients

POSITRONS AND STELLAR NUCLEOSYNTHESIS: MODULE NUMBERED ONE

The differential system of this model is now

𝑑𝐺13

𝑑𝑑= π‘Ž13

1 𝐺14 βˆ’ π‘Ž13β€² 1 + π‘Ž13

β€²β€² 1 𝑇14 , 𝑑 𝐺13

𝑑𝐺14

𝑑𝑑= π‘Ž14

1 𝐺13 βˆ’ π‘Ž14β€² 1 + π‘Ž14

β€²β€² 1 𝑇14 , 𝑑 𝐺14

𝑑𝐺15

𝑑𝑑= π‘Ž15

1 𝐺14 βˆ’ π‘Ž15β€² 1 + π‘Ž15

β€²β€² 1 𝑇14 , 𝑑 𝐺15

𝑑𝑇13

𝑑𝑑= 𝑏13

1 𝑇14 βˆ’ 𝑏13β€² 1 βˆ’ 𝑏13

β€²β€² 1 𝐺, 𝑑 𝑇13

𝑑𝑇14

𝑑𝑑= 𝑏14

1 𝑇13 βˆ’ 𝑏14β€² 1 βˆ’ 𝑏14

β€²β€² 1 𝐺, 𝑑 𝑇14

𝑑𝑇15

𝑑𝑑= 𝑏15

1 𝑇14 βˆ’ 𝑏15β€² 1 βˆ’ 𝑏15

β€²β€² 1 𝐺, 𝑑 𝑇15

+ π‘Ž13β€²β€² 1 𝑇14 , 𝑑 = First augmentation factor

βˆ’ 𝑏13β€²β€² 1 𝐺, 𝑑 = First detritions factor

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO

The differential system of this model is now

𝑑𝐺16

𝑑𝑑= π‘Ž16

2 𝐺17 βˆ’ π‘Ž16β€² 2 + π‘Ž16

β€²β€² 2 𝑇17 , 𝑑 𝐺16

𝑑𝐺17

𝑑𝑑= π‘Ž17

2 𝐺16 βˆ’ π‘Ž17β€² 2 + π‘Ž17

β€²β€² 2 𝑇17 , 𝑑 𝐺17

𝑑𝐺18

𝑑𝑑= π‘Ž18

2 𝐺17 βˆ’ π‘Ž18β€² 2 + π‘Ž18

β€²β€² 2 𝑇17 , 𝑑 𝐺18

𝑑𝑇16

𝑑𝑑= 𝑏16

2 𝑇17 βˆ’ 𝑏16β€² 2 βˆ’ 𝑏16

β€²β€² 2 𝐺19 , 𝑑 𝑇16

𝑑𝑇17

𝑑𝑑= 𝑏17

2 𝑇16 βˆ’ 𝑏17β€² 2 βˆ’ 𝑏17

β€²β€² 2 𝐺19 , 𝑑 𝑇17

𝑑𝑇18

𝑑𝑑= 𝑏18

2 𝑇17 βˆ’ 𝑏18β€² 2 βˆ’ 𝑏18

β€²β€² 2 𝐺19 , 𝑑 𝑇18

+ π‘Ž16β€²β€² 2 𝑇17 , 𝑑 = First augmentation factor

βˆ’ 𝑏16β€²β€² 2 𝐺19 , 𝑑 = First detritions factor

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE

Page 5: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 5

ISSN 2250-3153

www.ijsrp.org

The differential system of this model is now

𝑑𝐺20

𝑑𝑑= π‘Ž20

3 𝐺21 βˆ’ π‘Ž20β€² 3 + π‘Ž20

β€²β€² 3 𝑇21 , 𝑑 𝐺20

𝑑𝐺21

𝑑𝑑= π‘Ž21

3 𝐺20 βˆ’ π‘Ž21β€² 3 + π‘Ž21

β€²β€² 3 𝑇21 , 𝑑 𝐺21

𝑑𝐺22

𝑑𝑑= π‘Ž22

3 𝐺21 βˆ’ π‘Ž22β€² 3 + π‘Ž22

β€²β€² 3 𝑇21 , 𝑑 𝐺22

𝑑𝑇20

𝑑𝑑= 𝑏20

3 𝑇21 βˆ’ 𝑏20β€² 3 βˆ’ 𝑏20

β€²β€² 3 𝐺23 , 𝑑 𝑇20

𝑑𝑇21

𝑑𝑑= 𝑏21

3 𝑇20 βˆ’ 𝑏21β€² 3 βˆ’ 𝑏21

β€²β€² 3 𝐺23 , 𝑑 𝑇21

𝑑𝑇22

𝑑𝑑= 𝑏22

3 𝑇21 βˆ’ 𝑏22β€² 3 βˆ’ 𝑏22

β€²β€² 3 𝐺23 , 𝑑 𝑇22

+ π‘Ž20β€²β€² 3 𝑇21 , 𝑑 = First augmentation factor

βˆ’ 𝑏20β€²β€² 3 𝐺23 , 𝑑 = First detritions factor

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR

:

The differential system of this model is now

𝑑𝐺24

𝑑𝑑= π‘Ž24

4 𝐺25 βˆ’ π‘Ž24β€² 4 + π‘Ž24

β€²β€² 4 𝑇25 , 𝑑 𝐺24

𝑑𝐺25

𝑑𝑑= π‘Ž25

4 𝐺24 βˆ’ π‘Ž25β€² 4 + π‘Ž25

β€²β€² 4 𝑇25 , 𝑑 𝐺25

𝑑𝐺26

𝑑𝑑= π‘Ž26

4 𝐺25 βˆ’ π‘Ž26β€² 4 + π‘Ž26

β€²β€² 4 𝑇25 , 𝑑 𝐺26

𝑑𝑇24

𝑑𝑑= 𝑏24

4 𝑇25 βˆ’ 𝑏24β€² 4 βˆ’ 𝑏24

β€²β€² 4 𝐺27 , 𝑑 𝑇24

𝑑𝑇25

𝑑𝑑= 𝑏25

4 𝑇24 βˆ’ 𝑏25β€² 4 βˆ’ 𝑏25

β€²β€² 4 𝐺27 , 𝑑 𝑇25

𝑑𝑇26

𝑑𝑑= 𝑏26

4 𝑇25 βˆ’ 𝑏26β€² 4 βˆ’ 𝑏26

β€²β€² 4 𝐺27 , 𝑑 𝑇26

+ π‘Ž24β€²β€² 4 𝑇25 , 𝑑 = First augmentation factor

βˆ’ 𝑏24β€²β€² 4 𝐺27 , 𝑑 = First detritions factor

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS:MODULE

NUMBERED FIVE

The differential system of this model is now

𝑑𝐺28

𝑑𝑑= π‘Ž28

5 𝐺29 βˆ’ π‘Ž28β€² 5 + π‘Ž28

β€²β€² 5 𝑇29 , 𝑑 𝐺28

𝑑𝐺29

𝑑𝑑= π‘Ž29

5 𝐺28 βˆ’ π‘Ž29β€² 5 + π‘Ž29

β€²β€² 5 𝑇29 , 𝑑 𝐺29

𝑑𝐺30

𝑑𝑑= π‘Ž30

5 𝐺29 βˆ’ π‘Ž30β€² 5 + π‘Ž30

β€²β€² 5 𝑇29 , 𝑑 𝐺30

Page 6: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 6

ISSN 2250-3153

www.ijsrp.org

𝑑𝑇28

𝑑𝑑= 𝑏28

5 𝑇29 βˆ’ 𝑏28β€² 5 βˆ’ 𝑏28

β€²β€² 5 𝐺31 , 𝑑 𝑇28

𝑑𝑇29

𝑑𝑑= 𝑏29

5 𝑇28 βˆ’ 𝑏29β€² 5 βˆ’ 𝑏29

β€²β€² 5 𝐺31 , 𝑑 𝑇29

𝑑𝑇30

𝑑𝑑= 𝑏30

5 𝑇29 βˆ’ 𝑏30β€² 5 βˆ’ 𝑏30

β€²β€² 5 𝐺31 , 𝑑 𝑇30

+ π‘Ž28β€²β€² 5 𝑇29 , 𝑑 = First augmentation factor

βˆ’ 𝑏28β€²β€² 5 𝐺31 , 𝑑 = First detritions factor

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION:MODULE

NUMBERED SIX

The differential system of this model is now

𝑑𝐺32

𝑑𝑑= π‘Ž32

6 𝐺33 βˆ’ π‘Ž32β€² 6 + π‘Ž32

β€²β€² 6 𝑇33 , 𝑑 𝐺32

𝑑𝐺33

𝑑𝑑= π‘Ž33

6 𝐺32 βˆ’ π‘Ž33β€² 6 + π‘Ž33

β€²β€² 6 𝑇33 , 𝑑 𝐺33

𝑑𝐺34

𝑑𝑑= π‘Ž34

6 𝐺33 βˆ’ π‘Ž34β€² 6 + π‘Ž34

β€²β€² 6 𝑇33 , 𝑑 𝐺34

𝑑𝑇32

𝑑𝑑= 𝑏32

6 𝑇33 βˆ’ 𝑏32β€² 6 βˆ’ 𝑏32

β€²β€² 6 𝐺35 , 𝑑 𝑇32

𝑑𝑇33

𝑑𝑑= 𝑏33

6 𝑇32 βˆ’ 𝑏33β€² 6 βˆ’ 𝑏33

β€²β€² 6 𝐺35 , 𝑑 𝑇33

𝑑𝑇34

𝑑𝑑= 𝑏34

6 𝑇33 βˆ’ 𝑏34β€² 6 βˆ’ 𝑏34

β€²β€² 6 𝐺35 , 𝑑 𝑇34

+ π‘Ž32β€²β€² 6 𝑇33 , 𝑑 = First augmentation factor

βˆ’ 𝑏32β€²β€² 6 𝐺35 , 𝑑 = First detritions factor

HOLISTIC CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO AS β€œGLOBAL EQUATIONS

POSITRONS AND STELLAR NUCLEOSYNTHESIS: MODULE NUMBERED ONE

OBJECTIVE REALITY AND QUANTUM DECOHERENCE:MODULE NUMBERED THREE

SIMULATIONS AND QUANTUM COHERENCEMODULE NUMBERED TWO

SPACE-TIME AND ENZYMES: MODULE NUMBERED FOUR

PHOTONIC TUNNELING(VISIBILITY THEREOF) AND VIRTUAL PHOTONS:MODULE

NUMBERED FIVE

QUANTUM TUNNELING AND ACCELERATED CHEMICAL REACTION:MODULE

NUMBERED SIX

𝑑𝐺13

𝑑𝑑= π‘Ž13

1 𝐺14 βˆ’ π‘Ž13

β€² 1 + π‘Ž13β€²β€² 1 𝑇14 , 𝑑 + π‘Ž16

β€²β€² 2,2, 𝑇17 , 𝑑 + π‘Ž20β€²β€² 3,3, 𝑇21 , 𝑑

+ π‘Ž24β€²β€² 4,4,4,4, 𝑇25 , 𝑑 + π‘Ž28

β€²β€² 5,5,5,5, 𝑇29 , 𝑑 + π‘Ž32β€²β€² 6,6,6,6, 𝑇33 , 𝑑

𝐺13

Page 7: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 7

ISSN 2250-3153

www.ijsrp.org

𝑑𝐺14

𝑑𝑑= π‘Ž14

1 𝐺13 βˆ’ π‘Ž14

β€² 1 + π‘Ž14β€²β€² 1 𝑇14 , 𝑑 + π‘Ž17

β€²β€² 2,2, 𝑇17 , 𝑑 + π‘Ž21β€²β€² 3,3, 𝑇21 , 𝑑

+ π‘Ž25β€²β€² 4,4,4,4, 𝑇25 , 𝑑 + π‘Ž29

β€²β€² 5,5,5,5, 𝑇29 , 𝑑 + π‘Ž33β€²β€² 6,6,6,6, 𝑇33 , 𝑑

𝐺14

𝑑𝐺15

𝑑𝑑= π‘Ž15

1 𝐺14 βˆ’ π‘Ž15

β€² 1 + π‘Ž15β€²β€² 1 𝑇14 , 𝑑 + π‘Ž18

β€²β€² 2,2, 𝑇17 , 𝑑 + π‘Ž22β€²β€² 3,3, 𝑇21 , 𝑑

+ π‘Ž26β€²β€² 4,4,4,4, 𝑇25 , 𝑑 + π‘Ž30

β€²β€² 5,5,5,5, 𝑇29 , 𝑑 + π‘Ž34β€²β€² 6,6,6,6, 𝑇33 , 𝑑

𝐺15

Where π‘Ž13β€²β€² 1 𝑇14 , 𝑑 , π‘Ž14

β€²β€² 1 𝑇14 , 𝑑 , π‘Ž15β€²β€² 1 𝑇14 , 𝑑 are first augmentation coefficients for category 1, 2 and 3

+ π‘Ž16β€²β€² 2,2, 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2,2, 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2,2, 𝑇17 , 𝑑 are second augmentation coefficient for category 1, 2 and 3

+ π‘Ž20β€²β€² 3,3, 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3,3, 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3,3, 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3

+ π‘Ž24β€²β€² 4,4,4,4, 𝑇25 , 𝑑 , + π‘Ž25

β€²β€² 4,4,4,4, 𝑇25 , 𝑑 , + π‘Ž26β€²β€² 4,4,4,4, 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3

+ π‘Ž28β€²β€² 5,5,5,5, 𝑇29 , 𝑑 , + π‘Ž29

β€²β€² 5,5,5,5, 𝑇29, 𝑑 , + π‘Ž30β€²β€² 5,5,5,5, 𝑇29, 𝑑 are fifth augmentation coefficient for category 1, 2 and 3

+ π‘Ž32β€²β€² 6,6,6,6, 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6,6,6,6, 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6,6,6,6, 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3

𝑑𝑇13

𝑑𝑑= 𝑏13

1 𝑇14 βˆ’

𝑏13β€² 1 βˆ’ 𝑏13

β€²β€² 1 𝐺, 𝑑 βˆ’ 𝑏16β€²β€² 2,2, 𝐺19, 𝑑 – 𝑏20

β€²β€² 3,3, 𝐺23 , 𝑑

βˆ’ 𝑏24β€²β€² 4,4,4,4, 𝐺27 , 𝑑 βˆ’ 𝑏28

β€²β€² 5,5,5,5, 𝐺31 , 𝑑 βˆ’ 𝑏32β€²β€² 6,6,6,6, 𝐺35 , 𝑑

𝑇13

𝑑𝑇14

𝑑𝑑= 𝑏14

1 𝑇13 βˆ’ 𝑏14

β€² 1 βˆ’ 𝑏14β€²β€² 1 𝐺, 𝑑 βˆ’ 𝑏17

β€²β€² 2,2, 𝐺19 , 𝑑 – 𝑏21β€²β€² 3,3, 𝐺23 , 𝑑

βˆ’ 𝑏25β€²β€² 4,4,4,4, 𝐺27 , 𝑑 βˆ’ 𝑏29

β€²β€² 5,5,5,5, 𝐺31 , 𝑑 βˆ’ 𝑏33β€²β€² 6,6,6,6, 𝐺35 , 𝑑

𝑇14

𝑑𝑇15

𝑑𝑑= 𝑏15

1 𝑇14 βˆ’ 𝑏15

β€² 1 βˆ’ 𝑏15β€²β€² 1 𝐺, 𝑑 βˆ’ 𝑏18

β€²β€² 2,2, 𝐺19 , 𝑑 – 𝑏22β€²β€² 3,3, 𝐺23 , 𝑑

βˆ’ 𝑏26β€²β€² 4,4,4,4, 𝐺27 , 𝑑 βˆ’ 𝑏30

β€²β€² 5,5,5,5, 𝐺31 , 𝑑 βˆ’ 𝑏34β€²β€² 6,6,6,6, 𝐺35 , 𝑑

𝑇15

Where βˆ’ 𝑏13β€²β€² 1 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1 𝐺, 𝑑 are first detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏16β€²β€² 2,2, 𝐺19, 𝑑 , βˆ’ 𝑏17

β€²β€² 2,2, 𝐺19, 𝑑 , βˆ’ 𝑏18β€²β€² 2,2, 𝐺19 , 𝑑 are second detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏20β€²β€² 3,3, 𝐺23 , 𝑑 , βˆ’ 𝑏21

β€²β€² 3,3, 𝐺23 , 𝑑 , βˆ’ 𝑏22β€²β€² 3,3, 𝐺23 , 𝑑 are third detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏24β€²β€² 4,4,4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4,4,4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4,4,4,4, 𝐺27 , 𝑑 are fourth detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏28β€²β€² 5,5,5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5,5,5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5,5,5,5, 𝐺31 , 𝑑 are fifth detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏32β€²β€² 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6,6,6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6,6,6,6, 𝐺35 , 𝑑 are sixth detrition coefficients for category 1, 2 and 3

𝑑𝐺16

𝑑𝑑= π‘Ž16

2 𝐺17 βˆ’ π‘Ž16

β€² 2 + π‘Ž16β€²β€² 2 𝑇17 , 𝑑 + π‘Ž13

β€²β€² 1,1, 𝑇14 , 𝑑 + π‘Ž20β€²β€² 3,3,3 𝑇21 , 𝑑

+ π‘Ž24β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž28

β€²β€² 5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž32β€²β€² 6,6,6,6,6 𝑇33 , 𝑑

𝐺16

𝑑𝐺17

𝑑𝑑= π‘Ž17

2 𝐺16 βˆ’ π‘Ž17

β€² 2 + π‘Ž17β€²β€² 2 𝑇17 , 𝑑 + π‘Ž14

β€²β€² 1,1, 𝑇14 , 𝑑 + π‘Ž21β€²β€² 3,3,3 𝑇21 , 𝑑

+ π‘Ž25β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž29

β€²β€² 5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž33β€²β€² 6,6,6,6,6 𝑇33 , 𝑑

𝐺17

Page 8: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 8

ISSN 2250-3153

www.ijsrp.org

𝑑𝐺18

𝑑𝑑= π‘Ž18

2 𝐺17 βˆ’ π‘Ž18

β€² 2 + π‘Ž18β€²β€² 2 𝑇17 , 𝑑 + π‘Ž15

β€²β€² 1,1, 𝑇14 , 𝑑 + π‘Ž22β€²β€² 3,3,3 𝑇21 , 𝑑

+ π‘Ž26β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž30

β€²β€² 5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž34β€²β€² 6,6,6,6,6 𝑇33 , 𝑑

𝐺18

Where + π‘Ž16β€²β€² 2 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2 𝑇17 , 𝑑 are first augmentation coefficients for category 1, 2 and 3

+ π‘Ž13β€²β€² 1,1, 𝑇14 , 𝑑 , + π‘Ž14

β€²β€² 1,1, 𝑇14 , 𝑑 , + π‘Ž15β€²β€² 1,1, 𝑇14 , 𝑑 are second augmentation coefficient for category 1, 2 and 3

+ π‘Ž20β€²β€² 3,3,3 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3,3,3 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3,3,3 𝑇21 , 𝑑 are third augmentation coefficient for category 1, 2 and 3

+ π‘Ž24β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25

β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž26β€²β€² 4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficient for category 1, 2 and 3

+ π‘Ž28β€²β€² 5,5,5,5,5 𝑇29, 𝑑 , + π‘Ž29

β€²β€² 5,5,5,5,5 𝑇29 , 𝑑 , + π‘Ž30β€²β€² 5,5,5,5,5 𝑇29, 𝑑 are fifth augmentation coefficient for category 1, 2 and 3

+ π‘Ž32β€²β€² 6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficient for category 1, 2 and 3

𝑑𝑇16

𝑑𝑑= 𝑏16

2 𝑇17 βˆ’ 𝑏16

β€² 2 βˆ’ 𝑏16β€²β€² 2 𝐺19 , 𝑑 βˆ’ 𝑏13

β€²β€² 1,1, 𝐺, 𝑑 – 𝑏20β€²β€² 3,3,3, 𝐺23 , 𝑑

βˆ’ 𝑏24β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏28

β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏32β€²β€² 6,6,6,6,6 𝐺35 , 𝑑

𝑇16

𝑑𝑇17

𝑑𝑑= 𝑏17

2 𝑇16 βˆ’ 𝑏17

β€² 2 βˆ’ 𝑏17β€²β€² 2 𝐺19 , 𝑑 βˆ’ 𝑏14

β€²β€² 1,1, 𝐺, 𝑑 – 𝑏21β€²β€² 3,3,3, 𝐺23 , 𝑑

βˆ’ 𝑏25β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏29

β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏33β€²β€² 6,6,6,6,6 𝐺35 , 𝑑

𝑇17

𝑑𝑇18

𝑑𝑑= 𝑏18

2 𝑇17 βˆ’ 𝑏18

β€² 2 βˆ’ 𝑏18β€²β€² 2 𝐺19 , 𝑑 βˆ’ 𝑏15

β€²β€² 1,1, 𝐺, 𝑑 – 𝑏22β€²β€² 3,3,3, 𝐺23 , 𝑑

βˆ’ 𝑏26β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏30

β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏34β€²β€² 6,6,6,6,6 𝐺35 , 𝑑

𝑇18

where βˆ’ b16β€²β€² 2 G19, t , βˆ’ b17

β€²β€² 2 G19, t , βˆ’ b18β€²β€² 2 G19, t are first detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏13β€²β€² 1,1, 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1,1, 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1,1, 𝐺, 𝑑 are second detrition coefficients for category 1,2 and 3

βˆ’ 𝑏20β€²β€² 3,3,3, 𝐺23 , 𝑑 , βˆ’ 𝑏21

β€²β€² 3,3,3, 𝐺23 , 𝑑 , βˆ’ 𝑏22β€²β€² 3,3,3, 𝐺23 , 𝑑 are third detrition coefficients for category 1,2 and 3

βˆ’ 𝑏24β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4,4,4,4,4 𝐺27 , 𝑑 are fourth detrition coefficients for category 1,2 and 3

βˆ’ 𝑏28β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5,5,5,5,5 𝐺31 , 𝑑 are fifth detrition coefficients for category 1,2 and 3

βˆ’ 𝑏32β€²β€² 6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6,6,6,6,6 𝐺35 , 𝑑 are sixth detrition coefficients for category 1,2 and 3

𝑑𝐺20

𝑑𝑑= π‘Ž20

3 𝐺21 βˆ’

π‘Ž20β€² 3 + π‘Ž20

β€²β€² 3 𝑇21 , 𝑑 + π‘Ž16β€²β€² 2,2,2 𝑇17 , 𝑑 + π‘Ž13

β€²β€² 1,1,1, 𝑇14 , 𝑑

+ π‘Ž24β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž28

β€²β€² 5,5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž32β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑

𝐺20

𝑑𝐺21

𝑑𝑑= π‘Ž21

3 𝐺20 βˆ’ π‘Ž21

β€² 3 + π‘Ž21β€²β€² 3 𝑇21 , 𝑑 + π‘Ž17

β€²β€² 2,2,2 𝑇17 , 𝑑 + π‘Ž14β€²β€² 1,1,1, 𝑇14 , 𝑑

+ π‘Ž25β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž29

β€²β€² 5,5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž33β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑

𝐺21

𝑑𝐺22

𝑑𝑑= π‘Ž22

3 𝐺21 βˆ’ π‘Ž22

β€² 3 + π‘Ž22β€²β€² 3 𝑇21 , 𝑑 + π‘Ž18

β€²β€² 2,2,2 𝑇17 , 𝑑 + π‘Ž15β€²β€² 1,1,1, 𝑇14 , 𝑑

+ π‘Ž26β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 + π‘Ž30

β€²β€² 5,5,5,5,5,5 𝑇29 , 𝑑 + π‘Ž34β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑

𝐺22

Page 9: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 9

ISSN 2250-3153

www.ijsrp.org

+ π‘Ž20β€²β€² 3 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3 𝑇21 , 𝑑 are first augmentation coefficients for category 1, 2 and 3

+ π‘Ž16β€²β€² 2,2,2 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2,2,2 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2,2,2 𝑇17 , 𝑑 are second augmentation coefficients for category 1, 2 and 3

+ π‘Ž13β€²β€² 1,1,1, 𝑇14 , 𝑑 , + π‘Ž14

β€²β€² 1,1,1, 𝑇14 , 𝑑 , + π‘Ž15β€²β€² 1,1,1, 𝑇14 , 𝑑 are third augmentation coefficients for category 1, 2 and 3

+ π‘Ž24β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž25

β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 , + π‘Ž26β€²β€² 4,4,4,4,4,4 𝑇25 , 𝑑 are fourth augmentation coefficients for category 1, 2

and 3

+ π‘Ž28β€²β€² 5,5,5,5,5,5 𝑇29, 𝑑 , + π‘Ž29

β€²β€² 5,5,5,5,5,5 𝑇29, 𝑑 , + π‘Ž30β€²β€² 5,5,5,5,5,5 𝑇29 , 𝑑 are fifth augmentation coefficients for category 1, 2 and 3

+ π‘Ž32β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6,6,6,6,6,6 𝑇33 , 𝑑 are sixth augmentation coefficients for category 1, 2 and

3

𝑑𝑇20

𝑑𝑑= 𝑏20

3 𝑇21 βˆ’ 𝑏20

β€² 3 βˆ’ 𝑏20β€²β€² 3 𝐺23 , 𝑑 – 𝑏16

β€²β€² 2,2,2 𝐺19 , 𝑑 – 𝑏13β€²β€² 1,1,1, 𝐺, 𝑑

βˆ’ 𝑏24β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏28

β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏32β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑

𝑇20

𝑑𝑇21

𝑑𝑑= 𝑏21

3 𝑇20 βˆ’ 𝑏21

β€² 3 βˆ’ 𝑏21β€²β€² 3 𝐺23 , 𝑑 – 𝑏17

β€²β€² 2,2,2 𝐺19 , 𝑑 – 𝑏14β€²β€² 1,1,1, 𝐺, 𝑑

βˆ’ 𝑏25β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏29

β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏33β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑

𝑇21

𝑑𝑇22

𝑑𝑑= 𝑏22

3 𝑇21 βˆ’ 𝑏22

β€² 3 βˆ’ 𝑏22β€²β€² 3 𝐺23 , 𝑑 – 𝑏18

β€²β€² 2,2,2 𝐺19 , 𝑑 – 𝑏15β€²β€² 1,1,1, 𝐺, 𝑑

βˆ’ 𝑏26β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 βˆ’ 𝑏30

β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 βˆ’ 𝑏34β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑

𝑇22

βˆ’ 𝑏20β€²β€² 3 𝐺23 , 𝑑 , βˆ’ 𝑏21

β€²β€² 3 𝐺23 , 𝑑 , βˆ’ 𝑏22β€²β€² 3 𝐺23 , 𝑑 are first detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏16β€²β€² 2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17

β€²β€² 2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏18β€²β€² 2,2,2 𝐺19, 𝑑 are second detrition coefficients for category 1, 2 and 3

βˆ’ 𝑏13β€²β€² 1,1,1, 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1,1,1, 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1,1,1, 𝐺, 𝑑 are third detrition coefficients for category 1,2 and 3

βˆ’ 𝑏24β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4,4,4,4,4,4 𝐺27 , 𝑑 are fourth detrition coefficients for category 1, 2 and

3

βˆ’ 𝑏28β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5,5,5,5,5,5 𝐺31 , 𝑑 are fifth detrition coefficients for category 1, 2 and

3

βˆ’ 𝑏32β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6,6,6,6,6,6 𝐺35 , 𝑑 are sixth detrition coefficients for category 1, 2 and 3

𝑑𝐺24

𝑑𝑑= π‘Ž24

4 𝐺25 βˆ’ π‘Ž24

β€² 4 + π‘Ž24β€²β€² 4 𝑇25 , 𝑑 + π‘Ž28

β€²β€² 5,5, 𝑇29 , 𝑑 + π‘Ž32β€²β€² 6,6, 𝑇33 , 𝑑

+ π‘Ž13β€²β€² 1,1,1,1 𝑇14 , 𝑑 + π‘Ž16

β€²β€² 2,2,2,2 𝑇17 , 𝑑 + π‘Ž20β€²β€² 3,3,3,3 𝑇21 , 𝑑

𝐺24

𝑑𝐺25

𝑑𝑑= π‘Ž25

4 𝐺24 βˆ’ π‘Ž25

β€² 4 + π‘Ž25β€²β€² 4 𝑇25 , 𝑑 + π‘Ž29

β€²β€² 5,5, 𝑇29 , 𝑑 + π‘Ž33β€²β€² 6,6 𝑇33 , 𝑑

+ π‘Ž14β€²β€² 1,1,1,1 𝑇14 , 𝑑 + π‘Ž17

β€²β€² 2,2,2,2 𝑇17 , 𝑑 + π‘Ž21β€²β€² 3,3,3,3 𝑇21 , 𝑑

𝐺25

𝑑𝐺26

𝑑𝑑= π‘Ž26

4 𝐺25 βˆ’ π‘Ž26

β€² 4 + π‘Ž26β€²β€² 4 𝑇25 , 𝑑 + π‘Ž30

β€²β€² 5,5, 𝑇29 , 𝑑 + π‘Ž34β€²β€² 6,6, 𝑇33 , 𝑑

+ π‘Ž15β€²β€² 1,1,1,1 𝑇14 , 𝑑 + π‘Ž18

β€²β€² 2,2,2,2 𝑇17 , 𝑑 + π‘Ž22β€²β€² 3,3,3,3 𝑇21 , 𝑑

𝐺26

Page 10: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 10

ISSN 2250-3153

www.ijsrp.org

π‘Šπ‘•π‘’π‘Ÿπ‘’ π‘Ž24β€²β€² 4 𝑇25 , 𝑑 , π‘Ž25

β€²β€² 4 𝑇25 , 𝑑 , π‘Ž26β€²β€² 4 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž28β€²β€² 5,5, 𝑇29 , 𝑑 , + π‘Ž29

β€²β€² 5,5, 𝑇29 , 𝑑 , + π‘Ž30β€²β€² 5,5, 𝑇29, 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž32β€²β€² 6,6, 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6,6, 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6,6, 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž13β€²β€² 1,1,1,1 𝑇14 , 𝑑 , + π‘Ž14

β€²β€² 1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15β€²β€² 1,1,1,1 𝑇14 , 𝑑 are fourth augmentation coefficients for category 1, 2,and 3

+ π‘Ž16β€²β€² 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1, 2,and 3

+ π‘Ž20β€²β€² 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1, 2,and 3

𝑑𝑇24

𝑑𝑑= 𝑏24

4 𝑇25 βˆ’ 𝑏24

β€² 4 βˆ’ 𝑏24β€²β€² 4 𝐺27 , 𝑑 βˆ’ 𝑏28

β€²β€² 5,5, 𝐺31 , 𝑑 – 𝑏32β€²β€² 6,6, 𝐺35 , 𝑑

βˆ’ 𝑏13β€²β€² 1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏16

β€²β€² 2,2,2,2 𝐺19 , 𝑑 – 𝑏20β€²β€² 3,3,3,3 𝐺23 , 𝑑

𝑇24

𝑑𝑇25

𝑑𝑑= 𝑏25

4 𝑇24 βˆ’ 𝑏25

β€² 4 βˆ’ 𝑏25β€²β€² 4 𝐺27 , 𝑑 βˆ’ 𝑏29

β€²β€² 5,5, 𝐺31 , 𝑑 – 𝑏33β€²β€² 6,6, 𝐺35 , 𝑑

βˆ’ 𝑏14β€²β€² 1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏17

β€²β€² 2,2,2,2 𝐺19, 𝑑 – 𝑏21β€²β€² 3,3,3,3 𝐺23 , 𝑑

𝑇25

𝑑𝑇26

𝑑𝑑= 𝑏26

4 𝑇25 βˆ’ 𝑏26

β€² 4 βˆ’ 𝑏26β€²β€² 4 𝐺27 , 𝑑 βˆ’ 𝑏30

β€²β€² 5,5, 𝐺31 , 𝑑 – 𝑏34β€²β€² 6,6, 𝐺35 , 𝑑

βˆ’ 𝑏15β€²β€² 1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏18

β€²β€² 2,2,2,2 𝐺19, 𝑑 – 𝑏22β€²β€² 3,3,3,3 𝐺23 , 𝑑

𝑇26

π‘Šπ‘•π‘’π‘Ÿπ‘’ βˆ’ 𝑏24β€²β€² 4 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4 𝐺27 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏28β€²β€² 5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5,5, 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5,5, 𝐺31, 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏32β€²β€² 6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6,6, 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6,6, 𝐺35 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏13β€²β€² 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1,1,1,1 𝐺, 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘œπ‘’π‘Ÿπ‘‘π‘• π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏16β€²β€² 2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17

β€²β€² 2,2,2,2 𝐺19, 𝑑 , βˆ’ 𝑏18β€²β€² 2,2,2,2 𝐺19 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑓𝑖𝑓𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

– 𝑏20β€²β€² 3,3,3,3 𝐺23 , 𝑑 , – 𝑏21

β€²β€² 3,3,3,3 𝐺23 , 𝑑 , – 𝑏22β€²β€² 3,3,3,3 𝐺23 , 𝑑 π‘Žπ‘Ÿπ‘’ 𝑠𝑖π‘₯𝑑𝑕 π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

𝑑𝐺28

𝑑𝑑= π‘Ž28

5 𝐺29 βˆ’ π‘Ž28

β€² 5 + π‘Ž28β€²β€² 5 𝑇29 , 𝑑 + π‘Ž24

β€²β€² 4,4, 𝑇25 , 𝑑 + π‘Ž32β€²β€² 6,6,6 𝑇33 , 𝑑

+ π‘Ž13β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž16

β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž20β€²β€² 3,3,3,3,3 𝑇21 , 𝑑

𝐺28

𝑑𝐺29

𝑑𝑑= π‘Ž29

5 𝐺28 βˆ’ π‘Ž29

β€² 5 + π‘Ž29β€²β€² 5 𝑇29 , 𝑑 + π‘Ž25

β€²β€² 4,4, 𝑇25 , 𝑑 + π‘Ž33β€²β€² 6,6,6 𝑇33 , 𝑑

+ π‘Ž14β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž17

β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž21β€²β€² 3,3,3,3,3 𝑇21 , 𝑑

𝐺29

𝑑𝐺30

𝑑𝑑= π‘Ž30

5 𝐺29 βˆ’

π‘Ž30β€² 5 + π‘Ž30

β€²β€² 5 𝑇29 , 𝑑 + π‘Ž26β€²β€² 4,4, 𝑇25 , 𝑑 + π‘Ž34

β€²β€² 6,6,6 𝑇33 , 𝑑

+ π‘Ž15β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž18

β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž22β€²β€² 3,3,3,3,3 𝑇21 , 𝑑

𝐺30

π‘Šπ‘•π‘’π‘Ÿπ‘’ + π‘Ž28β€²β€² 5 𝑇29 , 𝑑 , + π‘Ž29

β€²β€² 5 𝑇29 , 𝑑 , + π‘Ž30β€²β€² 5 𝑇29 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

𝐴𝑛𝑑 + π‘Ž24β€²β€² 4,4, 𝑇25 , 𝑑 , + π‘Ž25

β€²β€² 4,4, 𝑇25 , 𝑑 , + π‘Ž26β€²β€² 4,4, 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

Page 11: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 11

ISSN 2250-3153

www.ijsrp.org

+ π‘Ž32β€²β€² 6,6,6 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6,6,6 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6,6,6 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘ π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž13β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 , + π‘Ž14

β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15β€²β€² 1,1,1,1,1 𝑇14 , 𝑑 are fourth augmentation coefficients for category 1,2, and 3

+ π‘Ž16β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2,2,2,2,2 𝑇17 , 𝑑 are fifth augmentation coefficients for category 1,2,and 3

+ π‘Ž20β€²β€² 3,3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3,3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3,3,3,3,3 𝑇21 , 𝑑 are sixth augmentation coefficients for category 1,2, 3

𝑑𝑇28

𝑑𝑑= 𝑏28

5 𝑇29 βˆ’ 𝑏28

β€² 5 βˆ’ 𝑏28β€²β€² 5 𝐺31 , 𝑑 βˆ’ 𝑏24

β€²β€² 4,4, 𝐺27 , 𝑑 – 𝑏32β€²β€² 6,6,6 𝐺35 , 𝑑

βˆ’ 𝑏13β€²β€² 1,1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏16

β€²β€² 2,2,2,2,2 𝐺19 , 𝑑 – 𝑏20β€²β€² 3,3,3,3,3 𝐺23 , 𝑑

𝑇28

𝑑𝑇29

𝑑𝑑= 𝑏29

5 𝑇28 βˆ’ 𝑏29

β€² 5 βˆ’ 𝑏29β€²β€² 5 𝐺31 , 𝑑 βˆ’ 𝑏25

β€²β€² 4,4, 𝐺27 , 𝑑 – 𝑏33β€²β€² 6,6,6 𝐺35 , 𝑑

βˆ’ 𝑏14β€²β€² 1,1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏17

β€²β€² 2,2,2,2,2 𝐺19, 𝑑 – 𝑏21β€²β€² 3,3,3,3,3 𝐺23 , 𝑑

𝑇29

𝑑𝑇30

𝑑𝑑= 𝑏30

5 𝑇29 βˆ’ 𝑏30

β€² 5 βˆ’ 𝑏30β€²β€² 5 𝐺31 , 𝑑 βˆ’ 𝑏26

β€²β€² 4,4, 𝐺27 , 𝑑 – 𝑏34β€²β€² 6,6,6 𝐺35 , 𝑑

βˆ’ 𝑏15β€²β€² 1,1,1,1,1, 𝐺, 𝑑 βˆ’ 𝑏18

β€²β€² 2,2,2,2,2 𝐺19 , 𝑑 – 𝑏22β€²β€² 3,3,3,3,3 𝐺23 , 𝑑

𝑇30

π‘€π‘•π‘’π‘Ÿπ‘’ – 𝑏28β€²β€² 5 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5 𝐺31 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏24β€²β€² 4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4,4, 𝐺27 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1,2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏32β€²β€² 6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6,6,6 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6,6,6 𝐺35 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1,2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏13β€²β€² 1,1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1,1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1,1,1,1,1, 𝐺, 𝑑 are fourth detrition coefficients for category 1,2, and 3

βˆ’ 𝑏16β€²β€² 2,2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17

β€²β€² 2,2,2,2,2 𝐺19, 𝑑 , βˆ’ 𝑏18β€²β€² 2,2,2,2,2 𝐺19, 𝑑 are fifth detrition coefficients for category 1,2, and 3

– 𝑏20β€²β€² 3,3,3,3,3 𝐺23 , 𝑑 , – 𝑏21

β€²β€² 3,3,3,3,3 𝐺23 , 𝑑 , – 𝑏22β€²β€² 3,3,3,3,3 𝐺23 , 𝑑 are sixth detrition coefficients for category 1,2, and 3

𝑑𝐺32

𝑑𝑑= π‘Ž32

6 𝐺33 βˆ’ π‘Ž32

β€² 6 + π‘Ž32β€²β€² 6 𝑇33 , 𝑑 + π‘Ž28

β€²β€² 5,5,5 𝑇29 , 𝑑 + π‘Ž24β€²β€² 4,4,4, 𝑇25 , 𝑑

+ π‘Ž13β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž16

β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž20β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑

𝐺32

𝑑𝐺33

𝑑𝑑= π‘Ž33

6 𝐺32 βˆ’ π‘Ž33

β€² 6 + π‘Ž33β€²β€² 6 𝑇33 , 𝑑 + π‘Ž29

β€²β€² 5,5,5 𝑇29 , 𝑑 + π‘Ž25β€²β€² 4,4,4, 𝑇25 , 𝑑

+ π‘Ž14β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž17

β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž21β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑

𝐺33

𝑑𝐺34

𝑑𝑑= π‘Ž34

6 𝐺33 βˆ’ π‘Ž34

β€² 6 + π‘Ž34β€²β€² 6 𝑇33 , 𝑑 + π‘Ž30

β€²β€² 5,5,5 𝑇29, 𝑑 + π‘Ž26β€²β€² 4,4,4, 𝑇25 , 𝑑

+ π‘Ž15β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 + π‘Ž18

β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 + π‘Ž22β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑

𝐺34

+ π‘Ž32β€²β€² 6 𝑇33 , 𝑑 , + π‘Ž33

β€²β€² 6 𝑇33 , 𝑑 , + π‘Ž34β€²β€² 6 𝑇33 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž28β€²β€² 5,5,5 𝑇29 , 𝑑 , + π‘Ž29

β€²β€² 5,5,5 𝑇29, 𝑑 , + π‘Ž30β€²β€² 5,5,5 𝑇29, 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž24β€²β€² 4,4,4, 𝑇25 , 𝑑 , + π‘Ž25

β€²β€² 4,4,4, 𝑇25 , 𝑑 , + π‘Ž26β€²β€² 4,4,4, 𝑇25 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘Žπ‘’π‘”π‘šπ‘’π‘›π‘‘π‘Žπ‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

+ π‘Ž13β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 , + π‘Ž14

β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 , + π‘Ž15β€²β€² 1,1,1,1,1,1 𝑇14 , 𝑑 - are fourth augmentation coefficients

+ π‘Ž16β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 , + π‘Ž17

β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 , + π‘Ž18β€²β€² 2,2,2,2,2,2 𝑇17 , 𝑑 - fifth augmentation coefficients

Page 12: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 12

ISSN 2250-3153

www.ijsrp.org

+ π‘Ž20β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑 , + π‘Ž21

β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑 , + π‘Ž22β€²β€² 3,3,3,3,3,3 𝑇21 , 𝑑 sixth augmentation coefficients

𝑑𝑇32

𝑑𝑑= 𝑏32

6 𝑇33 βˆ’ 𝑏32

β€² 6 βˆ’ 𝑏32β€²β€² 6 𝐺35 , 𝑑 – 𝑏28

β€²β€² 5,5,5 𝐺31 , 𝑑 – 𝑏24β€²β€² 4,4,4, 𝐺27 , 𝑑

βˆ’ 𝑏13β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏16

β€²β€² 2,2,2,2,2,2 𝐺19 , 𝑑 – 𝑏20β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑

𝑇32

𝑑𝑇33

𝑑𝑑= 𝑏33

6 𝑇32 βˆ’ 𝑏33

β€² 6 βˆ’ 𝑏33β€²β€² 6 𝐺35 , 𝑑 – 𝑏29

β€²β€² 5,5,5 𝐺31 , 𝑑 – 𝑏25β€²β€² 4,4,4, 𝐺27 , 𝑑

βˆ’ 𝑏14β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏17

β€²β€² 2,2,2,2,2,2 𝐺19 , 𝑑 – 𝑏21β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑

𝑇33

𝑑𝑇34

𝑑𝑑= 𝑏34

6 𝑇33 βˆ’ 𝑏34

β€² 6 βˆ’ 𝑏34β€²β€² 6 𝐺35 , 𝑑 – 𝑏30

β€²β€² 5,5,5 𝐺31 , 𝑑 – 𝑏26β€²β€² 4,4,4, 𝐺27 , 𝑑

βˆ’ 𝑏15β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 βˆ’ 𝑏18

β€²β€² 2,2,2,2,2,2 𝐺19 , 𝑑 – 𝑏22β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑

𝑇34

βˆ’ 𝑏32β€²β€² 6 𝐺35 , 𝑑 , βˆ’ 𝑏33

β€²β€² 6 𝐺35 , 𝑑 , βˆ’ 𝑏34β€²β€² 6 𝐺35 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘“π‘–π‘Ÿπ‘ π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏28β€²β€² 5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏29

β€²β€² 5,5,5 𝐺31 , 𝑑 , βˆ’ 𝑏30β€²β€² 5,5,5 𝐺31 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘œπ‘›π‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1, 2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏24β€²β€² 4,4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏25

β€²β€² 4,4,4, 𝐺27 , 𝑑 , βˆ’ 𝑏26β€²β€² 4,4,4, 𝐺27 , 𝑑 π‘Žπ‘Ÿπ‘’ π‘‘π‘•π‘–π‘Ÿπ‘‘ π‘‘π‘’π‘‘π‘Ÿπ‘–π‘‘π‘–π‘œπ‘› π‘π‘œπ‘’π‘“π‘“π‘–π‘π‘–π‘’π‘›π‘‘π‘  π‘“π‘œπ‘Ÿ π‘π‘Žπ‘‘π‘’π‘”π‘œπ‘Ÿπ‘¦ 1,2 π‘Žπ‘›π‘‘ 3

βˆ’ 𝑏13β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏14

β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 , βˆ’ 𝑏15β€²β€² 1,1,1,1,1,1 𝐺, 𝑑 are fourth detrition coefficients for category 1, 2, and 3

βˆ’ 𝑏16β€²β€² 2,2,2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏17

β€²β€² 2,2,2,2,2,2 𝐺19 , 𝑑 , βˆ’ 𝑏18β€²β€² 2,2,2,2,2,2 𝐺19, 𝑑 are fifth detrition coefficients for category 1, 2, and 3

– 𝑏20β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑 , – 𝑏21

β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑 , – 𝑏22β€²β€² 3,3,3,3,3,3 𝐺23 , 𝑑 are sixth detrition coefficients for category 1, 2, and 3

Where we suppose

(A) π‘Žπ‘– 1 , π‘Žπ‘–

β€² 1 , π‘Žπ‘–β€²β€² 1 , 𝑏𝑖

1 , 𝑏𝑖′ 1 , 𝑏𝑖

β€²β€² 1 > 0,

𝑖, 𝑗 = 13,14,15

(B) The functions π‘Žπ‘–β€²β€² 1 , 𝑏𝑖

β€²β€² 1 are positive continuous increasing and bounded.

Definition of (𝑝𝑖) 1 , (π‘Ÿπ‘–)

1 :

π‘Žπ‘–β€²β€² 1 (𝑇14 , 𝑑) ≀ (𝑝𝑖)

1 ≀ ( 𝐴 13 )(1)

𝑏𝑖′′ 1 (𝐺, 𝑑) ≀ (π‘Ÿπ‘–)

1 ≀ (𝑏𝑖′) 1 ≀ ( 𝐡 13 )(1)

(C) π‘™π‘–π‘šπ‘‡2β†’βˆž π‘Žπ‘–β€²β€² 1 𝑇14 , 𝑑 = (𝑝𝑖)

1

limGβ†’βˆž 𝑏𝑖′′ 1 𝐺, 𝑑 = (π‘Ÿπ‘–)

1

Definition of ( 𝐴 13 )(1), ( 𝐡 13 )(1) :

Where ( 𝐴 13 )(1), ( 𝐡 13 )(1), (𝑝𝑖) 1 , (π‘Ÿπ‘–)

1 are positive constants and 𝑖 = 13,14,15

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 1 𝑇14

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 1 𝑇14 , 𝑑 | ≀ ( π‘˜ 13 )(1)|𝑇14 βˆ’ 𝑇14

β€² |π‘’βˆ’( 𝑀 13 )(1)𝑑

|(𝑏𝑖′′ ) 1 𝐺 β€² , 𝑑 βˆ’ (𝑏𝑖

β€²β€² ) 1 𝐺, 𝑑 | < ( π‘˜ 13 )(1)||𝐺 βˆ’ 𝐺 β€² ||π‘’βˆ’( 𝑀 13 )(1)𝑑

Page 13: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 13

ISSN 2250-3153

www.ijsrp.org

With the Lipschitz condition, we place a restriction on the behavior of functions

(π‘Žπ‘–β€²β€² ) 1 𝑇14

β€² , 𝑑 and(π‘Žπ‘–β€²β€² ) 1 𝑇14 , 𝑑 . 𝑇14

β€² , 𝑑 and 𝑇14 , 𝑑 are points belonging to the interval

( π‘˜ 13 )(1), ( 𝑀 13 )(1) . It is to be noted that (π‘Žπ‘–β€²β€² ) 1 𝑇14 , 𝑑 is uniformly continuous. In the eventuality of the

fact, that if ( 𝑀 13 )(1) = 1 then the function (π‘Žπ‘–β€²β€² ) 1 𝑇14 , 𝑑 , the first augmentation coefficient WOULD be

absolutely continuous.

Definition of ( 𝑀 13 )(1), ( π‘˜ 13 )(1) :

(D) ( 𝑀 13 )(1), ( π‘˜ 13 )(1), are positive constants

(π‘Žπ‘–) 1

( 𝑀 13 )(1) ,(𝑏𝑖) 1

( 𝑀 13 )(1) < 1

Definition of ( 𝑃 13 )(1), ( 𝑄 13 )(1) :

(E) There exists two constants ( 𝑃 13 )(1) and ( 𝑄 13 )(1) which together

with ( 𝑀 13 )(1), ( π‘˜ 13 )(1), (𝐴 13)(1) and ( 𝐡 13 )(1) and the constants

(π‘Žπ‘–) 1 , (π‘Žπ‘–

β€²) 1 , (𝑏𝑖) 1 , (𝑏𝑖

β€²) 1 , (𝑝𝑖) 1 , (π‘Ÿπ‘–)

1 , 𝑖 = 13,14,15,

satisfy the inequalities

1

( 𝑀 13 )(1) [ (π‘Žπ‘–) 1 + (π‘Žπ‘–

β€²) 1 + ( 𝐴 13 )(1) + ( 𝑃 13 )(1) ( π‘˜ 13 )(1)] < 1

1

( 𝑀 13 )(1) [ (𝑏𝑖) 1 + (𝑏𝑖

β€²) 1 + ( 𝐡 13 )(1) + ( 𝑄 13 )(1) ( π‘˜ 13 )(1)] < 1

Where we suppose

(F) π‘Žπ‘– 2 , π‘Žπ‘–

β€² 2 , π‘Žπ‘–β€²β€² 2 , 𝑏𝑖

2 , 𝑏𝑖′ 2 , 𝑏𝑖

β€²β€² 2 > 0, 𝑖, 𝑗 = 16,17,18

(G) The functions π‘Žπ‘–β€²β€² 2 , 𝑏𝑖

β€²β€² 2 are positive continuous increasing and bounded.

Definition of (pi) 2 , (ri)

2 :

π‘Žπ‘–β€²β€² 2 𝑇17 , 𝑑 ≀ (𝑝𝑖)

2 ≀ 𝐴 16 2

𝑏𝑖′′ 2 (𝐺19 , 𝑑) ≀ (π‘Ÿπ‘–)

2 ≀ (𝑏𝑖′) 2 ≀ ( 𝐡 16 )(2)

(H) lim𝑇2β†’βˆž π‘Žπ‘–β€²β€² 2 𝑇17 , 𝑑 = (𝑝𝑖)

2

limπΊβ†’βˆž 𝑏𝑖′′ 2 𝐺19 , 𝑑 = (π‘Ÿπ‘–)

2

Definition of ( 𝐴 16 )(2), ( 𝐡 16 )(2) :

Where ( 𝐴 16 )(2), ( 𝐡 16 )(2), (𝑝𝑖) 2 , (π‘Ÿπ‘–)

2 are positive constants and 𝑖 = 16,17,18

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 2 𝑇17

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 2 𝑇17 , 𝑑 | ≀ ( π‘˜ 16 )(2)|𝑇17 βˆ’ 𝑇17

β€² |π‘’βˆ’( 𝑀 16 )(2)𝑑

|(𝑏𝑖′′ ) 2 𝐺19

β€² , 𝑑 βˆ’ (𝑏𝑖′′ ) 2 𝐺19 , 𝑑 | < ( π‘˜ 16 )(2)|| 𝐺19 βˆ’ 𝐺19

β€² ||π‘’βˆ’( 𝑀 16 )(2)𝑑

With the Lipschitz condition, we place a restriction on the behavior of functions (π‘Žπ‘–β€²β€² ) 2 𝑇17

β€² , 𝑑

and(π‘Žπ‘–β€²β€² ) 2 𝑇17 , 𝑑 . 𝑇17

β€² , 𝑑 and 𝑇17 , 𝑑 are points belonging to the interval ( π‘˜ 16 )(2), ( 𝑀 16 )(2) . It is to

be noted that (π‘Žπ‘–β€²β€² ) 2 𝑇17 , 𝑑 is uniformly continuous. In the eventuality of the fact, that if ( 𝑀 16 )(2) = 1

then the function (π‘Žπ‘–β€²β€² ) 2 𝑇17 , 𝑑 , the SECOND augmentation coefficient would be absolutely continuous.

Definition of ( 𝑀 16 )(2), ( π‘˜ 16 )(2) :

Page 14: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 14

ISSN 2250-3153

www.ijsrp.org

(I) ( 𝑀 16 )(2), ( π‘˜ 16 )(2), are positive constants

(π‘Žπ‘–) 2

( 𝑀 16 )(2) ,(𝑏𝑖)

2

( 𝑀 16 )(2) < 1

Definition of ( 𝑃 13 )(2), ( 𝑄 13 )(2) :

There exists two constants ( 𝑃 16 )(2) and ( 𝑄 16 )(2) which together

with ( 𝑀 16 )(2), ( π‘˜ 16 )(2), (𝐴 16)(2)π‘Žπ‘›π‘‘ ( 𝐡 16 )(2) and the constants

(π‘Žπ‘–) 2 , (π‘Žπ‘–

β€²) 2 , (𝑏𝑖) 2 , (𝑏𝑖

β€²) 2 , (𝑝𝑖) 2 , (π‘Ÿπ‘–)

2 , 𝑖 = 16,17,18,

satisfy the inequalities

1

( M 16 )(2) [ (ai) 2 + (ai

β€²) 2 + ( A 16 )(2) + ( P 16 )(2) ( k 16 )(2)] < 1

1

( 𝑀 16 )(2) [ (𝑏𝑖) 2 + (𝑏𝑖

β€²) 2 + ( 𝐡 16 )(2) + ( 𝑄 16 )(2) ( π‘˜ 16 )(2)] < 1

Where we suppose

(J) π‘Žπ‘– 3 , π‘Žπ‘–

β€² 3 , π‘Žπ‘–β€²β€² 3 , 𝑏𝑖

3 , 𝑏𝑖′ 3 , 𝑏𝑖

β€²β€² 3 > 0, 𝑖, 𝑗 = 20,21,22

The functions π‘Žπ‘–β€²β€² 3 , 𝑏𝑖

β€²β€² 3 are positive continuous increasing and bounded.

Definition of (𝑝𝑖) 3 , (ri)

3 :

π‘Žπ‘–β€²β€² 3 (𝑇21 , 𝑑) ≀ (𝑝𝑖)

3 ≀ ( 𝐴 20 )(3)

𝑏𝑖′′ 3 (𝐺23 , 𝑑) ≀ (π‘Ÿπ‘–)

3 ≀ (𝑏𝑖′) 3 ≀ ( 𝐡 20 )(3)

π‘™π‘–π‘šπ‘‡2β†’βˆž π‘Žπ‘–β€²β€² 3 𝑇21 , 𝑑 = (𝑝𝑖)

3

limGβ†’βˆž 𝑏𝑖′′ 3 𝐺23 , 𝑑 = (π‘Ÿπ‘–)

3

Definition of ( 𝐴 20 )(3), ( 𝐡 20 )(3) :

Where ( 𝐴 20 )(3), ( 𝐡 20 )(3), (𝑝𝑖) 3 , (π‘Ÿπ‘–)

3 are positive constants and 𝑖 = 20,21,22

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 3 𝑇21

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 3 𝑇21 , 𝑑 | ≀ ( π‘˜ 20 )(3)|𝑇21 βˆ’ 𝑇21

β€² |π‘’βˆ’( 𝑀 20 )(3)𝑑

|(𝑏𝑖′′ ) 3 𝐺23

β€² , 𝑑 βˆ’ (𝑏𝑖′′ ) 3 𝐺23 , 𝑑 | < ( π‘˜ 20 )(3)||𝐺23 βˆ’ 𝐺23

β€² ||π‘’βˆ’( 𝑀 20 )(3)𝑑

With the Lipschitz condition, we place a restriction on the behavior of functions (π‘Žπ‘–β€²β€² ) 3 𝑇21

β€² , 𝑑

and(π‘Žπ‘–β€²β€² ) 3 𝑇21 , 𝑑 . 𝑇21

β€² , 𝑑 And 𝑇21 , 𝑑 are points belonging to the interval ( π‘˜ 20 )(3), ( 𝑀 20 )(3) . It is to

be noted that (π‘Žπ‘–β€²β€² ) 3 𝑇21 , 𝑑 is uniformly continuous. In the eventuality of the fact, that if ( 𝑀 20 )(3) = 1

then the function (π‘Žπ‘–β€²β€² ) 3 𝑇21 , 𝑑 , the THIRD augmentation coefficient, would be absolutely continuous.

Definition of ( 𝑀 20 )(3), ( π‘˜ 20 )(3) :

(K) ( 𝑀 20 )(3), ( π‘˜ 20 )(3), are positive constants

(π‘Žπ‘–) 3

( 𝑀 20 )(3) ,(𝑏𝑖) 3

( 𝑀 20 )(3) < 1

There exists two constants There exists two constants ( 𝑃 20 )(3) and ( 𝑄 20 )(3) which together with

( 𝑀 20 )(3), ( π‘˜ 20 )(3), (𝐴 20)(3)π‘Žπ‘›π‘‘ ( 𝐡 20 )(3) and the constants

(π‘Žπ‘–) 3 , (π‘Žπ‘–

β€² ) 3 , (𝑏𝑖) 3 , (𝑏𝑖

β€²) 3 , (𝑝𝑖) 3 , (π‘Ÿπ‘–)

3 , 𝑖 = 20,21,22,

Page 15: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 15

ISSN 2250-3153

www.ijsrp.org

satisfy the inequalities

1

( 𝑀 20 )(3) [ (π‘Žπ‘–) 3 + (π‘Žπ‘–

β€²) 3 + ( 𝐴 20 )(3) + ( 𝑃 20 )(3) ( π‘˜ 20 )(3)] < 1

1

( 𝑀 20 )(3) [ (𝑏𝑖) 3 + (𝑏𝑖

β€²) 3 + ( 𝐡 20 )(3) + ( 𝑄 20 )(3) ( π‘˜ 20 )(3)] < 1

Where we suppose

(L) π‘Žπ‘– 4 , π‘Žπ‘–

β€² 4 , π‘Žπ‘–β€²β€² 4 , 𝑏𝑖

4 , 𝑏𝑖′ 4 , 𝑏𝑖

β€²β€² 4 > 0, 𝑖, 𝑗 = 24,25,26

(M) The functions π‘Žπ‘–β€²β€² 4 , 𝑏𝑖

β€²β€² 4 are positive continuous increasing and bounded.

Definition of (𝑝𝑖) 4 , (π‘Ÿπ‘–)

4 :

π‘Žπ‘–β€²β€² 4 (𝑇25 , 𝑑) ≀ (𝑝𝑖)

4 ≀ ( 𝐴 24 )(4)

𝑏𝑖′′ 4 𝐺27 , 𝑑 ≀ (π‘Ÿπ‘–)

4 ≀ (𝑏𝑖′) 4 ≀ ( 𝐡 24 )(4)

(N) π‘™π‘–π‘šπ‘‡2β†’βˆž π‘Žπ‘–β€²β€² 4 𝑇25 , 𝑑 = (𝑝𝑖)

4

limGβ†’βˆž 𝑏𝑖′′ 4 𝐺27 , 𝑑 = (π‘Ÿπ‘–)

4

Definition of ( 𝐴 24 )(4), ( 𝐡 24 )(4) :

Where ( 𝐴 24 )(4), ( 𝐡 24 )(4), (𝑝𝑖) 4 , (π‘Ÿπ‘–)

4 are positive constants and 𝑖 = 24,25,26

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 4 𝑇25

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 4 𝑇25 , 𝑑 | ≀ ( π‘˜ 24 )(4)|𝑇25 βˆ’ 𝑇25

β€² |π‘’βˆ’( 𝑀 24 )(4)𝑑

|(𝑏𝑖′′ ) 4 𝐺27

β€² , 𝑑 βˆ’ (𝑏𝑖′′ ) 4 𝐺27 , 𝑑 | < ( π‘˜ 24 )(4)|| 𝐺27 βˆ’ 𝐺27

β€² ||π‘’βˆ’( 𝑀 24 )(4)𝑑

With the Lipschitz condition, we place a restriction on the behavior of functions (π‘Žπ‘–β€²β€² ) 4 𝑇25

β€² , 𝑑

and(π‘Žπ‘–β€²β€² ) 4 𝑇25 , 𝑑 . 𝑇25

β€² , 𝑑 and 𝑇25 , 𝑑 are points belonging to the interval ( π‘˜ 24 )(4), ( 𝑀 24 )(4) . It is to

be noted that (π‘Žπ‘–β€²β€² ) 4 𝑇25 , 𝑑 is uniformly continuous. In the eventuality of the fact, that if ( 𝑀 24 )(4) = 4

then the function (π‘Žπ‘–β€²β€² ) 4 𝑇25 , 𝑑 , the FOURTH augmentation coefficient WOULD be absolutely

continuous.

Definition of ( 𝑀 24 )(4), ( π‘˜ 24 )(4) :

(O) ( 𝑀 24 )(4), ( π‘˜ 24 )(4), are positive constants (P)

(π‘Žπ‘–) 4

( 𝑀 24 )(4) ,(𝑏𝑖) 4

( 𝑀 24 )(4) < 1

Definition of ( 𝑃 24 )(4), ( 𝑄 24 )(4) :

(Q) There exists two constants ( 𝑃 24 )(4) and ( 𝑄 24 )(4) which together with

( 𝑀 24 )(4), ( π‘˜ 24 )(4), (𝐴 24)(4)π‘Žπ‘›π‘‘ ( 𝐡 24 )(4) and the constants

(π‘Žπ‘–) 4 , (π‘Žπ‘–

β€²) 4 , (𝑏𝑖) 4 , (𝑏𝑖

β€²) 4 , (𝑝𝑖) 4 , (π‘Ÿπ‘–)

4 , 𝑖 = 24,25,26, satisfy the inequalities

Page 16: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 16

ISSN 2250-3153

www.ijsrp.org

1

( 𝑀 24 )(4) [ (π‘Žπ‘–) 4 + (π‘Žπ‘–

β€²) 4 + ( 𝐴 24 )(4) + ( 𝑃 24 )(4) ( π‘˜ 24 )(4)] < 1

1

( 𝑀 24 )(4) [ (𝑏𝑖) 4 + (𝑏𝑖

β€²) 4 + ( 𝐡 24 )(4) + ( 𝑄 24 )(4) ( π‘˜ 24 )(4)] < 1

Where we suppose

(R) π‘Žπ‘– 5 , π‘Žπ‘–

β€² 5 , π‘Žπ‘–β€²β€² 5 , 𝑏𝑖

5 , 𝑏𝑖′ 5 , 𝑏𝑖

β€²β€² 5 > 0, 𝑖, 𝑗 = 28,29,30

(S) The functions π‘Žπ‘–β€²β€² 5 , 𝑏𝑖

β€²β€² 5 are positive continuous increasing and bounded.

Definition of (𝑝𝑖) 5 , (π‘Ÿπ‘–)

5 :

π‘Žπ‘–β€²β€² 5 (𝑇29 , 𝑑) ≀ (𝑝𝑖)

5 ≀ ( 𝐴 28 )(5)

𝑏𝑖′′ 5 𝐺31 , 𝑑 ≀ (π‘Ÿπ‘–)

5 ≀ (𝑏𝑖′) 5 ≀ ( 𝐡 28 )(5)

(T) π‘™π‘–π‘šπ‘‡2β†’βˆž π‘Žπ‘–β€²β€² 5 𝑇29 , 𝑑 = (𝑝𝑖)

5

limGβ†’βˆž 𝑏𝑖′′ 5 𝐺31 , 𝑑 = (π‘Ÿπ‘–)

5

Definition of ( 𝐴 28 )(5), ( 𝐡 28 )(5) :

Where ( 𝐴 28 )(5), ( 𝐡 28 )(5), (𝑝𝑖) 5 , (π‘Ÿπ‘–)

5 are positive constants and 𝑖 = 28,29,30

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 5 𝑇29

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 5 𝑇29 , 𝑑 | ≀ ( π‘˜ 28 )(5)|𝑇29 βˆ’ 𝑇29

β€² |π‘’βˆ’( 𝑀 28 )(5)𝑑

|(𝑏𝑖′′ ) 5 𝐺31

β€² , 𝑑 βˆ’ (𝑏𝑖′′ ) 5 𝐺31 , 𝑑 | < ( π‘˜ 28 )(5)|| 𝐺31 βˆ’ 𝐺31

β€² ||π‘’βˆ’( 𝑀 28 )(5)𝑑

With the Lipschitz condition, we place a restriction on the behavior of functions (π‘Žπ‘–β€²β€² ) 5 𝑇29

β€² , 𝑑

and(π‘Žπ‘–β€²β€² ) 5 𝑇29 , 𝑑 . 𝑇29

β€² , 𝑑 and 𝑇29 , 𝑑 are points belonging to the interval ( π‘˜ 28 )(5), ( 𝑀 28 )(5) . It is to

be noted that (π‘Žπ‘–β€²β€² ) 5 𝑇29 , 𝑑 is uniformly continuous. In the eventuality of the fact, that if ( 𝑀 28 )(5) = 5

then the function (π‘Žπ‘–β€²β€² ) 5 𝑇29 , 𝑑 , theFIFTH augmentation coefficient attributable would be absolutely

continuous.

Definition of ( 𝑀 28 )(5), ( π‘˜ 28 )(5) :

(U) ( 𝑀 28 )(5), ( π‘˜ 28 )(5), are positive constants

(π‘Žπ‘–) 5

( 𝑀 28 )(5) ,(𝑏𝑖)

5

( 𝑀 28 )(5) < 1

Definition of ( 𝑃 28 )(5), ( 𝑄 28 )(5) :

(V) There exists two constants ( 𝑃 28 )(5) and ( 𝑄 28 )(5) which together with

( 𝑀 28 )(5), ( π‘˜ 28 )(5), (𝐴 28)(5)π‘Žπ‘›π‘‘ ( 𝐡 28 )(5) and the constants

(π‘Žπ‘–) 5 , (π‘Žπ‘–

β€²) 5 , (𝑏𝑖) 5 , (𝑏𝑖

β€²) 5 , (𝑝𝑖) 5 , (π‘Ÿπ‘–)

5 , 𝑖 = 28,29,30, satisfy the inequalities

1

( 𝑀 28 )(5) [ (π‘Žπ‘–) 5 + (π‘Žπ‘–

β€²) 5 + ( 𝐴 28 )(5) + ( 𝑃 28 )(5) ( π‘˜ 28 )(5)] < 1

1

( 𝑀 28 )(5) [ (𝑏𝑖) 5 + (𝑏𝑖

β€²) 5 + ( 𝐡 28 )(5) + ( 𝑄 28 )(5) ( π‘˜ 28 )(5)] < 1

Where we suppose

Page 17: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 17

ISSN 2250-3153

www.ijsrp.org

π‘Žπ‘– 6 , π‘Žπ‘–

β€² 6 , π‘Žπ‘–β€²β€² 6 , 𝑏𝑖

6 , 𝑏𝑖′ 6 , 𝑏𝑖

β€²β€² 6 > 0, 𝑖, 𝑗 = 32,33,34

(W) The functions π‘Žπ‘–β€²β€² 6 , 𝑏𝑖

β€²β€² 6 are positive continuous increasing and bounded.

Definition of (𝑝𝑖) 6 , (π‘Ÿπ‘–)

6 :

π‘Žπ‘–β€²β€² 6 (𝑇33 , 𝑑) ≀ (𝑝𝑖)

6 ≀ ( 𝐴 32 )(6)

𝑏𝑖′′ 6 ( 𝐺35 , 𝑑) ≀ (π‘Ÿπ‘–)

6 ≀ (𝑏𝑖′) 6 ≀ ( 𝐡 32 )(6)

(X) π‘™π‘–π‘šπ‘‡2β†’βˆž π‘Žπ‘–β€²β€² 6 𝑇33 , 𝑑 = (𝑝𝑖)

6

limGβ†’βˆž 𝑏𝑖′′ 6 𝐺35 , 𝑑 = (π‘Ÿπ‘–)

6

Definition of ( 𝐴 32 )(6), ( 𝐡 32 )(6) :

Where ( 𝐴 32 )(6), ( 𝐡 32 )(6), (𝑝𝑖) 6 , (π‘Ÿπ‘–)

6 are positive constants and 𝑖 = 32,33,34

They satisfy Lipschitz condition:

|(π‘Žπ‘–β€²β€² ) 6 𝑇33

β€² , 𝑑 βˆ’ (π‘Žπ‘–β€²β€² ) 6 𝑇33 , 𝑑 | ≀ ( π‘˜ 32 )(6)|𝑇33 βˆ’ 𝑇33

β€² |π‘’βˆ’( 𝑀 32 )(6)𝑑

|(𝑏𝑖′′ ) 6 𝐺35

β€² , 𝑑 βˆ’ (𝑏𝑖′′ ) 6 𝐺35 , 𝑑 | < ( π‘˜ 32 )(6)|| 𝐺35 βˆ’ 𝐺35

β€² ||π‘’βˆ’( 𝑀 32 )(6)𝑑

With the Lipschitz condition, we place a restriction on the behavior of functions (π‘Žπ‘–β€²β€² ) 6 𝑇33

β€² , 𝑑

and(π‘Žπ‘–β€²β€² ) 6 𝑇33 , 𝑑 . 𝑇33

β€² , 𝑑 and 𝑇33 , 𝑑 are points belonging to the interval ( π‘˜ 32 )(6), ( 𝑀 32 )(6) . It is to

be noted that (π‘Žπ‘–β€²β€² ) 6 𝑇33 , 𝑑 is uniformly continuous. In the eventuality of the fact, that if ( 𝑀 32 )(6) = 6

then the function (π‘Žπ‘–β€²β€² ) 6 𝑇33 , 𝑑 , the SIXTH augmentation coefficient would be absolutely continuous.

Definition of ( 𝑀 32 )(6), ( π‘˜ 32 )(6) :

( 𝑀 32 )(6), ( π‘˜ 32 )(6), are positive constants

(π‘Žπ‘–) 6

( 𝑀 32 )(6) ,(𝑏𝑖)

6

( 𝑀 32 )(6) < 1

Definition of ( 𝑃 32 )(6), ( 𝑄 32 )(6) :

There exists two constants ( 𝑃 32 )(6) and ( 𝑄 32 )(6) which together with

( 𝑀 32 )(6), ( π‘˜ 32 )(6), (𝐴 32)(6)π‘Žπ‘›π‘‘ ( 𝐡 32 )(6) and the constants

(π‘Žπ‘–) 6 , (π‘Žπ‘–

β€²) 6 , (𝑏𝑖) 6 , (𝑏𝑖

β€²) 6 , (𝑝𝑖) 6 , (π‘Ÿπ‘–)

6 , 𝑖 = 32,33,34, satisfy the inequalities

1

( 𝑀 32 )(6) [ (π‘Žπ‘–) 6 + (π‘Žπ‘–

β€²) 6 + ( 𝐴 32 )(6) + ( 𝑃 32 )(6) ( π‘˜ 32 )(6)] < 1

1

( 𝑀 32 )(6) [ (𝑏𝑖) 6 + (𝑏𝑖

β€²) 6 + ( 𝐡 32 )(6) + ( 𝑄 32 )(6) ( π‘˜ 32 )(6)] < 1

Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying

the conditions

Definition of 𝐺𝑖 0 , 𝑇𝑖 0 :

𝐺𝑖 𝑑 ≀ 𝑃 13 1

𝑒 𝑀 13 1 𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

Page 18: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 18

ISSN 2250-3153

www.ijsrp.org

𝑇𝑖(𝑑) ≀ ( 𝑄 13 )(1)𝑒( 𝑀 13 )(1)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

Definition of 𝐺𝑖 0 , 𝑇𝑖 0

𝐺𝑖 𝑑 ≀ ( 𝑃 16 )(2)𝑒( 𝑀 16 )(2)𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

𝑇𝑖(𝑑) ≀ ( 𝑄 16 )(2)𝑒( 𝑀 16 )(2)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

𝐺𝑖 𝑑 ≀ ( 𝑃 20 )(3)𝑒( 𝑀 20 )(3)𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

𝑇𝑖(𝑑) ≀ ( 𝑄 20 )(3)𝑒( 𝑀 20 )(3)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

Definition of 𝐺𝑖 0 , 𝑇𝑖 0 :

𝐺𝑖 𝑑 ≀ 𝑃 24 4

𝑒 𝑀 24 4 𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

𝑇𝑖(𝑑) ≀ ( 𝑄 24 )(4)𝑒( 𝑀 24 )(4)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

Definition of 𝐺𝑖 0 , 𝑇𝑖 0 :

𝐺𝑖 𝑑 ≀ 𝑃 28 5

𝑒 𝑀 28 5 𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

𝑇𝑖(𝑑) ≀ ( 𝑄 28 )(5)𝑒( 𝑀 28 )(5)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

Definition of 𝐺𝑖 0 , 𝑇𝑖 0 :

𝐺𝑖 𝑑 ≀ 𝑃 32 6

𝑒 𝑀 32 6 𝑑 , 𝐺𝑖 0 = 𝐺𝑖0 > 0

𝑇𝑖(𝑑) ≀ ( 𝑄 32 )(6)𝑒( 𝑀 32 )(6)𝑑 , 𝑇𝑖 0 = 𝑇𝑖0 > 0

Proof: Consider operator π’œ(1) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+

which satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 13 )(1) , 𝑇𝑖

0 ≀ ( 𝑄 13 )(1),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 13 )(1)𝑒( 𝑀 13 )(1)𝑑

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 13 )(1)𝑒( 𝑀 13 )(1)𝑑

Page 19: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 19

ISSN 2250-3153

www.ijsrp.org

By

𝐺 13 𝑑 = 𝐺130 + (π‘Ž13) 1 𝐺14 𝑠 13 βˆ’ (π‘Ž13

β€² ) 1 + π‘Ž13β€²β€² ) 1 𝑇14 𝑠 13 , 𝑠 13 𝐺13 𝑠 13 𝑑𝑠 13

𝑑

0

𝐺 14 𝑑 = 𝐺140 + (π‘Ž14 ) 1 𝐺13 𝑠 13 βˆ’ (π‘Ž14

β€² ) 1 + (π‘Ž14β€²β€² ) 1 𝑇14 𝑠 13 , 𝑠 13 𝐺14 𝑠 13 𝑑𝑠 13

𝑑

0

𝐺 15 𝑑 = 𝐺150 + (π‘Ž15) 1 𝐺14 𝑠 13 βˆ’ (π‘Ž15

β€² ) 1 + (π‘Ž15β€²β€² ) 1 𝑇14 𝑠 13 , 𝑠 13 𝐺15 𝑠 13 𝑑𝑠 13

𝑑

0

𝑇 13 𝑑 = 𝑇130 + (𝑏13 ) 1 𝑇14 𝑠 13 βˆ’ (𝑏13

β€² ) 1 βˆ’ (𝑏13β€²β€² ) 1 𝐺 𝑠 13 , 𝑠 13 𝑇13 𝑠 13 𝑑𝑠 13

𝑑

0

𝑇 14 𝑑 = 𝑇140 + (𝑏14 ) 1 𝑇13 𝑠 13 βˆ’ (𝑏14

β€² ) 1 βˆ’ (𝑏14β€²β€² ) 1 𝐺 𝑠 13 , 𝑠 13 𝑇14 𝑠 13 𝑑𝑠 13

𝑑

0

T 15 t = T150 + (𝑏15) 1 𝑇14 𝑠 13 βˆ’ (𝑏15

β€² ) 1 βˆ’ (𝑏15β€²β€² ) 1 𝐺 𝑠 13 , 𝑠 13 𝑇15 𝑠 13 𝑑𝑠 13

𝑑

0

Where 𝑠 13 is the integrand that is integrated over an interval 0, 𝑑

Proof:

Consider operator π’œ(2) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+ which

satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 16 )(2) , 𝑇𝑖

0 ≀ ( 𝑄 16 )(2),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 16 )(2)𝑒( 𝑀 16 )(2)𝑑

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 16 )(2)𝑒( 𝑀 16 )(2)𝑑

By

𝐺 16 𝑑 = 𝐺160 + (π‘Ž16) 2 𝐺17 𝑠 16 βˆ’ (π‘Ž16

β€² ) 2 + π‘Ž16β€²β€² ) 2 𝑇17 𝑠 16 , 𝑠 16 𝐺16 𝑠 16 𝑑𝑠 16

𝑑

0

𝐺 17 𝑑 = 𝐺170 + (π‘Ž17 ) 2 𝐺16 𝑠 16 βˆ’ (π‘Ž17

β€² ) 2 + (π‘Ž17β€²β€² ) 2 𝑇17 𝑠 16 , 𝑠 17 𝐺17 𝑠 16 𝑑𝑠 16

𝑑

0

𝐺 18 𝑑 = 𝐺180 + (π‘Ž18 ) 2 𝐺17 𝑠 16 βˆ’ (π‘Ž18

β€² ) 2 + (π‘Ž18β€²β€² ) 2 𝑇17 𝑠 16 , 𝑠 16 𝐺18 𝑠 16 𝑑𝑠 16

𝑑

0

𝑇 16 𝑑 = 𝑇160 + (𝑏16 ) 2 𝑇17 𝑠 16 βˆ’ (𝑏16

β€² ) 2 βˆ’ (𝑏16β€²β€² ) 2 𝐺 𝑠 16 , 𝑠 16 𝑇16 𝑠 16 𝑑𝑠 16

𝑑

0

𝑇 17 𝑑 = 𝑇170 + (𝑏17 ) 2 𝑇16 𝑠 16 βˆ’ (𝑏17

β€² ) 2 βˆ’ (𝑏17β€²β€² ) 2 𝐺 𝑠 16 , 𝑠 16 𝑇17 𝑠 16 𝑑𝑠 16

𝑑

0

𝑇 18 𝑑 = 𝑇180 + (𝑏18 ) 2 𝑇17 𝑠 16 βˆ’ (𝑏18

β€² ) 2 βˆ’ (𝑏18β€²β€² ) 2 𝐺 𝑠 16 , 𝑠 16 𝑇18 𝑠 16 𝑑𝑠 16

𝑑

0

Where 𝑠 16 is the integrand that is integrated over an interval 0, 𝑑

Proof:

Consider operator π’œ(3) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+ which

satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 20 )(3) , 𝑇𝑖

0 ≀ ( 𝑄 20 )(3),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 20 )(3)𝑒( 𝑀 20 )(3)𝑑

Page 20: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 20

ISSN 2250-3153

www.ijsrp.org

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 20 )(3)𝑒( 𝑀 20 )(3)𝑑

By

𝐺 20 𝑑 = 𝐺200 + (π‘Ž20 ) 3 𝐺21 𝑠 20 βˆ’ (π‘Ž20

β€² ) 3 + π‘Ž20β€²β€² ) 3 𝑇21 𝑠 20 , 𝑠 20 𝐺20 𝑠 20 𝑑𝑠 20

𝑑

0

𝐺 21 𝑑 = 𝐺210 + (π‘Ž21) 3 𝐺20 𝑠 20 βˆ’ (π‘Ž21

β€² ) 3 + (π‘Ž21β€²β€² ) 3 𝑇21 𝑠 20 , 𝑠 20 𝐺21 𝑠 20 𝑑𝑠 20

𝑑

0

𝐺 22 𝑑 = 𝐺220 + (π‘Ž22 ) 3 𝐺21 𝑠 20 βˆ’ (π‘Ž22

β€² ) 3 + (π‘Ž22β€²β€² ) 3 𝑇21 𝑠 20 , 𝑠 20 𝐺22 𝑠 20 𝑑𝑠 20

𝑑

0

𝑇 20 𝑑 = 𝑇200 + (𝑏20) 3 𝑇21 𝑠 20 βˆ’ (𝑏20

β€² ) 3 βˆ’ (𝑏20β€²β€² ) 3 𝐺 𝑠 20 , 𝑠 20 𝑇20 𝑠 20 𝑑𝑠 20

𝑑

0

𝑇 21 𝑑 = 𝑇210 + (𝑏21) 3 𝑇20 𝑠 20 βˆ’ (𝑏21

β€² ) 3 βˆ’ (𝑏21β€²β€² ) 3 𝐺 𝑠 20 , 𝑠 20 𝑇21 𝑠 20 𝑑𝑠 20

𝑑

0

T 22 t = T220 + (𝑏22) 3 𝑇21 𝑠 20 βˆ’ (𝑏22

β€² ) 3 βˆ’ (𝑏22β€²β€² ) 3 𝐺 𝑠 20 , 𝑠 20 𝑇22 𝑠 20 𝑑𝑠 20

𝑑

0

Where 𝑠 20 is the integrand that is integrated over an interval 0, 𝑑

Consider operator π’œ(4) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+

which satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 24 )(4) , 𝑇𝑖

0 ≀ ( 𝑄 24 )(4),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 24 )(4)𝑒( 𝑀 24 )(4)𝑑

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 24 )(4)𝑒( 𝑀 24 )(4)𝑑

By

𝐺 24 𝑑 = 𝐺240 + (π‘Ž24 ) 4 𝐺25 𝑠 24 βˆ’ (π‘Ž24

β€² ) 4 + π‘Ž24β€²β€² ) 4 𝑇25 𝑠 24 , 𝑠 24 𝐺24 𝑠 24 𝑑𝑠 24

𝑑

0

𝐺 25 𝑑 = 𝐺250 + (π‘Ž25) 4 𝐺24 𝑠 24 βˆ’ (π‘Ž25

β€² ) 4 + (π‘Ž25β€²β€² ) 4 𝑇25 𝑠 24 , 𝑠 24 𝐺25 𝑠 24 𝑑𝑠 24

𝑑

0

𝐺 26 𝑑 = 𝐺260 + (π‘Ž26) 4 𝐺25 𝑠 24 βˆ’ (π‘Ž26

β€² ) 4 + (π‘Ž26β€²β€² ) 4 𝑇25 𝑠 24 , 𝑠 24 𝐺26 𝑠 24 𝑑𝑠 24

𝑑

0

𝑇 24 𝑑 = 𝑇240 + (𝑏24) 4 𝑇25 𝑠 24 βˆ’ (𝑏24

β€² ) 4 βˆ’ (𝑏24β€²β€² ) 4 𝐺 𝑠 24 , 𝑠 24 𝑇24 𝑠 24 𝑑𝑠 24

𝑑

0

𝑇 25 𝑑 = 𝑇250 + (𝑏25) 4 𝑇24 𝑠 24 βˆ’ (𝑏25

β€² ) 4 βˆ’ (𝑏25β€²β€² ) 4 𝐺 𝑠 24 , 𝑠 24 𝑇25 𝑠 24 𝑑𝑠 24

𝑑

0

T 26 t = T260 + (𝑏26 ) 4 𝑇25 𝑠 24 βˆ’ (𝑏26

β€² ) 4 βˆ’ (𝑏26β€²β€² ) 4 𝐺 𝑠 24 , 𝑠 24 𝑇26 𝑠 24 𝑑𝑠 24

𝑑

0

Where 𝑠 24 is the integrand that is integrated over an interval 0, 𝑑

Consider operator π’œ(5) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+ which

satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 28 )(5) , 𝑇𝑖

0 ≀ ( 𝑄 28 )(5),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 28 )(5)𝑒( 𝑀 28 )(5)𝑑

Page 21: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 21

ISSN 2250-3153

www.ijsrp.org

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 28 )(5)𝑒( 𝑀 28 )(5)𝑑

By

𝐺 28 𝑑 = 𝐺280 + (π‘Ž28 ) 5 𝐺29 𝑠 28 βˆ’ (π‘Ž28

β€² ) 5 + π‘Ž28β€²β€² ) 5 𝑇29 𝑠 28 , 𝑠 28 𝐺28 𝑠 28 𝑑𝑠 28

𝑑

0

𝐺 29 𝑑 = 𝐺290 + (π‘Ž29) 5 𝐺28 𝑠 28 βˆ’ (π‘Ž29

β€² ) 5 + (π‘Ž29β€²β€² ) 5 𝑇29 𝑠 28 , 𝑠 28 𝐺29 𝑠 28 𝑑𝑠 28

𝑑

0

𝐺 30 𝑑 = 𝐺300 + (π‘Ž30) 5 𝐺29 𝑠 28 βˆ’ (π‘Ž30

β€² ) 5 + (π‘Ž30β€²β€² ) 5 𝑇29 𝑠 28 , 𝑠 28 𝐺30 𝑠 28 𝑑𝑠 28

𝑑

0

𝑇 28 𝑑 = 𝑇280 + (𝑏28) 5 𝑇29 𝑠 28 βˆ’ (𝑏28

β€² ) 5 βˆ’ (𝑏28β€²β€² ) 5 𝐺 𝑠 28 , 𝑠 28 𝑇28 𝑠 28 𝑑𝑠 28

𝑑

0

𝑇 29 𝑑 = 𝑇290 + (𝑏29) 5 𝑇28 𝑠 28 βˆ’ (𝑏29

β€² ) 5 βˆ’ (𝑏29β€²β€² ) 5 𝐺 𝑠 28 , 𝑠 28 𝑇29 𝑠 28 𝑑𝑠 28

𝑑

0

T 30 t = T300 + (𝑏30) 5 𝑇29 𝑠 28 βˆ’ (𝑏30

β€² ) 5 βˆ’ (𝑏30β€²β€² ) 5 𝐺 𝑠 28 , 𝑠 28 𝑇30 𝑠 28 𝑑𝑠 28

𝑑

0

Where 𝑠 28 is the integrand that is integrated over an interval 0, 𝑑

Consider operator π’œ(6) defined on the space of sextuples of continuous functions 𝐺𝑖 , 𝑇𝑖 : ℝ+ β†’ ℝ+ which

satisfy

𝐺𝑖 0 = 𝐺𝑖0 , 𝑇𝑖 0 = 𝑇𝑖

0 , 𝐺𝑖0 ≀ ( 𝑃 32 )(6) , 𝑇𝑖

0 ≀ ( 𝑄 32 )(6),

0 ≀ 𝐺𝑖 𝑑 βˆ’ 𝐺𝑖0 ≀ ( 𝑃 32 )(6)𝑒( 𝑀 32 )(6)𝑑

0 ≀ 𝑇𝑖 𝑑 βˆ’ 𝑇𝑖0 ≀ ( 𝑄 32 )(6)𝑒( 𝑀 32 )(6)𝑑

By

𝐺 32 𝑑 = 𝐺320 + (π‘Ž32 ) 6 𝐺33 𝑠 32 βˆ’ (π‘Ž32

β€² ) 6 + π‘Ž32β€²β€² ) 6 𝑇33 𝑠 32 , 𝑠 32 𝐺32 𝑠 32 𝑑𝑠 32

𝑑

0

𝐺 33 𝑑 = 𝐺330 + (π‘Ž33) 6 𝐺32 𝑠 32 βˆ’ (π‘Ž33

β€² ) 6 + (π‘Ž33β€²β€² ) 6 𝑇33 𝑠 32 , 𝑠 32 𝐺33 𝑠 32 𝑑𝑠 32

𝑑

0

𝐺 34 𝑑 = 𝐺340 + (π‘Ž34) 6 𝐺33 𝑠 32 βˆ’ (π‘Ž34

β€² ) 6 + (π‘Ž34β€²β€² ) 6 𝑇33 𝑠 32 , 𝑠 32 𝐺34 𝑠 32 𝑑𝑠 32

𝑑

0

𝑇 32 𝑑 = 𝑇320 + (𝑏32) 6 𝑇33 𝑠 32 βˆ’ (𝑏32

β€² ) 6 βˆ’ (𝑏32β€²β€² ) 6 𝐺 𝑠 32 , 𝑠 32 𝑇32 𝑠 32 𝑑𝑠 32

𝑑

0

𝑇 33 𝑑 = 𝑇330 + (𝑏33) 6 𝑇32 𝑠 32 βˆ’ (𝑏33

β€² ) 6 βˆ’ (𝑏33β€²β€² ) 6 𝐺 𝑠 32 , 𝑠 32 𝑇33 𝑠 32 𝑑𝑠 32

𝑑

0

T 34 t = T340 + (𝑏34) 6 𝑇33 𝑠 32 βˆ’ (𝑏34

β€² ) 6 βˆ’ (𝑏34β€²β€² ) 6 𝐺 𝑠 32 , 𝑠 32 𝑇34 𝑠 32 𝑑𝑠 32

𝑑

0

Where 𝑠 32 is the integrand that is integrated over an interval 0, 𝑑

(a) The operator π’œ(1) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it

is obvious that

Page 22: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 22

ISSN 2250-3153

www.ijsrp.org

𝐺13 𝑑 ≀ 𝐺130 + (π‘Ž13) 1 𝐺14

0 +( 𝑃 13 )(1)𝑒( 𝑀 13 )(1)𝑠 13 𝑑

0𝑑𝑠 13 =

1 + (π‘Ž13 ) 1 𝑑 𝐺140 +

(π‘Ž13 ) 1 ( 𝑃 13 )(1)

( 𝑀 13 )(1) 𝑒( 𝑀 13 )(1)𝑑 βˆ’ 1

From which it follows that

𝐺13 𝑑 βˆ’ 𝐺130 π‘’βˆ’( 𝑀 13 )(1)𝑑 ≀

(π‘Ž13 ) 1

( 𝑀 13 )(1) ( 𝑃 13 )(1) + 𝐺140 𝑒

βˆ’ ( 𝑃 13 )(1)+𝐺14

0

𝐺140

+ ( 𝑃 13 )(1)

𝐺𝑖0 is as defined in the statement of theorem 1

Analogous inequalities hold also for 𝐺14 , 𝐺15 , 𝑇13 , 𝑇14 , 𝑇15

(b) The operator π’œ(2) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it

is obvious that

𝐺16 𝑑 ≀ 𝐺160 + (π‘Ž16) 2 𝐺17

0 +( 𝑃 16 )(6)𝑒( 𝑀 16 )(2)𝑠 16 𝑑

0𝑑𝑠 16 =

1 + (π‘Ž16 ) 2 𝑑 𝐺170 +

(π‘Ž16 ) 2 ( 𝑃 16 )(2)

( 𝑀 16 )(2) 𝑒( 𝑀 16 )(2)𝑑 βˆ’ 1

From which it follows that

𝐺16 𝑑 βˆ’ 𝐺160 π‘’βˆ’( 𝑀 16 )(2)𝑑 ≀

(π‘Ž16 ) 2

( 𝑀 16 )(2) ( 𝑃 16 )(2) + 𝐺170 𝑒

βˆ’ ( 𝑃 16 )(2)+𝐺17

0

𝐺170

+ ( 𝑃 16 )(2)

Analogous inequalities hold also for 𝐺17 , 𝐺18 , 𝑇16 , 𝑇17 , 𝑇18

(a) The operator π’œ(3) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it

is obvious that

𝐺20 𝑑 ≀ 𝐺200 + (π‘Ž20) 3 𝐺21

0 +( 𝑃 20 )(3)𝑒( 𝑀 20 )(3)𝑠 20 𝑑

0𝑑𝑠 20 =

1 + (π‘Ž20 ) 3 𝑑 𝐺210 +

(π‘Ž20 ) 3 ( 𝑃 20 )(3)

( 𝑀 20 )(3) 𝑒( 𝑀 20 )(3)𝑑 βˆ’ 1

From which it follows that

𝐺20 𝑑 βˆ’ 𝐺200 π‘’βˆ’( 𝑀 20 )(3)𝑑 ≀

(π‘Ž20 ) 3

( 𝑀 20 )(3) ( 𝑃 20 )(3) + 𝐺210 𝑒

βˆ’ ( 𝑃 20 )(3)+𝐺21

0

𝐺210

+ ( 𝑃 20 )(3)

Analogous inequalities hold also for 𝐺21 , 𝐺22 , 𝑇20 , 𝑇21 , 𝑇22

(b) The operator π’œ(4) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

𝐺24 𝑑 ≀ 𝐺240 + (π‘Ž24) 4 𝐺25

0 +( 𝑃 24 )(4)𝑒( 𝑀 24 )(4)𝑠 24 𝑑

0𝑑𝑠 24 =

1 + (π‘Ž24 ) 4 𝑑 𝐺250 +

(π‘Ž24 ) 4 ( 𝑃 24 )(4)

( 𝑀 24 )(4) 𝑒( 𝑀 24 )(4)𝑑 βˆ’ 1

From which it follows that

𝐺24 𝑑 βˆ’ 𝐺240 π‘’βˆ’( 𝑀 24 )(4)𝑑 ≀

(π‘Ž24 ) 4

( 𝑀 24 )(4) ( 𝑃 24 )(4) + 𝐺250 𝑒

βˆ’ ( 𝑃 24 )(4)+𝐺25

0

𝐺250

+ ( 𝑃 24 )(4)

𝐺𝑖0 is as defined in the statement of theorem 1

Page 23: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 23

ISSN 2250-3153

www.ijsrp.org

(c) The operator π’œ(5) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

𝐺28 𝑑 ≀ 𝐺280 + (π‘Ž28) 5 𝐺29

0 +( 𝑃 28 )(5)𝑒( 𝑀 28 )(5)𝑠 28 𝑑

0𝑑𝑠 28 =

1 + (π‘Ž28 ) 5 𝑑 𝐺290 +

(π‘Ž28 ) 5 ( 𝑃 28 )(5)

( 𝑀 28 )(5) 𝑒( 𝑀 28 )(5)𝑑 βˆ’ 1

From which it follows that

𝐺28 𝑑 βˆ’ 𝐺280 π‘’βˆ’( 𝑀 28 )(5)𝑑 ≀

(π‘Ž28 ) 5

( 𝑀 28 )(5) ( 𝑃 28 )(5) + 𝐺290 𝑒

βˆ’ ( 𝑃 28 )(5)+𝐺29

0

𝐺290

+ ( 𝑃 28 )(5)

𝐺𝑖0 is as defined in the statement of theorem 1

(d) The operator π’œ(6) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it is obvious that

𝐺32 𝑑 ≀ 𝐺320 + (π‘Ž32) 6 𝐺33

0 +( 𝑃 32 )(6)𝑒( 𝑀 32 )(6)𝑠 32 𝑑

0𝑑𝑠 32 =

1 + (π‘Ž32 ) 6 𝑑 𝐺330 +

(π‘Ž32 ) 6 ( 𝑃 32 )(6)

( 𝑀 32 )(6) 𝑒( 𝑀 32 )(6)𝑑 βˆ’ 1

From which it follows that

𝐺32 𝑑 βˆ’ 𝐺320 π‘’βˆ’( 𝑀 32 )(6)𝑑 ≀

(π‘Ž32 ) 6

( 𝑀 32 )(6) ( 𝑃 32 )(6) + 𝐺330 𝑒

βˆ’ ( 𝑃 32 )(6)+𝐺33

0

𝐺330

+ ( 𝑃 32 )(6)

𝐺𝑖0 is as defined in the statement of theorem 6

Analogous inequalities hold also for 𝐺25 , 𝐺26 , 𝑇24 , 𝑇25 , 𝑇26

It is now sufficient to take (π‘Žπ‘–)

1

( 𝑀 13 )(1) ,(𝑏𝑖)

1

( 𝑀 13 )(1) < 1 and to choose

( P 13 )(1) and ( Q 13 )(1) large to have

(π‘Žπ‘–) 1

(𝑀 13 ) 1 ( 𝑃 13) 1 + ( 𝑃 13 )(1) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 13 )(1)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 13 )(1)

(𝑏𝑖) 1

(𝑀 13 ) 1 ( 𝑄 13 )(1) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 13 )(1)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 13 )(1) ≀ ( 𝑄 13 )(1)

In order that the operator π’œ(1) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 satisfying GLOBAL

EQUATIONS into itself

The operator π’œ(1) is a contraction with respect to the metric

𝑑 𝐺 1 , 𝑇 1 , 𝐺 2 , 𝑇 2 =

Page 24: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 24

ISSN 2250-3153

www.ijsrp.org

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 13 ) 1 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 13 ) 1 𝑑}

Indeed if we denote

Definition of 𝐺 , 𝑇 :

𝐺 , 𝑇 = π’œ(1)(𝐺, 𝑇)

It results

𝐺 13 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž13) 1 𝑑

0 𝐺14

1 βˆ’ 𝐺14

2 π‘’βˆ’( 𝑀 13 ) 1 𝑠 13 𝑒( 𝑀 13 ) 1 𝑠 13 𝑑𝑠 13 +

{(π‘Ž13β€² ) 1 𝐺13

1 βˆ’ 𝐺13

2 π‘’βˆ’( 𝑀 13 ) 1 𝑠 13 π‘’βˆ’( 𝑀 13 ) 1 𝑠 13

𝑑

0+

(π‘Ž13β€²β€² ) 1 𝑇14

1 , 𝑠 13 𝐺13

1 βˆ’ 𝐺13

2 π‘’βˆ’( 𝑀 13 ) 1 𝑠 13 𝑒( 𝑀 13 ) 1 𝑠 13 +

𝐺13 2

|(π‘Ž13β€²β€² ) 1 𝑇14

1 , 𝑠 13 βˆ’ (π‘Ž13

β€²β€² ) 1 𝑇14 2

, 𝑠 13 | π‘’βˆ’( 𝑀 13) 1 𝑠 13 𝑒( 𝑀 13 ) 1 𝑠 13 }𝑑𝑠 13

Where 𝑠 13 represents integrand that is integrated over the interval 0, t

From the hypotheses it follows

𝐺 1 βˆ’ 𝐺 2 π‘’βˆ’( 𝑀 13) 1 𝑑 ≀1

( 𝑀 13 ) 1 (π‘Ž13) 1 + (π‘Ž13β€² ) 1 + ( 𝐴 13) 1 + ( 𝑃 13) 1 ( π‘˜ 13) 1 𝑑 𝐺 1 , 𝑇 1 ; 𝐺 2 , 𝑇 2

And analogous inequalities for 𝐺𝑖 π‘Žπ‘›π‘‘ 𝑇𝑖 . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (π‘Ž13β€²β€² ) 1 and (𝑏13

β€²β€² ) 1 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 𝑃 13) 1 𝑒( 𝑀 13 ) 1 𝑑 π‘Žπ‘›π‘‘ ( 𝑄 13) 1 𝑒( 𝑀 13 ) 1 𝑑

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 1 and (𝑏𝑖

β€²β€² ) 1 , 𝑖 = 13,14,15 depend only on T14 and respectively on

𝐺(π‘Žπ‘›π‘‘ π‘›π‘œπ‘‘ π‘œπ‘› 𝑑) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 𝑑 where 𝐺𝑖 𝑑 = 0 π‘Žπ‘›π‘‘ 𝑇𝑖 𝑑 = 0

From 19 to 24 it results

𝐺𝑖 𝑑 β‰₯ 𝐺𝑖0𝑒 βˆ’ (π‘Žπ‘–

β€² ) 1 βˆ’(π‘Žπ‘–β€²β€² ) 1 𝑇14 𝑠 13 ,𝑠 13 𝑑𝑠 13

𝑑0 β‰₯ 0

𝑇𝑖 𝑑 β‰₯ 𝑇𝑖0𝑒 βˆ’(𝑏𝑖

β€² ) 1 𝑑 > 0 for t > 0

Definition of ( 𝑀 13) 1 1

, ( 𝑀 13) 1 2

π‘Žπ‘›π‘‘ ( 𝑀 13) 1 3 :

Remark 3: if 𝐺13 is bounded, the same property have also 𝐺14 π‘Žπ‘›π‘‘ 𝐺15 . indeed if

𝐺13 < ( 𝑀 13) 1 it follows 𝑑𝐺14

𝑑𝑑≀ ( 𝑀 13) 1

1βˆ’ (π‘Ž14

β€² ) 1 𝐺14 and by integrating

𝐺14 ≀ ( 𝑀 13) 1 2

= 𝐺140 + 2(π‘Ž14 ) 1 ( 𝑀 13) 1

1/(π‘Ž14

β€² ) 1

In the same way , one can obtain

𝐺15 ≀ ( 𝑀 13) 1 3

= 𝐺150 + 2(π‘Ž15 ) 1 ( 𝑀 13) 1

2/(π‘Ž15

β€² ) 1

Page 25: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 25

ISSN 2250-3153

www.ijsrp.org

If 𝐺14 π‘œπ‘Ÿ 𝐺15 is bounded, the same property follows for 𝐺13 , 𝐺15 and 𝐺13 , 𝐺14 respectively.

Remark 4: If 𝐺13 𝑖𝑠 bounded, from below, the same property holds for 𝐺14 π‘Žπ‘›π‘‘ 𝐺15 . The proof is

analogous with the preceding one. An analogous property is true if 𝐺14 is bounded from below.

Remark 5: If T13 is bounded from below and limπ‘‘β†’βˆž((𝑏𝑖′′ ) 1 (𝐺 𝑑 , 𝑑)) = (𝑏14

β€² ) 1 then 𝑇14 β†’ ∞.

Definition of π‘š 1 and πœ€1 :

Indeed let 𝑑1 be so that for 𝑑 > 𝑑1

(𝑏14) 1 βˆ’ (𝑏𝑖′′ ) 1 (𝐺 𝑑 , 𝑑) < πœ€1, 𝑇13 (𝑑) > π‘š 1

Then 𝑑𝑇14

𝑑𝑑β‰₯ (π‘Ž14) 1 π‘š 1 βˆ’ πœ€1𝑇14 which leads to

𝑇14 β‰₯ (π‘Ž14 ) 1 π‘š 1

πœ€1 1 βˆ’ π‘’βˆ’πœ€1𝑑 + 𝑇14

0 π‘’βˆ’πœ€1𝑑 If we take t such that π‘’βˆ’πœ€1𝑑 = 1

2 it results

𝑇14 β‰₯ (π‘Ž14 ) 1 π‘š 1

2 , 𝑑 = π‘™π‘œπ‘”

2

πœ€1 By taking now πœ€1 sufficiently small one sees that T14 is unbounded.

The same property holds for 𝑇15 if limπ‘‘β†’βˆž(𝑏15β€²β€² ) 1 𝐺 𝑑 , 𝑑 = (𝑏15

β€² ) 1

We now state a more precise theorem about the behaviors at infinity of the solutions

It is now sufficient to take (π‘Žπ‘–)

2

( 𝑀 16 )(2) ,(𝑏𝑖)

2

( 𝑀 16 )(2) < 1 and to choose

( 𝑃 16 )(2) π‘Žπ‘›π‘‘ ( 𝑄 16 )(2) large to have

(π‘Žπ‘–) 2

(𝑀 16 ) 2 ( 𝑃 16) 2 + ( 𝑃 16 )(2) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 16 )(2)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 16 )(2)

(𝑏𝑖) 2

(𝑀 16 ) 2 ( 𝑄 16 )(2) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 16 )(2)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 16 )(2) ≀ ( 𝑄 16 )(2)

In order that the operator π’œ(2) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 satisfying

The operator π’œ(2) is a contraction with respect to the metric

𝑑 𝐺19 1 , 𝑇19

1 , 𝐺19 2 , 𝑇19

2 =

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 16 ) 2 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 16 ) 2 𝑑}

Indeed if we denote

Definition of 𝐺19 , 𝑇19

: 𝐺19 , 𝑇19

= π’œ(2)(𝐺19 , 𝑇19)

It results

𝐺 16 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž16) 2 𝑑

0 𝐺17

1 βˆ’ 𝐺17

2 π‘’βˆ’( 𝑀 16 ) 2 𝑠 16 𝑒( 𝑀 16 ) 2 𝑠 16 𝑑𝑠 16 +

{(π‘Ž16β€² ) 2 𝐺16

1 βˆ’ 𝐺16

2 π‘’βˆ’( 𝑀 16 ) 2 𝑠 16 π‘’βˆ’( 𝑀 16 ) 2 𝑠 16

𝑑

0+

Page 26: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 26

ISSN 2250-3153

www.ijsrp.org

(π‘Ž16β€²β€² ) 2 𝑇17

1 , 𝑠 16 𝐺16

1 βˆ’ 𝐺16

2 π‘’βˆ’( 𝑀 16 ) 2 𝑠 16 𝑒( 𝑀 16 ) 2 𝑠 16 +

𝐺16 2

|(π‘Ž16β€²β€² ) 2 𝑇17

1 , 𝑠 16 βˆ’ (π‘Ž16

β€²β€² ) 2 𝑇17 2

, 𝑠 16 | π‘’βˆ’( 𝑀 16) 2 𝑠 16 𝑒( 𝑀 16 ) 2 𝑠 16 }𝑑𝑠 16

Where 𝑠 16 represents integrand that is integrated over the interval 0, 𝑑

From the hypotheses it follows

𝐺19 1 βˆ’ 𝐺19

2 eβˆ’( M 16 ) 2 t ≀1

( M 16 ) 2 (π‘Ž16 ) 2 + (π‘Ž16β€² ) 2 + ( A 16) 2 + ( P 16) 2 ( π‘˜ 16) 2 d 𝐺19

1 , 𝑇19 1 ; 𝐺19

2 , 𝑇19 2

And analogous inequalities for G𝑖 and T𝑖 . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (π‘Ž16β€²β€² ) 2 and (𝑏16

β€²β€² ) 2 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( P 16) 2 e( M 16 ) 2 t and ( Q 16) 2 e( M 16 ) 2 t

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 2 and (𝑏𝑖

β€²β€² ) 2 , 𝑖 = 16,17,18 depend only on T17 and respectively on

𝐺19 (and not on t) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any t where G𝑖 t = 0 and T𝑖 t = 0

From 19 to 24 it results

G𝑖 t β‰₯ G𝑖0e βˆ’ (π‘Žπ‘–

β€² ) 2 βˆ’(π‘Žπ‘–β€²β€² ) 2 T17 𝑠 16 ,𝑠 16 d𝑠 16

t0 β‰₯ 0

T𝑖 t β‰₯ T𝑖0e βˆ’(𝑏𝑖

β€² ) 2 t > 0 for t > 0

Definition of ( M 16) 2 1

, ( M 16) 2 2

and ( M 16) 2 3 :

Remark 3: if G16 is bounded, the same property have also G17 and G18 . indeed if

G16 < ( M 16) 2 it follows dG17

dt≀ ( M 16) 2

1βˆ’ (π‘Ž17

β€² ) 2 G17 and by integrating

G17 ≀ ( M 16) 2 2

= G170 + 2(π‘Ž17) 2 ( M 16) 2

1/(π‘Ž17

β€² ) 2

In the same way , one can obtain

G18 ≀ ( M 16) 2 3

= G180 + 2(π‘Ž18) 2 ( M 16) 2

2/(π‘Ž18

β€² ) 2

If G17 or G18 is bounded, the same property follows for G16 , G18 and G16 , G17 respectively.

Remark 4: If G16 is bounded, from below, the same property holds for G17 and G18 . The proof is

analogous with the preceding one. An analogous property is true if G17 is bounded from below.

Remark 5: If T16 is bounded from below and limtβ†’βˆž((𝑏𝑖′′ ) 2 ( 𝐺19 t , t)) = (𝑏17

β€² ) 2 then T17 β†’ ∞.

Definition of π‘š 2 and Ξ΅2 :

Indeed let t2 be so that for t > t2

(𝑏17) 2 βˆ’ (𝑏𝑖′′ ) 2 ( 𝐺19 t , t) < Ξ΅2, T16 (t) > π‘š 2

Then dT17

dtβ‰₯ (π‘Ž17 ) 2 π‘š 2 βˆ’ Ξ΅2T17 which leads to

Page 27: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 27

ISSN 2250-3153

www.ijsrp.org

T17 β‰₯ (π‘Ž17 ) 2 π‘š 2

Ξ΅2 1 βˆ’ eβˆ’Ξ΅2t + T17

0 eβˆ’Ξ΅2t If we take t such that eβˆ’Ξ΅2t = 1

2 it results

T17 β‰₯ (π‘Ž17 ) 2 π‘š 2

2 , 𝑑 = log

2

Ξ΅2 By taking now Ξ΅2 sufficiently small one sees that T17 is unbounded. The

same property holds for T18 if limπ‘‘β†’βˆž(𝑏18β€²β€² ) 2 𝐺19 t , t = (𝑏18

β€² ) 2

We now state a more precise theorem about the behaviors at infinity of the solutions

It is now sufficient to take (π‘Žπ‘–)

3

( 𝑀 20 )(3) ,(𝑏𝑖)

3

( 𝑀 20 )(3) < 1 and to choose

( P 20 )(3) and ( Q 20 )(3) large to have

(π‘Žπ‘–) 3

(𝑀 20 ) 3 ( 𝑃 20) 3 + ( 𝑃 20 )(3) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 20 )(3)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 20 )(3)

(𝑏𝑖) 3

(𝑀 20 ) 3 ( 𝑄 20 )(3) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 20 )(3)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 20 )(3) ≀ ( 𝑄 20 )(3)

In order that the operator π’œ(3) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 into itself

The operator π’œ(3) is a contraction with respect to the metric

𝑑 𝐺23 1 , 𝑇23

1 , 𝐺23 2 , 𝑇23

2 =

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 20 ) 3 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 20 ) 3 𝑑}

Indeed if we denote

Definition of 𝐺23 , 𝑇23

: 𝐺23 , 𝑇23 = π’œ(3) 𝐺23 , 𝑇23

It results

𝐺 20 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž20) 3 𝑑

0 𝐺21

1 βˆ’ 𝐺21

2 π‘’βˆ’( 𝑀 20 ) 3 𝑠 20 𝑒( 𝑀 20 ) 3 𝑠 20 𝑑𝑠 20 +

{(π‘Ž20β€² ) 3 𝐺20

1 βˆ’ 𝐺20

2 π‘’βˆ’( 𝑀 20 ) 3 𝑠 20 π‘’βˆ’( 𝑀 20 ) 3 𝑠 20

𝑑

0+

(π‘Ž20β€²β€² ) 3 𝑇21

1 , 𝑠 20 𝐺20

1 βˆ’ 𝐺20

2 π‘’βˆ’( 𝑀 20 ) 3 𝑠 20 𝑒( 𝑀 20 ) 3 𝑠 20 +

𝐺20 2

|(π‘Ž20β€²β€² ) 3 𝑇21

1 , 𝑠 20 βˆ’ (π‘Ž20

β€²β€² ) 3 𝑇21 2

, 𝑠 20 | π‘’βˆ’( 𝑀 20 ) 3 𝑠 20 𝑒( 𝑀 20 ) 3 𝑠 20 }𝑑𝑠 20

Where 𝑠 20 represents integrand that is integrated over the interval 0, t

From the hypotheses it follows

𝐺 1 βˆ’ 𝐺 2 π‘’βˆ’( 𝑀 20) 3 𝑑 ≀1

( 𝑀 20 ) 3 (π‘Ž20) 3 + (π‘Ž20β€² ) 3 + ( 𝐴 20) 3 + ( 𝑃 20) 3 ( π‘˜ 20) 3 𝑑 𝐺23

1 , 𝑇23 1 ; 𝐺23

2 , 𝑇23 2

And analogous inequalities for 𝐺𝑖 π‘Žπ‘›π‘‘ 𝑇𝑖 . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (π‘Ž20β€²β€² ) 3 and (𝑏20

β€²β€² ) 3 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

Page 28: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 28

ISSN 2250-3153

www.ijsrp.org

necessary to prove the uniqueness of the solution bounded by ( 𝑃 20) 3 𝑒( 𝑀 20 ) 3 𝑑 π‘Žπ‘›π‘‘ ( 𝑄 20) 3 𝑒( 𝑀 20 ) 3 𝑑

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 3 and (𝑏𝑖

β€²β€² ) 3 , 𝑖 = 20,21,22 depend only on T21 and respectively on

𝐺23 (π‘Žπ‘›π‘‘ π‘›π‘œπ‘‘ π‘œπ‘› 𝑑) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 𝑑 where 𝐺𝑖 𝑑 = 0 π‘Žπ‘›π‘‘ 𝑇𝑖 𝑑 = 0

From 19 to 24 it results

𝐺𝑖 𝑑 β‰₯ 𝐺𝑖0𝑒 βˆ’ (π‘Žπ‘–

β€² ) 3 βˆ’(π‘Žπ‘–β€²β€² ) 3 𝑇21 𝑠 20 ,𝑠 20 𝑑𝑠 20

𝑑0 β‰₯ 0

𝑇𝑖 𝑑 β‰₯ 𝑇𝑖0𝑒 βˆ’(𝑏𝑖

β€² ) 3 𝑑 > 0 for t > 0

Definition of ( 𝑀 20) 3 1

, ( 𝑀 20) 3 2

π‘Žπ‘›π‘‘ ( 𝑀 20) 3 3 :

Remark 3: if 𝐺20 is bounded, the same property have also 𝐺21 π‘Žπ‘›π‘‘ 𝐺22 . indeed if

𝐺20 < ( 𝑀 20) 3 it follows 𝑑𝐺21

𝑑𝑑≀ ( 𝑀 20) 3

1βˆ’ (π‘Ž21

β€² ) 3 𝐺21 and by integrating

𝐺21 ≀ ( 𝑀 20) 3 2

= 𝐺210 + 2(π‘Ž21) 3 ( 𝑀 20) 3

1/(π‘Ž21

β€² ) 3

In the same way , one can obtain

𝐺22 ≀ ( 𝑀 20) 3 3

= 𝐺220 + 2(π‘Ž22) 3 ( 𝑀 20) 3

2/(π‘Ž22

β€² ) 3

If 𝐺21 π‘œπ‘Ÿ 𝐺22 is bounded, the same property follows for 𝐺20 , 𝐺22 and 𝐺20 , 𝐺21 respectively.

Remark 4: If 𝐺20 𝑖𝑠 bounded, from below, the same property holds for 𝐺21 π‘Žπ‘›π‘‘ 𝐺22 . The proof is

analogous with the preceding one. An analogous property is true if 𝐺21 is bounded from below.

Remark 5: If T20 is bounded from below and limπ‘‘β†’βˆž((𝑏𝑖′′ ) 3 𝐺23 𝑑 , 𝑑) = (𝑏21

β€² ) 3 then 𝑇21 β†’ ∞.

Definition of π‘š 3 and πœ€3 :

Indeed let 𝑑3 be so that for 𝑑 > 𝑑3

(𝑏21) 3 βˆ’ (𝑏𝑖′′ ) 3 𝐺23 𝑑 , 𝑑 < πœ€3,𝑇20 (𝑑) > π‘š 3

Then 𝑑𝑇21

𝑑𝑑β‰₯ (π‘Ž21) 3 π‘š 3 βˆ’ πœ€3𝑇21 which leads to

𝑇21 β‰₯ (π‘Ž21 ) 3 π‘š 3

πœ€3 1 βˆ’ π‘’βˆ’πœ€3𝑑 + 𝑇21

0 π‘’βˆ’πœ€3𝑑 If we take t such that π‘’βˆ’πœ€3𝑑 = 1

2 it results

𝑇21 β‰₯ (π‘Ž21 ) 3 π‘š 3

2 , 𝑑 = π‘™π‘œπ‘”

2

πœ€3 By taking now πœ€3 sufficiently small one sees that T21 is unbounded.

The same property holds for 𝑇22 if limπ‘‘β†’βˆž(𝑏22β€²β€² ) 3 𝐺23 𝑑 , 𝑑 = (𝑏22

β€² ) 3

We now state a more precise theorem about the behaviors at infinity of the solutions

It is now sufficient to take (π‘Žπ‘–) 4

( 𝑀 24 )(4) ,(𝑏𝑖)

4

( 𝑀 24 )(4) < 1 and to choose

( P 24 )(4) and ( Q 24 )(4) large to have

Page 29: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 29

ISSN 2250-3153

www.ijsrp.org

(π‘Žπ‘–) 4

(𝑀 24 ) 4 ( 𝑃 24) 4 + ( 𝑃 24 )(4) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 24 )(4)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 24 )(4)

(𝑏𝑖) 4

(𝑀 24 ) 4 ( 𝑄 24 )(4) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 24 )(4)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 24 )(4) ≀ ( 𝑄 24 )(4)

In order that the operator π’œ(4) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 satisfying IN to itself

The operator π’œ(4) is a contraction with respect to the metric

𝑑 𝐺27 1 , 𝑇27

1 , 𝐺27 2 , 𝑇27

2 =

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 24 ) 4 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 24 ) 4 𝑑}

Indeed if we denote

Definition of 𝐺27 , 𝑇27 : 𝐺27 , 𝑇27 = π’œ(4)( 𝐺27 , 𝑇27 )

It results

𝐺 24 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž24) 4 𝑑

0 𝐺25

1 βˆ’ 𝐺25

2 π‘’βˆ’( 𝑀 24 ) 4 𝑠 24 𝑒( 𝑀 24 ) 4 𝑠 24 𝑑𝑠 24 +

{(π‘Ž24β€² ) 4 𝐺24

1 βˆ’ 𝐺24

2 π‘’βˆ’( 𝑀 24 ) 4 𝑠 24 π‘’βˆ’( 𝑀 24 ) 4 𝑠 24

𝑑

0+

(π‘Ž24β€²β€² ) 4 𝑇25

1 , 𝑠 24 𝐺24

1 βˆ’ 𝐺24

2 π‘’βˆ’( 𝑀 24 ) 4 𝑠 24 𝑒( 𝑀 24 ) 4 𝑠 24 +

𝐺24 2

|(π‘Ž24β€²β€² ) 4 𝑇25

1 , 𝑠 24 βˆ’ (π‘Ž24

β€²β€² ) 4 𝑇25 2

, 𝑠 24 | π‘’βˆ’( 𝑀 24 ) 4 𝑠 24 𝑒( 𝑀 24 ) 4 𝑠 24 }𝑑𝑠 24

Where 𝑠 24 represents integrand that is integrated over the interval 0, t

From the hypotheses it follows

𝐺27 1 βˆ’ 𝐺27

2 π‘’βˆ’( 𝑀 24 ) 4 𝑑 ≀1

( 𝑀 24 ) 4 (π‘Ž24) 4 + (π‘Ž24β€² ) 4 + ( 𝐴 24) 4 + ( 𝑃 24) 4 ( π‘˜ 24) 4 𝑑 𝐺27

1 , 𝑇27 1 ; 𝐺27

2 , 𝑇27 2

And analogous inequalities for 𝐺𝑖 π‘Žπ‘›π‘‘ 𝑇𝑖 . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (π‘Ž24β€²β€² ) 4 and (𝑏24

β€²β€² ) 4 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 𝑃 24) 4 𝑒( 𝑀 24 ) 4 𝑑 π‘Žπ‘›π‘‘ ( 𝑄 24) 4 𝑒( 𝑀 24) 4 𝑑

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 4 and (𝑏𝑖

β€²β€² ) 4 , 𝑖 = 24,25,26 depend only on T25 and respectively on

𝐺27 (π‘Žπ‘›π‘‘ π‘›π‘œπ‘‘ π‘œπ‘› 𝑑) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 𝑑 where 𝐺𝑖 𝑑 = 0 π‘Žπ‘›π‘‘ 𝑇𝑖 𝑑 = 0

Page 30: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 30

ISSN 2250-3153

www.ijsrp.org

From 19 to 24 it results

𝐺𝑖 𝑑 β‰₯ 𝐺𝑖0𝑒 βˆ’ (π‘Žπ‘–

β€² ) 4 βˆ’(π‘Žπ‘–β€²β€² ) 4 𝑇25 𝑠 24 ,𝑠 24 𝑑𝑠 24

𝑑0 β‰₯ 0

𝑇𝑖 𝑑 β‰₯ 𝑇𝑖0𝑒 βˆ’(𝑏𝑖

β€² ) 4 𝑑 > 0 for t > 0

Definition of ( 𝑀 24) 4 1

, ( 𝑀 24) 4 2

π‘Žπ‘›π‘‘ ( 𝑀 24) 4 3 :

Remark 3: if 𝐺24 is bounded, the same property have also 𝐺25 π‘Žπ‘›π‘‘ 𝐺26 . indeed if

𝐺24 < ( 𝑀 24) 4 it follows 𝑑𝐺25

𝑑𝑑≀ ( 𝑀 24) 4

1βˆ’ (π‘Ž25

β€² ) 4 𝐺25 and by integrating

𝐺25 ≀ ( 𝑀 24) 4 2

= 𝐺250 + 2(π‘Ž25) 4 ( 𝑀 24) 4

1/(π‘Ž25

β€² ) 4

In the same way , one can obtain

𝐺26 ≀ ( 𝑀 24) 4 3

= 𝐺260 + 2(π‘Ž26) 4 ( 𝑀 24) 4

2/(π‘Ž26

β€² ) 4

If 𝐺25 π‘œπ‘Ÿ 𝐺26 is bounded, the same property follows for 𝐺24 , 𝐺26 and 𝐺24 , 𝐺25 respectively.

Remark 4: If 𝐺24 𝑖𝑠 bounded, from below, the same property holds for 𝐺25 π‘Žπ‘›π‘‘ 𝐺26 . The proof is

analogous with the preceding one. An analogous property is true if 𝐺25 is bounded from below.

Remark 5: If T24 is bounded from below and limπ‘‘β†’βˆž((𝑏𝑖′′ ) 4 ( 𝐺27 𝑑 , 𝑑)) = (𝑏25

β€² ) 4 then 𝑇25 β†’ ∞.

Definition of π‘š 4 and πœ€4 :

Indeed let 𝑑4 be so that for 𝑑 > 𝑑4

(𝑏25) 4 βˆ’ (𝑏𝑖′′ ) 4 ( 𝐺27 𝑑 , 𝑑) < πœ€4,𝑇24 (𝑑) > π‘š 4

Then 𝑑𝑇25

𝑑𝑑β‰₯ (π‘Ž25 ) 4 π‘š 4 βˆ’ πœ€4𝑇25 which leads to

𝑇25 β‰₯ (π‘Ž25 ) 4 π‘š 4

πœ€4 1 βˆ’ π‘’βˆ’πœ€4𝑑 + 𝑇25

0 π‘’βˆ’πœ€4𝑑 If we take t such that π‘’βˆ’πœ€4𝑑 = 1

2 it results

𝑇25 β‰₯ (π‘Ž25 ) 4 π‘š 4

2 , 𝑑 = π‘™π‘œπ‘”

2

πœ€4 By taking now πœ€4 sufficiently small one sees that T25 is unbounded.

The same property holds for 𝑇26 if limπ‘‘β†’βˆž(𝑏26β€²β€² ) 4 𝐺27 𝑑 , 𝑑 = (𝑏26

β€² ) 4

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS

inequalities hold also for 𝐺29 , 𝐺30 , 𝑇28 , 𝑇29 , 𝑇30

It is now sufficient to take (π‘Žπ‘–)

5

( 𝑀 28 )(5) ,(𝑏𝑖)

5

( 𝑀 28 )(5) < 1 and to choose

( P 28 )(5) and ( Q 28 )(5) large to have

Page 31: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 31

ISSN 2250-3153

www.ijsrp.org

(π‘Žπ‘–) 5

(𝑀 28 ) 5 ( 𝑃 28) 5 + ( 𝑃 28 )(5) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 28 )(5)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 28 )(5)

(𝑏𝑖) 5

(𝑀 28 ) 5 ( 𝑄 28 )(5) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 28 )(5)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 28 )(5) ≀ ( 𝑄 28 )(5)

In order that the operator π’œ(5) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 into itself

The operator π’œ(5) is a contraction with respect to the metric

𝑑 𝐺31 1 , 𝑇31

1 , 𝐺31 2 , 𝑇31

2 =

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 28 ) 5 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 28 ) 5 𝑑}

Indeed if we denote

Definition of 𝐺31 , 𝑇31 : 𝐺31 , 𝑇31 = π’œ(5) 𝐺31 , 𝑇31

It results

𝐺 28 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž28) 5 𝑑

0 𝐺29

1 βˆ’ 𝐺29

2 π‘’βˆ’( 𝑀 28 ) 5 𝑠 28 𝑒( 𝑀 28 ) 5 𝑠 28 𝑑𝑠 28 +

{(π‘Ž28β€² ) 5 𝐺28

1 βˆ’ 𝐺28

2 π‘’βˆ’( 𝑀 28 ) 5 𝑠 28 π‘’βˆ’( 𝑀 28 ) 5 𝑠 28

𝑑

0+

(π‘Ž28β€²β€² ) 5 𝑇29

1 , 𝑠 28 𝐺28

1 βˆ’ 𝐺28

2 π‘’βˆ’( 𝑀 28 ) 5 𝑠 28 𝑒( 𝑀 28 ) 5 𝑠 28 +

𝐺28 2

|(π‘Ž28β€²β€² ) 5 𝑇29

1 , 𝑠 28 βˆ’ (π‘Ž28

β€²β€² ) 5 𝑇29 2

, 𝑠 28 | π‘’βˆ’( 𝑀 28 ) 5 𝑠 28 𝑒( 𝑀 28 ) 5 𝑠 28 }𝑑𝑠 28

Where 𝑠 28 represents integrand that is integrated over the interval 0, t

From the hypotheses it follows

𝐺31 1 βˆ’ 𝐺31

2 π‘’βˆ’( 𝑀 28 ) 5 𝑑 ≀1

( 𝑀 28 ) 5 (π‘Ž28) 5 + (π‘Ž28β€² ) 5 + ( 𝐴 28) 5 + ( 𝑃 28) 5 ( π‘˜ 28) 5 𝑑 𝐺31

1 , 𝑇31 1 ; 𝐺31

2 , 𝑇31 2

And analogous inequalities for 𝐺𝑖 π‘Žπ‘›π‘‘ 𝑇𝑖 . Taking into account the hypothesis (35,35,36) the result follows

Remark 1: The fact that we supposed (π‘Ž28β€²β€² ) 5 and (𝑏28

β€²β€² ) 5 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 𝑃 28) 5 𝑒( 𝑀 28 ) 5 𝑑 π‘Žπ‘›π‘‘ ( 𝑄 28) 5 𝑒( 𝑀 28) 5 𝑑

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 5 and (𝑏𝑖

β€²β€² ) 5 , 𝑖 = 28,29,30 depend only on T29 and respectively on

𝐺31 (π‘Žπ‘›π‘‘ π‘›π‘œπ‘‘ π‘œπ‘› 𝑑) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 𝑑 where 𝐺𝑖 𝑑 = 0 π‘Žπ‘›π‘‘ 𝑇𝑖 𝑑 = 0

Page 32: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 32

ISSN 2250-3153

www.ijsrp.org

From GLOBAL EQUATIONS it results

𝐺𝑖 𝑑 β‰₯ 𝐺𝑖0𝑒 βˆ’ (π‘Žπ‘–

β€² ) 5 βˆ’(π‘Žπ‘–β€²β€² ) 5 𝑇29 𝑠 28 ,𝑠 28 𝑑𝑠 28

𝑑0 β‰₯ 0

𝑇𝑖 𝑑 β‰₯ 𝑇𝑖0𝑒 βˆ’(𝑏𝑖

β€² ) 5 𝑑 > 0 for t > 0

Definition of ( 𝑀 28) 5 1

, ( 𝑀 28) 5 2

π‘Žπ‘›π‘‘ ( 𝑀 28) 5 3 :

Remark 3: if 𝐺28 is bounded, the same property have also 𝐺29 π‘Žπ‘›π‘‘ 𝐺30 . indeed if

𝐺28 < ( 𝑀 28) 5 it follows 𝑑𝐺29

𝑑𝑑≀ ( 𝑀 28) 5

1βˆ’ (π‘Ž29

β€² ) 5 𝐺29 and by integrating

𝐺29 ≀ ( 𝑀 28) 5 2

= 𝐺290 + 2(π‘Ž29) 5 ( 𝑀 28) 5

1/(π‘Ž29

β€² ) 5

In the same way , one can obtain

𝐺30 ≀ ( 𝑀 28) 5 3

= 𝐺300 + 2(π‘Ž30) 5 ( 𝑀 28) 5

2/(π‘Ž30

β€² ) 5

If 𝐺29 π‘œπ‘Ÿ 𝐺30 is bounded, the same property follows for 𝐺28 , 𝐺30 and 𝐺28 , 𝐺29 respectively.

Remark 4: If 𝐺28 𝑖𝑠 bounded, from below, the same property holds for 𝐺29 π‘Žπ‘›π‘‘ 𝐺30 . The proof is

analogous with the preceding one. An analogous property is true if 𝐺29 is bounded from below.

Remark 5: If T28 is bounded from below and limπ‘‘β†’βˆž((𝑏𝑖′′ ) 5 ( 𝐺31 𝑑 , 𝑑)) = (𝑏29

β€² ) 5 then 𝑇29 β†’ ∞.

Definition of π‘š 5 and πœ€5 :

Indeed let 𝑑5 be so that for 𝑑 > 𝑑5

(𝑏29) 5 βˆ’ (𝑏𝑖′′ ) 5 ( 𝐺31 𝑑 , 𝑑) < πœ€5,𝑇28 (𝑑) > π‘š 5

Then 𝑑𝑇29

𝑑𝑑β‰₯ (π‘Ž29) 5 π‘š 5 βˆ’ πœ€5𝑇29 which leads to

𝑇29 β‰₯ (π‘Ž29 ) 5 π‘š 5

πœ€5 1 βˆ’ π‘’βˆ’πœ€5𝑑 + 𝑇29

0 π‘’βˆ’πœ€5𝑑 If we take t such that π‘’βˆ’πœ€5𝑑 = 1

2 it results

𝑇29 β‰₯ (π‘Ž29 ) 5 π‘š 5

2 , 𝑑 = π‘™π‘œπ‘”

2

πœ€5 By taking now πœ€5 sufficiently small one sees that T29 is unbounded.

The same property holds for 𝑇30 if limπ‘‘β†’βˆž(𝑏30β€²β€² ) 5 𝐺31 𝑑 , 𝑑 = (𝑏30

β€² ) 5

We now state a more precise theorem about the behaviors at infinity of the solutions

Analogous inequalities hold also for 𝐺33 , 𝐺34 , 𝑇32 , 𝑇33 , 𝑇34

It is now sufficient to take (π‘Žπ‘–) 6

( 𝑀 32 )(6) ,(𝑏𝑖)

6

( 𝑀 32 )(6) < 1 and to choose

( P 32 )(6) and ( Q 32 )(6) large to have

Page 33: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 33

ISSN 2250-3153

www.ijsrp.org

(π‘Žπ‘–) 6

(𝑀 32 ) 6 ( 𝑃 32) 6 + ( 𝑃 32 )(6) + 𝐺𝑗0 𝑒

βˆ’ ( 𝑃 32 )(6)+𝐺𝑗

0

𝐺𝑗0

≀ ( 𝑃 32 )(6)

(𝑏𝑖) 6

(𝑀 32 ) 6 ( 𝑄 32 )(6) + 𝑇𝑗0 𝑒

βˆ’ ( 𝑄 32 )(6)+𝑇𝑗

0

𝑇𝑗0

+ ( 𝑄 32 )(6) ≀ ( 𝑄 32 )(6)

In order that the operator π’œ(6) transforms the space of sextuples of functions 𝐺𝑖 , 𝑇𝑖 into itself

The operator π’œ(6) is a contraction with respect to the metric

𝑑 𝐺35 1 , 𝑇35

1 , 𝐺35 2 , 𝑇35

2 =

𝑠𝑒𝑝𝑖

{π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝐺𝑖 1 𝑑 βˆ’ 𝐺𝑖

2 𝑑 π‘’βˆ’(𝑀 32 ) 6 𝑑 ,π‘šπ‘Žπ‘₯π‘‘βˆˆβ„+

𝑇𝑖 1 𝑑 βˆ’ 𝑇𝑖

2 𝑑 π‘’βˆ’(𝑀 32 ) 6 𝑑}

Indeed if we denote

Definition of 𝐺35 , 𝑇35 : 𝐺35 , 𝑇35 = π’œ(6) 𝐺35 , 𝑇35

It results

𝐺 32 1

βˆ’ 𝐺 𝑖 2

≀ (π‘Ž32) 6 𝑑

0 𝐺33

1 βˆ’ 𝐺33

2 π‘’βˆ’( 𝑀 32 ) 6 𝑠 32 𝑒( 𝑀 32 ) 6 𝑠 32 𝑑𝑠 32 +

{(π‘Ž32β€² ) 6 𝐺32

1 βˆ’ 𝐺32

2 π‘’βˆ’( 𝑀 32 ) 6 𝑠 32 π‘’βˆ’( 𝑀 32 ) 6 𝑠 32

𝑑

0+

(π‘Ž32β€²β€² ) 6 𝑇33

1 , 𝑠 32 𝐺32

1 βˆ’ 𝐺32

2 π‘’βˆ’( 𝑀 32 ) 6 𝑠 32 𝑒( 𝑀 32 ) 6 𝑠 32 +

𝐺32 2

|(π‘Ž32β€²β€² ) 6 𝑇33

1 , 𝑠 32 βˆ’ (π‘Ž32

β€²β€² ) 6 𝑇33 2

, 𝑠 32 | π‘’βˆ’( 𝑀 32 ) 6 𝑠 32 𝑒( 𝑀 32 ) 6 𝑠 32 }𝑑𝑠 32

Where 𝑠 32 represents integrand that is integrated over the interval 0, t

From the hypotheses it follows

𝐺35 1 βˆ’ 𝐺35

2 π‘’βˆ’( 𝑀 32 ) 6 𝑑 ≀1

( 𝑀 32 ) 6 (π‘Ž32) 6 + (π‘Ž32β€² ) 6 + ( 𝐴 32) 6 + ( 𝑃 32) 6 ( π‘˜ 32) 6 𝑑 𝐺35

1 , 𝑇35 1 ; 𝐺35

2 , 𝑇35 2

And analogous inequalities for 𝐺𝑖 π‘Žπ‘›π‘‘ 𝑇𝑖 . Taking into account the hypothesis the result follows

Remark 1: The fact that we supposed (π‘Ž32β€²β€² ) 6 and (𝑏32

β€²β€² ) 6 depending also on t can be considered as not

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition

necessary to prove the uniqueness of the solution bounded by ( 𝑃 32) 6 𝑒( 𝑀 32 ) 6 𝑑 π‘Žπ‘›π‘‘ ( 𝑄 32) 6 𝑒( 𝑀 32) 6 𝑑

respectively of ℝ+.

If instead of proving the existence of the solution on ℝ+, we have to prove it only on a compact then it

suffices to consider that (π‘Žπ‘–β€²β€² ) 6 and (𝑏𝑖

β€²β€² ) 6 , 𝑖 = 32,33,34 depend only on T33 and respectively on

𝐺35 (π‘Žπ‘›π‘‘ π‘›π‘œπ‘‘ π‘œπ‘› 𝑑) and hypothesis can replaced by a usual Lipschitz condition.

Remark 2: There does not exist any 𝑑 where 𝐺𝑖 𝑑 = 0 π‘Žπ‘›π‘‘ 𝑇𝑖 𝑑 = 0

Page 34: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 34

ISSN 2250-3153

www.ijsrp.org

From 69 to 32 it results

𝐺𝑖 𝑑 β‰₯ 𝐺𝑖0𝑒 βˆ’ (π‘Žπ‘–

β€² ) 6 βˆ’(π‘Žπ‘–β€²β€² ) 6 𝑇33 𝑠 32 ,𝑠 32 𝑑𝑠 32

𝑑0 β‰₯ 0

𝑇𝑖 𝑑 β‰₯ 𝑇𝑖0𝑒 βˆ’(𝑏𝑖

β€² ) 6 𝑑 > 0 for t > 0

Definition of ( 𝑀 32) 6 1

, ( 𝑀 32) 6 2

π‘Žπ‘›π‘‘ ( 𝑀 32) 6 3 :

Remark 3: if 𝐺32 is bounded, the same property have also 𝐺33 π‘Žπ‘›π‘‘ 𝐺34 . indeed if

𝐺32 < ( 𝑀 32) 6 it follows 𝑑𝐺33

𝑑𝑑≀ ( 𝑀 32) 6

1βˆ’ (π‘Ž33

β€² ) 6 𝐺33 and by integrating

𝐺33 ≀ ( 𝑀 32) 6 2

= 𝐺330 + 2(π‘Ž33) 6 ( 𝑀 32) 6

1/(π‘Ž33

β€² ) 6

In the same way , one can obtain

𝐺34 ≀ ( 𝑀 32) 6 3

= 𝐺340 + 2(π‘Ž34) 6 ( 𝑀 32) 6

2/(π‘Ž34

β€² ) 6

If 𝐺33 π‘œπ‘Ÿ 𝐺34 is bounded, the same property follows for 𝐺32 , 𝐺34 and 𝐺32 , 𝐺33 respectively.

Remark 4: If 𝐺32 𝑖𝑠 bounded, from below, the same property holds for 𝐺33 π‘Žπ‘›π‘‘ 𝐺34 . The proof is

analogous with the preceding one. An analogous property is true if 𝐺33 is bounded from below.

Remark 5: If T32 is bounded from below and limπ‘‘β†’βˆž((𝑏𝑖′′ ) 6 ( 𝐺35 𝑑 , 𝑑)) = (𝑏33

β€² ) 6 then 𝑇33 β†’ ∞.

Definition of π‘š 6 and πœ€6 :

Indeed let 𝑑6 be so that for 𝑑 > 𝑑6

(𝑏33 ) 6 βˆ’ (𝑏𝑖′′ ) 6 𝐺35 𝑑 , 𝑑 < πœ€6, 𝑇32 (𝑑) > π‘š 6

Then 𝑑𝑇33

𝑑𝑑β‰₯ (π‘Ž33 ) 6 π‘š 6 βˆ’ πœ€6𝑇33 which leads to

𝑇33 β‰₯ (π‘Ž33 ) 6 π‘š 6

πœ€6 1 βˆ’ π‘’βˆ’πœ€6𝑑 + 𝑇33

0 π‘’βˆ’πœ€6𝑑 If we take t such that π‘’βˆ’πœ€6𝑑 = 1

2 it results

𝑇33 β‰₯ (π‘Ž33 ) 6 π‘š 6

2 , 𝑑 = π‘™π‘œπ‘”

2

πœ€6 By taking now πœ€6 sufficiently small one sees that T33 is unbounded.

The same property holds for 𝑇34 if limπ‘‘β†’βˆž(𝑏34β€²β€² ) 6 𝐺35 𝑑 , 𝑑 𝑑 , 𝑑 = (𝑏34

β€² ) 6

We now state a more precise theorem about the behaviors at infinity of the solutions

Behavior of the solutions

If we denote and define

Definition of (𝜎1) 1 , (𝜎2) 1 , (𝜏1) 1 , (𝜏2) 1 :

(a) 𝜎1) 1 , (𝜎2) 1 , (𝜏1) 1 , (𝜏2) 1 four constants satisfying

βˆ’(𝜎2) 1 ≀ βˆ’(π‘Ž13β€² ) 1 + (π‘Ž14

β€² ) 1 βˆ’ (π‘Ž13β€²β€² ) 1 𝑇14 , 𝑑 + (π‘Ž14

β€²β€² ) 1 𝑇14 , 𝑑 ≀ βˆ’(𝜎1) 1

Page 35: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 35

ISSN 2250-3153

www.ijsrp.org

βˆ’(𝜏2) 1 ≀ βˆ’(𝑏13β€² ) 1 + (𝑏14

β€² ) 1 βˆ’ (𝑏13β€²β€² ) 1 𝐺, 𝑑 βˆ’ (𝑏14

β€²β€² ) 1 𝐺, 𝑑 ≀ βˆ’(𝜏1) 1

Definition of (𝜈1) 1 , (𝜈2) 1 , (𝑒1) 1 , (𝑒2) 1 , 𝜈 1 , 𝑒 1 :

(b) By (𝜈1) 1 > 0 , (𝜈2) 1 < 0 and respectively (𝑒1) 1 > 0 , (𝑒2) 1 < 0 the roots of the equations

(π‘Ž14) 1 𝜈 1 2

+ (𝜎1) 1 𝜈 1 βˆ’ (π‘Ž13 ) 1 = 0 and (𝑏14) 1 𝑒 1 2

+ (𝜏1) 1 𝑒 1 βˆ’ (𝑏13 ) 1 = 0

Definition of (𝜈 1) 1 , , (𝜈 2) 1 , (𝑒 1) 1 , (𝑒 2) 1 :

By (𝜈 1) 1 > 0 , (𝜈 2) 1 < 0 and respectively (𝑒 1) 1 > 0 , (𝑒 2) 1 < 0 the roots of the equations

(π‘Ž14) 1 𝜈 1 2

+ (𝜎2) 1 𝜈 1 βˆ’ (π‘Ž13) 1 = 0 and (𝑏14) 1 𝑒 1 2

+ (𝜏2) 1 𝑒 1 βˆ’ (𝑏13) 1 = 0

Definition of (π‘š1) 1 , (π‘š2) 1 , (πœ‡1) 1 , (πœ‡2) 1 , (𝜈0) 1 :-

(c) If we define (π‘š1) 1 , (π‘š2) 1 , (πœ‡1) 1 , (πœ‡2) 1 by

(π‘š2) 1 = (𝜈0) 1 , (π‘š1) 1 = (𝜈1) 1 , 𝑖𝑓 (𝜈0) 1 < (𝜈1) 1

(π‘š2) 1 = (𝜈1) 1 , (π‘š1) 1 = (𝜈 1) 1 , 𝑖𝑓 (𝜈1) 1 < (𝜈0) 1 < (𝜈 1) 1 ,

and (𝜈0) 1 =𝐺13

0

𝐺140

( π‘š2) 1 = (𝜈1) 1 , (π‘š1) 1 = (𝜈0) 1 , 𝑖𝑓 (𝜈 1) 1 < (𝜈0) 1

and analogously

(πœ‡2) 1 = (𝑒0) 1 , (πœ‡1) 1 = (𝑒1) 1 , 𝑖𝑓 (𝑒0) 1 < (𝑒1) 1

(πœ‡2) 1 = (𝑒1) 1 , (πœ‡1) 1 = (𝑒 1) 1 , 𝑖𝑓 (𝑒1) 1 < (𝑒0) 1 < (𝑒 1) 1 ,

and (𝑒0) 1 =𝑇13

0

𝑇140

( πœ‡2) 1 = (𝑒1) 1 , (πœ‡1) 1 = (𝑒0) 1 , 𝑖𝑓 (𝑒 1) 1 < (𝑒0) 1 where (𝑒1) 1 , (𝑒 1) 1

are defined respectively

Then the solution satisfies the inequalities

𝐺130 𝑒 (𝑆1) 1 βˆ’(𝑝13 ) 1 𝑑 ≀ 𝐺13(𝑑) ≀ 𝐺13

0 𝑒(𝑆1) 1 𝑑

where (𝑝𝑖) 1 is defined

1

(π‘š1) 1 𝐺130 𝑒 (𝑆1) 1 βˆ’(𝑝13 ) 1 𝑑 ≀ 𝐺14(𝑑) ≀

1

(π‘š2) 1 𝐺130 𝑒(𝑆1) 1 𝑑

( (π‘Ž15 ) 1 𝐺13

0

(π‘š1) 1 (𝑆1) 1 βˆ’(𝑝13 ) 1 βˆ’(𝑆2) 1 𝑒 (𝑆1) 1 βˆ’(𝑝13 ) 1 𝑑 βˆ’ π‘’βˆ’(𝑆2) 1 𝑑 + 𝐺15

0 π‘’βˆ’(𝑆2) 1 𝑑 ≀ 𝐺15 (𝑑) ≀

(π‘Ž15 ) 1 𝐺130

(π‘š2) 1 (𝑆1) 1 βˆ’(π‘Ž15β€² ) 1

[𝑒(𝑆1) 1 𝑑 βˆ’ π‘’βˆ’(π‘Ž15β€² ) 1 𝑑] + 𝐺15

0 π‘’βˆ’(π‘Ž15β€² ) 1 𝑑)

𝑇130 𝑒(𝑅1) 1 𝑑 ≀ 𝑇13 (𝑑) ≀ 𝑇13

0 𝑒 (𝑅1) 1 +(π‘Ÿ13 ) 1 𝑑

1

(πœ‡1) 1 𝑇130 𝑒(𝑅1) 1 𝑑 ≀ 𝑇13 (𝑑) ≀

1

(πœ‡2) 1 𝑇130 𝑒 (𝑅1) 1 +(π‘Ÿ13 ) 1 𝑑

(𝑏15 ) 1 𝑇130

(πœ‡1) 1 (𝑅1) 1 βˆ’(𝑏15β€² ) 1

𝑒(𝑅1) 1 𝑑 βˆ’ π‘’βˆ’(𝑏15β€² ) 1 𝑑 + 𝑇15

0 π‘’βˆ’(𝑏15β€² ) 1 𝑑 ≀ 𝑇15 (𝑑) ≀

Page 36: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 36

ISSN 2250-3153

www.ijsrp.org

(π‘Ž15 ) 1 𝑇130

(πœ‡2) 1 (𝑅1) 1 +(π‘Ÿ13 ) 1 +(𝑅2) 1 𝑒 (𝑅1) 1 +(π‘Ÿ13 ) 1 𝑑 βˆ’ π‘’βˆ’(𝑅2) 1 𝑑 + 𝑇15

0 π‘’βˆ’(𝑅2) 1 𝑑

Definition of (𝑆1) 1 , (𝑆2) 1 , (𝑅1) 1 , (𝑅2) 1 :-

Where (𝑆1) 1 = (π‘Ž13) 1 (π‘š2) 1 βˆ’ (π‘Ž13β€² ) 1

(𝑆2) 1 = (π‘Ž15) 1 βˆ’ (𝑝15 ) 1

(𝑅1) 1 = (𝑏13) 1 (πœ‡2) 1 βˆ’ (𝑏13β€² ) 1

(𝑅2) 1 = (𝑏15β€² ) 1 βˆ’ (π‘Ÿ15 ) 1

Behavior of the solutions

If we denote and define

Definition of (Οƒ1) 2 , (Οƒ2) 2 , (Ο„1) 2 , (Ο„2) 2 :

(d) Οƒ1) 2 , (Οƒ2) 2 , (Ο„1) 2 , (Ο„2) 2 four constants satisfying

βˆ’(Οƒ2) 2 ≀ βˆ’(π‘Ž16β€² ) 2 + (π‘Ž17

β€² ) 2 βˆ’ (π‘Ž16β€²β€² ) 2 T17 , 𝑑 + (π‘Ž17

β€²β€² ) 2 T17 , 𝑑 ≀ βˆ’(Οƒ1) 2

βˆ’(Ο„2) 2 ≀ βˆ’(𝑏16β€² ) 2 + (𝑏17

β€² ) 2 βˆ’ (𝑏16β€²β€² ) 2 𝐺19 , 𝑑 βˆ’ (𝑏17

β€²β€² ) 2 𝐺19 , 𝑑 ≀ βˆ’(Ο„1) 2

Definition of (𝜈1) 2 , (Ξ½2) 2 , (𝑒1) 2 , (𝑒2) 2 :

By (𝜈1) 2 > 0 , (Ξ½2) 2 < 0 and respectively (𝑒1) 2 > 0 , (𝑒2) 2 < 0 the roots

(e) of the equations (π‘Ž17 ) 2 𝜈 2 2

+ (Οƒ1) 2 𝜈 2 βˆ’ (π‘Ž16 ) 2 = 0

and (𝑏14) 2 𝑒 2 2

+ (Ο„1) 2 𝑒 2 βˆ’ (𝑏16) 2 = 0 and

Definition of (𝜈 1) 2 , , (𝜈 2) 2 , (𝑒 1) 2 , (𝑒 2) 2 :

By (𝜈 1) 2 > 0 , (Ξ½ 2) 2 < 0 and respectively (𝑒 1) 2 > 0 , (𝑒 2) 2 < 0 the

roots of the equations (π‘Ž17 ) 2 𝜈 2 2

+ (Οƒ2) 2 𝜈 2 βˆ’ (π‘Ž16 ) 2 = 0

and (𝑏17) 2 𝑒 2 2

+ (Ο„2) 2 𝑒 2 βˆ’ (𝑏16 ) 2 = 0

Definition of (π‘š1) 2 , (π‘š2) 2 , (πœ‡1) 2 , (πœ‡2) 2 :-

(f) If we define (π‘š1) 2 , (π‘š2) 2 , (πœ‡1) 2 , (πœ‡2) 2 by

(π‘š2) 2 = (𝜈0) 2 , (π‘š1) 2 = (𝜈1) 2 , π’Šπ’‡ (𝜈0) 2 < (𝜈1) 2

(π‘š2) 2 = (𝜈1) 2 , (π‘š1) 2 = (𝜈 1) 2 , π’Šπ’‡ (𝜈1) 2 < (𝜈0) 2 < (𝜈 1) 2 ,

and (𝜈0) 2 =G16

0

G170

( π‘š2) 2 = (𝜈1) 2 , (π‘š1) 2 = (𝜈0) 2 , π’Šπ’‡ (𝜈 1) 2 < (𝜈0) 2

and analogously

(πœ‡2) 2 = (𝑒0) 2 , (πœ‡1) 2 = (𝑒1) 2 , π’Šπ’‡ (𝑒0) 2 < (𝑒1) 2

Page 37: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 37

ISSN 2250-3153

www.ijsrp.org

(πœ‡2) 2 = (𝑒1) 2 , (πœ‡1) 2 = (𝑒 1) 2 , π’Šπ’‡ (𝑒1) 2 < (𝑒0) 2 < (𝑒 1) 2 ,

and (𝑒0) 2 =T16

0

T170

( πœ‡2) 2 = (𝑒1) 2 , (πœ‡1) 2 = (𝑒0) 2 , π’Šπ’‡ (𝑒 1) 2 < (𝑒0) 2

Then the solution satisfies the inequalities

G160 e (S1) 2 βˆ’(𝑝16 ) 2 t ≀ 𝐺16 𝑑 ≀ G16

0 e(S1) 2 t

(𝑝𝑖) 2 is defined

1

(π‘š1) 2 G160 e (S1) 2 βˆ’(𝑝16 ) 2 t ≀ 𝐺17(𝑑) ≀

1

(π‘š2) 2 G160 e(S1) 2 t

( (π‘Ž18 ) 2 G16

0

(π‘š1) 2 (S1) 2 βˆ’(𝑝16 ) 2 βˆ’(S2) 2 e (S1) 2 βˆ’(𝑝16 ) 2 t βˆ’ eβˆ’(S2) 2 t + G18

0 eβˆ’(S2) 2 t ≀ G18(𝑑) ≀

(π‘Ž18 ) 2 G160

(π‘š2) 2 (S1) 2 βˆ’(π‘Ž18β€² ) 2

[e(S1) 2 t βˆ’ eβˆ’(π‘Ž18β€² ) 2 t] + G18

0 eβˆ’(π‘Ž18β€² ) 2 t)

T160 e(R1) 2 𝑑 ≀ 𝑇16(𝑑) ≀ T16

0 e (R1) 2 +(π‘Ÿ16 ) 2 𝑑

1

(πœ‡1) 2 T160 e(R1) 2 𝑑 ≀ 𝑇16 (𝑑) ≀

1

(πœ‡2) 2 T160 e (R1) 2 +(π‘Ÿ16 ) 2 𝑑

(𝑏18 ) 2 T160

(πœ‡1) 2 (R1) 2 βˆ’(𝑏18β€² ) 2

e(R1) 2 𝑑 βˆ’ eβˆ’(𝑏18β€² ) 2 𝑑 + T18

0 eβˆ’(𝑏18β€² ) 2 𝑑 ≀ 𝑇18 (𝑑) ≀

(π‘Ž18 ) 2 T160

(πœ‡2) 2 (R1) 2 +(π‘Ÿ16 ) 2 +(R2) 2 e (R1) 2 +(π‘Ÿ16 ) 2 𝑑 βˆ’ eβˆ’(R2) 2 𝑑 + T18

0 eβˆ’(R2) 2 𝑑

Definition of (S1) 2 , (S2) 2 , (R1) 2 , (R2) 2 :-

Where (S1) 2 = (π‘Ž16) 2 (π‘š2) 2 βˆ’ (π‘Ž16β€² ) 2

(S2) 2 = (π‘Ž18) 2 βˆ’ (𝑝18 ) 2

(𝑅1) 2 = (𝑏16) 2 (πœ‡2) 1 βˆ’ (𝑏16β€² ) 2

(R2) 2 = (𝑏18β€² ) 2 βˆ’ (π‘Ÿ18 ) 2

Behavior of the solutions

If we denote and define

Definition of (𝜎1) 3 , (𝜎2) 3 , (𝜏1) 3 , (𝜏2) 3 :

(a) 𝜎1) 3 , (𝜎2) 3 , (𝜏1) 3 , (𝜏2) 3 four constants satisfying

βˆ’(𝜎2) 3 ≀ βˆ’(π‘Ž20β€² ) 3 + (π‘Ž21

β€² ) 3 βˆ’ (π‘Ž20β€²β€² ) 3 𝑇21 , 𝑑 + (π‘Ž21

β€²β€² ) 3 𝑇21 , 𝑑 ≀ βˆ’(𝜎1) 3

βˆ’(𝜏2) 3 ≀ βˆ’(𝑏20β€² ) 3 + (𝑏21

β€² ) 3 βˆ’ (𝑏20β€²β€² ) 3 𝐺, 𝑑 βˆ’ (𝑏21

β€²β€² ) 3 𝐺23 , 𝑑 ≀ βˆ’(𝜏1) 3

Definition of (𝜈1) 3 , (𝜈2) 3 , (𝑒1) 3 , (𝑒2) 3 :

(b) By (𝜈1) 3 > 0 , (𝜈2) 3 < 0 and respectively (𝑒1) 3 > 0 , (𝑒2) 3 < 0 the roots of the equations

(π‘Ž21) 3 𝜈 3 2

+ (𝜎1) 3 𝜈 3 βˆ’ (π‘Ž20) 3 = 0

Page 38: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 38

ISSN 2250-3153

www.ijsrp.org

and (𝑏21) 3 𝑒 3 2

+ (𝜏1) 3 𝑒 3 βˆ’ (𝑏20) 3 = 0 and

By (𝜈 1) 3 > 0 , (𝜈 2) 3 < 0 and respectively (𝑒 1) 3 > 0 , (𝑒 2) 3 < 0 the

roots of the equations (π‘Ž21 ) 3 𝜈 3 2

+ (𝜎2) 3 𝜈 3 βˆ’ (π‘Ž20 ) 3 = 0

and (𝑏21) 3 𝑒 3 2

+ (𝜏2) 3 𝑒 3 βˆ’ (𝑏20) 3 = 0

Definition of (π‘š1) 3 , (π‘š2) 3 , (πœ‡1) 3 , (πœ‡2) 3 :-

(c) If we define (π‘š1) 3 , (π‘š2) 3 , (πœ‡1) 3 , (πœ‡2) 3 by

(π‘š2) 3 = (𝜈0) 3 , (π‘š1) 3 = (𝜈1) 3 , π’Šπ’‡ (𝜈0) 3 < (𝜈1) 3

(π‘š2) 3 = (𝜈1) 3 , (π‘š1) 3 = (𝜈 1) 3 , π’Šπ’‡ (𝜈1) 3 < (𝜈0) 3 < (𝜈 1) 3 ,

and (𝜈0) 3 =𝐺20

0

𝐺210

( π‘š2) 3 = (𝜈1) 3 , (π‘š1) 3 = (𝜈0) 3 , π’Šπ’‡ (𝜈 1) 3 < (𝜈0) 3

and analogously

(πœ‡2) 3 = (𝑒0) 3 , (πœ‡1) 3 = (𝑒1) 3 , π’Šπ’‡ (𝑒0) 3 < (𝑒1) 3

(πœ‡2) 3 = (𝑒1) 3 , (πœ‡1) 3 = (𝑒 1) 3 , π’Šπ’‡ (𝑒1) 3 < (𝑒0) 3 < (𝑒 1) 3 , and (𝑒0) 3 =𝑇20

0

𝑇210

( πœ‡2) 3 = (𝑒1) 3 , (πœ‡1) 3 = (𝑒0) 3 , π’Šπ’‡ (𝑒 1) 3 < (𝑒0) 3

Then the solution satisfies the inequalities

𝐺200 𝑒 (𝑆1) 3 βˆ’(𝑝20 ) 3 𝑑 ≀ 𝐺20(𝑑) ≀ 𝐺20

0 𝑒(𝑆1) 3 𝑑

(𝑝𝑖) 3 is defined

1

(π‘š1) 3 𝐺200 𝑒 (𝑆1) 3 βˆ’(𝑝20 ) 3 𝑑 ≀ 𝐺21(𝑑) ≀

1

(π‘š2) 3 𝐺200 𝑒(𝑆1) 3 𝑑

( (π‘Ž22 ) 3 𝐺20

0

(π‘š1) 3 (𝑆1) 3 βˆ’(𝑝20 ) 3 βˆ’(𝑆2) 3 𝑒 (𝑆1) 3 βˆ’(𝑝20 ) 3 𝑑 βˆ’ π‘’βˆ’(𝑆2) 3 𝑑 + 𝐺22

0 π‘’βˆ’(𝑆2) 3 𝑑 ≀ 𝐺22(𝑑) ≀

(π‘Ž22 ) 3 𝐺200

(π‘š2) 3 (𝑆1) 3 βˆ’(π‘Ž22β€² ) 3

[𝑒(𝑆1) 3 𝑑 βˆ’ π‘’βˆ’(π‘Ž22β€² ) 3 𝑑] + 𝐺22

0 π‘’βˆ’(π‘Ž22β€² ) 3 𝑑)

𝑇200 𝑒(𝑅1) 3 𝑑 ≀ 𝑇20 (𝑑) ≀ 𝑇20

0 𝑒 (𝑅1) 3 +(π‘Ÿ20 ) 3 𝑑

1

(πœ‡1) 3 𝑇200 𝑒(𝑅1) 3 𝑑 ≀ 𝑇20 (𝑑) ≀

1

(πœ‡2) 3 𝑇200 𝑒 (𝑅1) 3 +(π‘Ÿ20 ) 3 𝑑

(𝑏22 ) 3 𝑇200

(πœ‡1) 3 (𝑅1) 3 βˆ’(𝑏22β€² ) 3

𝑒(𝑅1) 3 𝑑 βˆ’ π‘’βˆ’(𝑏22β€² ) 3 𝑑 + 𝑇22

0 π‘’βˆ’(𝑏22β€² ) 3 𝑑 ≀ 𝑇22 (𝑑) ≀

(π‘Ž22 ) 3 𝑇200

(πœ‡2) 3 (𝑅1) 3 +(π‘Ÿ20 ) 3 +(𝑅2) 3 𝑒 (𝑅1) 3 +(π‘Ÿ20 ) 3 𝑑 βˆ’ π‘’βˆ’(𝑅2) 3 𝑑 + 𝑇22

0 π‘’βˆ’(𝑅2) 3 𝑑

Definition of (𝑆1) 3 , (𝑆2) 3 , (𝑅1) 3 , (𝑅2) 3 :-

Where (𝑆1) 3 = (π‘Ž20) 3 (π‘š2) 3 βˆ’ (π‘Ž20β€² ) 3

(𝑆2) 3 = (π‘Ž22) 3 βˆ’ (𝑝22 ) 3

Page 39: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 39

ISSN 2250-3153

www.ijsrp.org

(𝑅1) 3 = (𝑏20) 3 (πœ‡2) 3 βˆ’ (𝑏20β€² ) 3

(𝑅2) 3 = (𝑏22β€² ) 3 βˆ’ (π‘Ÿ22) 3

Behavior of the solutions If we denote and define

Definition of (𝜎1) 4 , (𝜎2) 4 , (𝜏1) 4 , (𝜏2) 4 :

(d) (𝜎1) 4 , (𝜎2) 4 , (𝜏1) 4 , (𝜏2) 4 four constants satisfying

βˆ’(𝜎2) 4 ≀ βˆ’(π‘Ž24β€² ) 4 + (π‘Ž25

β€² ) 4 βˆ’ (π‘Ž24β€²β€² ) 4 𝑇25 , 𝑑 + (π‘Ž25

β€²β€² ) 4 𝑇25 , 𝑑 ≀ βˆ’(𝜎1) 4

βˆ’(𝜏2) 4 ≀ βˆ’(𝑏24β€² ) 4 + (𝑏25

β€² ) 4 βˆ’ (𝑏24β€²β€² ) 4 𝐺27 , 𝑑 βˆ’ (𝑏25

β€²β€² ) 4 𝐺27 , 𝑑 ≀ βˆ’(𝜏1) 4

Definition of (𝜈1) 4 , (𝜈2) 4 , (𝑒1) 4 , (𝑒2) 4 , 𝜈 4 , 𝑒 4 :

(e) By (𝜈1) 4 > 0 , (𝜈2) 4 < 0 and respectively (𝑒1) 4 > 0 , (𝑒2) 4 < 0 the roots of the equations

(π‘Ž25) 4 𝜈 4 2

+ (𝜎1) 4 𝜈 4 βˆ’ (π‘Ž24) 4 = 0

and (𝑏25) 4 𝑒 4 2

+ (𝜏1) 4 𝑒 4 βˆ’ (𝑏24) 4 = 0 and

Definition of (𝜈 1) 4 , , (𝜈 2) 4 , (𝑒 1) 4 , (𝑒 2) 4 :

By (𝜈 1) 4 > 0 , (𝜈 2) 4 < 0 and respectively (𝑒 1) 4 > 0 , (𝑒 2) 4 < 0 the

roots of the equations (π‘Ž25 ) 4 𝜈 4 2

+ (𝜎2) 4 𝜈 4 βˆ’ (π‘Ž24 ) 4 = 0

and (𝑏25) 4 𝑒 4 2

+ (𝜏2) 4 𝑒 4 βˆ’ (𝑏24) 4 = 0

Definition of (π‘š1) 4 , (π‘š2) 4 , (πœ‡1) 4 , (πœ‡2) 4 , (𝜈0) 4 :-

(f) If we define (π‘š1) 4 , (π‘š2) 4 , (πœ‡1) 4 , (πœ‡2) 4 by

(π‘š2) 4 = (𝜈0) 4 , (π‘š1) 4 = (𝜈1) 4 , π’Šπ’‡ (𝜈0) 4 < (𝜈1) 4

(π‘š2) 4 = (𝜈1) 4 , (π‘š1) 4 = (𝜈 1) 4 , π’Šπ’‡ (𝜈4) 4 < (𝜈0) 4 < (𝜈 1) 4 ,

and (𝜈0) 4 =𝐺24

0

𝐺250

( π‘š2) 4 = (𝜈4) 4 , (π‘š1) 4 = (𝜈0) 4 , π’Šπ’‡ (𝜈 4) 4 < (𝜈0) 4

and analogously

(πœ‡2) 4 = (𝑒0) 4 , (πœ‡1) 4 = (𝑒1) 4 , π’Šπ’‡ (𝑒0) 4 < (𝑒1) 4

(πœ‡2) 4 = (𝑒1) 4 , (πœ‡1) 4 = (𝑒 1) 4 , π’Šπ’‡ (𝑒1) 4 < (𝑒0) 4 < (𝑒 1) 4 ,

and (𝑒0) 4 =𝑇24

0

𝑇250

( πœ‡2) 4 = (𝑒1) 4 , (πœ‡1) 4 = (𝑒0) 4 , π’Šπ’‡ (𝑒 1) 4 < (𝑒0) 4 where (𝑒1) 4 , (𝑒 1) 4 are defined by 59 and 64 respectively

Then the solution satisfies the inequalities

Page 40: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 40

ISSN 2250-3153

www.ijsrp.org

𝐺240 𝑒 (𝑆1) 4 βˆ’(𝑝24 ) 4 𝑑 ≀ 𝐺24 𝑑 ≀ 𝐺24

0 𝑒(𝑆1) 4 𝑑

where (𝑝𝑖) 4 is defined

1

(π‘š1) 4 𝐺240 𝑒 (𝑆1) 4 βˆ’(𝑝24 ) 4 𝑑 ≀ 𝐺25 𝑑 ≀

1

(π‘š2) 4 𝐺240 𝑒(𝑆1) 4 𝑑

(π‘Ž26 ) 4 𝐺24

0

(π‘š1) 4 (𝑆1) 4 βˆ’(𝑝24 ) 4 βˆ’(𝑆2) 4 𝑒 (𝑆1) 4 βˆ’(𝑝24 ) 4 𝑑 βˆ’ π‘’βˆ’(𝑆2) 4 𝑑 + 𝐺26

0 π‘’βˆ’(𝑆2) 4 𝑑 ≀ 𝐺26 𝑑 ≀

(π‘Ž26 ) 4 𝐺240

(π‘š2) 4 (𝑆1) 4 βˆ’(π‘Ž26β€² ) 4

𝑒(𝑆1) 4 𝑑 βˆ’ π‘’βˆ’(π‘Ž26β€² ) 4 𝑑 + 𝐺26

0 π‘’βˆ’(π‘Ž26β€² ) 4 𝑑

𝑇240 𝑒(𝑅1) 4 𝑑 ≀ 𝑇24 𝑑 ≀ 𝑇24

0 𝑒 (𝑅1) 4 +(π‘Ÿ24 ) 4 𝑑

1

(πœ‡1) 4 𝑇240 𝑒(𝑅1) 4 𝑑 ≀ 𝑇24 (𝑑) ≀

1

(πœ‡2) 4 𝑇240 𝑒 (𝑅1) 4 +(π‘Ÿ24 ) 4 𝑑

(𝑏26 ) 4 𝑇240

(πœ‡1) 4 (𝑅1) 4 βˆ’(𝑏26β€² ) 4

𝑒(𝑅1) 4 𝑑 βˆ’ π‘’βˆ’(𝑏26β€² ) 4 𝑑 + 𝑇26

0 π‘’βˆ’(𝑏26β€² ) 4 𝑑 ≀ 𝑇26 (𝑑) ≀

(π‘Ž26 ) 4 𝑇24

0

(πœ‡2) 4 (𝑅1) 4 +(π‘Ÿ24 ) 4 +(𝑅2) 4 𝑒 (𝑅1) 4 +(π‘Ÿ24 ) 4 𝑑 βˆ’ π‘’βˆ’(𝑅2) 4 𝑑 + 𝑇26

0 π‘’βˆ’(𝑅2) 4 𝑑

Definition of (𝑆1) 4 , (𝑆2) 4 , (𝑅1) 4 , (𝑅2) 4 :-

Where (𝑆1) 4 = (π‘Ž24 ) 4 (π‘š2) 4 βˆ’ (π‘Ž24β€² ) 4

(𝑆2) 4 = (π‘Ž26) 4 βˆ’ (𝑝26) 4

(𝑅1) 4 = (𝑏24) 4 (πœ‡2) 4 βˆ’ (𝑏24β€² ) 4

(𝑅2) 4 = (𝑏26β€² ) 4 βˆ’ (π‘Ÿ26) 4

Behavior of the solutions If we denote and define

Definition of (𝜎1) 5 , (𝜎2) 5 , (𝜏1) 5 , (𝜏2) 5 :

(g) (𝜎1) 5 , (𝜎2) 5 , (𝜏1) 5 , (𝜏2) 5 four constants satisfying

βˆ’(𝜎2) 5 ≀ βˆ’(π‘Ž28β€² ) 5 + (π‘Ž29

β€² ) 5 βˆ’ (π‘Ž28β€²β€² ) 5 𝑇29 , 𝑑 + (π‘Ž29

β€²β€² ) 5 𝑇29 , 𝑑 ≀ βˆ’(𝜎1) 5

βˆ’(𝜏2) 5 ≀ βˆ’(𝑏28β€² ) 5 + (𝑏29

β€² ) 5 βˆ’ (𝑏28β€²β€² ) 5 𝐺31 , 𝑑 βˆ’ (𝑏29

β€²β€² ) 5 𝐺31 , 𝑑 ≀ βˆ’(𝜏1) 5

Definition of (𝜈1) 5 , (𝜈2) 5 , (𝑒1) 5 , (𝑒2) 5 , 𝜈 5 , 𝑒 5 :

(h) By (𝜈1) 5 > 0 , (𝜈2) 5 < 0 and respectively (𝑒1) 5 > 0 , (𝑒2) 5 < 0 the roots of the equations

(π‘Ž29) 5 𝜈 5 2

+ (𝜎1) 5 𝜈 5 βˆ’ (π‘Ž28 ) 5 = 0

and (𝑏29) 5 𝑒 5 2

+ (𝜏1) 5 𝑒 5 βˆ’ (𝑏28 ) 5 = 0 and

Definition of (𝜈 1) 5 , , (𝜈 2) 5 , (𝑒 1) 5 , (𝑒 2) 5 :

By (𝜈 1) 5 > 0 , (𝜈 2) 5 < 0 and respectively (𝑒 1) 5 > 0 , (𝑒 2) 5 < 0 the

roots of the equations (π‘Ž29) 5 𝜈 5 2

+ (𝜎2) 5 𝜈 5 βˆ’ (π‘Ž28) 5 = 0

Page 41: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 41

ISSN 2250-3153

www.ijsrp.org

and (𝑏29) 5 𝑒 5 2

+ (𝜏2) 5 𝑒 5 βˆ’ (𝑏28 ) 5 = 0

Definition of (π‘š1) 5 , (π‘š2) 5 , (πœ‡1) 5 , (πœ‡2) 5 , (𝜈0) 5 :-

(i) If we define (π‘š1) 5 , (π‘š2) 5 , (πœ‡1) 5 , (πœ‡2) 5 by

(π‘š2) 5 = (𝜈0) 5 , (π‘š1) 5 = (𝜈1) 5 , π’Šπ’‡ (𝜈0) 5 < (𝜈1) 5

(π‘š2) 5 = (𝜈1) 5 , (π‘š1) 5 = (𝜈 1) 5 , π’Šπ’‡ (𝜈1) 5 < (𝜈0) 5 < (𝜈 1) 5 ,

and (𝜈0) 5 =𝐺28

0

𝐺290

( π‘š2) 5 = (𝜈1) 5 , (π‘š1) 5 = (𝜈0) 5 , π’Šπ’‡ (𝜈 1) 5 < (𝜈0) 5 and analogously

(πœ‡2) 5 = (𝑒0) 5 , (πœ‡1) 5 = (𝑒1) 5 , π’Šπ’‡ (𝑒0) 5 < (𝑒1) 5

(πœ‡2) 5 = (𝑒1) 5 , (πœ‡1) 5 = (𝑒 1) 5 , π’Šπ’‡ (𝑒1) 5 < (𝑒0) 5 < (𝑒 1) 5 ,

and (𝑒0) 5 =𝑇28

0

𝑇290

( πœ‡2) 5 = (𝑒1) 5 , (πœ‡1) 5 = (𝑒0) 5 , π’Šπ’‡ (𝑒 1) 5 < (𝑒0) 5 where (𝑒1) 5 , (𝑒 1) 5 are defined respectively

Then the solution satisfies the inequalities

𝐺280 𝑒 (𝑆1) 5 βˆ’(𝑝28 ) 5 𝑑 ≀ 𝐺28(𝑑) ≀ 𝐺28

0 𝑒(𝑆1) 5 𝑑

where (𝑝𝑖) 5 is defined

1

(π‘š5) 5 𝐺280 𝑒 (𝑆1) 5 βˆ’(𝑝28 ) 5 𝑑 ≀ 𝐺29(𝑑) ≀

1

(π‘š2) 5 𝐺280 𝑒(𝑆1) 5 𝑑

(π‘Ž30 ) 5 𝐺28

0

(π‘š1) 5 (𝑆1) 5 βˆ’(𝑝28 ) 5 βˆ’(𝑆2) 5 𝑒 (𝑆1) 5 βˆ’(𝑝28 ) 5 𝑑 βˆ’ π‘’βˆ’(𝑆2) 5 𝑑 + 𝐺30

0 π‘’βˆ’(𝑆2) 5 𝑑 ≀ 𝐺30 𝑑 ≀

(π‘Ž30 ) 5 𝐺280

(π‘š2) 5 (𝑆1) 5 βˆ’(π‘Ž30β€² ) 5

𝑒(𝑆1) 5 𝑑 βˆ’ π‘’βˆ’(π‘Ž30β€² ) 5 𝑑 + 𝐺30

0 π‘’βˆ’(π‘Ž30β€² ) 5 𝑑

𝑇280 𝑒(𝑅1) 5 𝑑 ≀ 𝑇28(𝑑) ≀ 𝑇28

0 𝑒 (𝑅1) 5 +(π‘Ÿ28 ) 5 𝑑

1

(πœ‡1) 5 𝑇280 𝑒(𝑅1) 5 𝑑 ≀ 𝑇28 (𝑑) ≀

1

(πœ‡2) 5 𝑇280 𝑒 (𝑅1) 5 +(π‘Ÿ28 ) 5 𝑑

(𝑏30 ) 5 𝑇280

(πœ‡1) 5 (𝑅1) 5 βˆ’(𝑏30β€² ) 5

𝑒(𝑅1) 5 𝑑 βˆ’ π‘’βˆ’(𝑏30β€² ) 5 𝑑 + 𝑇30

0 π‘’βˆ’(𝑏30β€² ) 5 𝑑 ≀ 𝑇30 (𝑑) ≀

(π‘Ž30 ) 5 𝑇28

0

(πœ‡2) 5 (𝑅1) 5 +(π‘Ÿ28 ) 5 +(𝑅2) 5 𝑒 (𝑅1) 5 +(π‘Ÿ28 ) 5 𝑑 βˆ’ π‘’βˆ’(𝑅2) 5 𝑑 + 𝑇30

0 π‘’βˆ’(𝑅2) 5 𝑑

Definition of (𝑆1) 5 , (𝑆2) 5 , (𝑅1) 5 , (𝑅2) 5 :-

Where (𝑆1) 5 = (π‘Ž28 ) 5 (π‘š2) 5 βˆ’ (π‘Ž28β€² ) 5

(𝑆2) 5 = (π‘Ž30) 5 βˆ’ (𝑝30) 5

(𝑅1) 5 = (𝑏28) 5 (πœ‡2) 5 βˆ’ (𝑏28β€² ) 5

(𝑅2) 5 = (𝑏30β€² ) 5 βˆ’ (π‘Ÿ30) 5

Page 42: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 42

ISSN 2250-3153

www.ijsrp.org

Behavior of the solutions If we denote and define

Definition of (𝜎1) 6 , (𝜎2) 6 , (𝜏1) 6 , (𝜏2) 6 :

(j) (𝜎1) 6 , (𝜎2) 6 , (𝜏1) 6 , (𝜏2) 6 four constants satisfying

βˆ’(𝜎2) 6 ≀ βˆ’(π‘Ž32β€² ) 6 + (π‘Ž33

β€² ) 6 βˆ’ (π‘Ž32β€²β€² ) 6 𝑇33 , 𝑑 + (π‘Ž33

β€²β€² ) 6 𝑇33 , 𝑑 ≀ βˆ’(𝜎1) 6

βˆ’(𝜏2) 6 ≀ βˆ’(𝑏32β€² ) 6 + (𝑏33

β€² ) 6 βˆ’ (𝑏32β€²β€² ) 6 𝐺35 , 𝑑 βˆ’ (𝑏33

β€²β€² ) 6 𝐺35 , 𝑑 ≀ βˆ’(𝜏1) 6

Definition of (𝜈1) 6 , (𝜈2) 6 , (𝑒1) 6 , (𝑒2) 6 , 𝜈 6 , 𝑒 6 :

(k) By (𝜈1) 6 > 0 , (𝜈2) 6 < 0 and respectively (𝑒1) 6 > 0 , (𝑒2) 6 < 0 the roots of the equations

(π‘Ž33) 6 𝜈 6 2

+ (𝜎1) 6 𝜈 6 βˆ’ (π‘Ž32) 6 = 0

and (𝑏33) 6 𝑒 6 2

+ (𝜏1) 6 𝑒 6 βˆ’ (𝑏32) 6 = 0 and

Definition of (𝜈 1) 6 , , (𝜈 2) 6 , (𝑒 1) 6 , (𝑒 2) 6 :

By (𝜈 1) 6 > 0 , (𝜈 2) 6 < 0 and respectively (𝑒 1) 6 > 0 , (𝑒 2) 6 < 0 the

roots of the equations (π‘Ž33 ) 6 𝜈 6 2

+ (𝜎2) 6 𝜈 6 βˆ’ (π‘Ž32 ) 6 = 0

and (𝑏33) 6 𝑒 6 2

+ (𝜏2) 6 𝑒 6 βˆ’ (𝑏32) 6 = 0

Definition of (π‘š1) 6 , (π‘š2) 6 , (πœ‡1) 6 , (πœ‡2) 6 , (𝜈0) 6 :-

(l) If we define (π‘š1) 6 , (π‘š2) 6 , (πœ‡1) 6 , (πœ‡2) 6 by

(π‘š2) 6 = (𝜈0) 6 , (π‘š1) 6 = (𝜈1) 6 , π’Šπ’‡ (𝜈0) 6 < (𝜈1) 6

(π‘š2) 6 = (𝜈1) 6 , (π‘š1) 6 = (𝜈 6) 6 , π’Šπ’‡ (𝜈1) 6 < (𝜈0) 6 < (𝜈 1) 6 ,

and (𝜈0) 6 =𝐺32

0

𝐺330

( π‘š2) 6 = (𝜈1) 6 , (π‘š1) 6 = (𝜈0) 6 , π’Šπ’‡ (𝜈 1) 6 < (𝜈0) 6

and analogously

(πœ‡2) 6 = (𝑒0) 6 , (πœ‡1) 6 = (𝑒1) 6 , π’Šπ’‡ (𝑒0) 6 < (𝑒1) 6

(πœ‡2) 6 = (𝑒1) 6 , (πœ‡1) 6 = (𝑒 1) 6 , π’Šπ’‡ (𝑒1) 6 < (𝑒0) 6 < (𝑒 1) 6 ,

and (𝑒0) 6 =𝑇32

0

𝑇330

( πœ‡2) 6 = (𝑒1) 6 , (πœ‡1) 6 = (𝑒0) 6 , π’Šπ’‡ (𝑒 1) 6 < (𝑒0) 6 where (𝑒1) 6 , (𝑒 1) 6 are defined respectively

Then the solution satisfies the inequalities

𝐺320 𝑒 (𝑆1) 6 βˆ’(𝑝32 ) 6 𝑑 ≀ 𝐺32(𝑑) ≀ 𝐺32

0 𝑒(𝑆1) 6 𝑑

where (𝑝𝑖) 6 is defined

1

(π‘š1) 6 𝐺320 𝑒 (𝑆1) 6 βˆ’(𝑝32 ) 6 𝑑 ≀ 𝐺33(𝑑) ≀

1

(π‘š2) 6 𝐺320 𝑒(𝑆1) 6 𝑑

Page 43: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 43

ISSN 2250-3153

www.ijsrp.org

(π‘Ž34 ) 6 𝐺32

0

(π‘š1) 6 (𝑆1) 6 βˆ’(𝑝32 ) 6 βˆ’(𝑆2) 6 𝑒 (𝑆1) 6 βˆ’(𝑝32 ) 6 𝑑 βˆ’ π‘’βˆ’(𝑆2) 6 𝑑 + 𝐺34

0 π‘’βˆ’(𝑆2) 6 𝑑 ≀ 𝐺34 𝑑 ≀

(π‘Ž34 ) 6 𝐺320

(π‘š2) 6 (𝑆1) 6 βˆ’(π‘Ž34β€² ) 6

𝑒(𝑆1) 6 𝑑 βˆ’ π‘’βˆ’(π‘Ž34β€² ) 6 𝑑 + 𝐺34

0 π‘’βˆ’(π‘Ž34β€² ) 6 𝑑

𝑇320 𝑒(𝑅1) 6 𝑑 ≀ 𝑇32(𝑑) ≀ 𝑇32

0 𝑒 (𝑅1) 6 +(π‘Ÿ32 ) 6 𝑑

1

(πœ‡1) 6 𝑇320 𝑒(𝑅1) 6 𝑑 ≀ 𝑇32 (𝑑) ≀

1

(πœ‡2) 6 𝑇320 𝑒 (𝑅1) 6 +(π‘Ÿ32 ) 6 𝑑

(𝑏34 ) 6 𝑇320

(πœ‡1) 6 (𝑅1) 6 βˆ’(𝑏34β€² ) 6

𝑒(𝑅1) 6 𝑑 βˆ’ π‘’βˆ’(𝑏34β€² ) 6 𝑑 + 𝑇34

0 π‘’βˆ’(𝑏34β€² ) 6 𝑑 ≀ 𝑇34 (𝑑) ≀

(π‘Ž34 ) 6 𝑇32

0

(πœ‡2) 6 (𝑅1) 6 +(π‘Ÿ32 ) 6 +(𝑅2) 6 𝑒 (𝑅1) 6 +(π‘Ÿ32 ) 6 𝑑 βˆ’ π‘’βˆ’(𝑅2) 6 𝑑 + 𝑇34

0 π‘’βˆ’(𝑅2) 6 𝑑

Definition of (𝑆1) 6 , (𝑆2) 6 , (𝑅1) 6 , (𝑅2) 6 :-

Where (𝑆1) 6 = (π‘Ž32 ) 6 (π‘š2) 6 βˆ’ (π‘Ž32β€² ) 6

(𝑆2) 6 = (π‘Ž34) 6 βˆ’ (𝑝34) 6

(𝑅1) 6 = (𝑏32) 6 (πœ‡2) 6 βˆ’ (𝑏32β€² ) 6

(𝑅2) 6 = (𝑏34β€² ) 6 βˆ’ (π‘Ÿ34) 6

Proof : From GLOBAL EQUATIONS we obtain

π‘‘πœˆ 1

𝑑𝑑= (π‘Ž13 ) 1 βˆ’ (π‘Ž13

β€² ) 1 βˆ’ (π‘Ž14β€² ) 1 + (π‘Ž13

β€²β€² ) 1 𝑇14 , 𝑑 βˆ’ (π‘Ž14β€²β€² ) 1 𝑇14 , 𝑑 𝜈 1 βˆ’ (π‘Ž14 ) 1 𝜈 1

Definition of 𝜈 1 :- 𝜈 1 =𝐺13

𝐺14

It follows

βˆ’ (π‘Ž14 ) 1 𝜈 1 2

+ (𝜎2) 1 𝜈 1 βˆ’ (π‘Ž13) 1 β‰€π‘‘πœˆ 1

𝑑𝑑≀ βˆ’ (π‘Ž14 ) 1 𝜈 1

2+ (𝜎1) 1 𝜈 1 βˆ’ (π‘Ž13) 1

From which one obtains

Definition of (𝜈 1) 1 , (𝜈0) 1 :-

(a) For 0 < (𝜈0) 1 =𝐺13

0

𝐺140 < (𝜈1) 1 < (𝜈 1) 1

𝜈 1 (𝑑) β‰₯(𝜈1) 1 +(𝐢) 1 (𝜈2) 1 𝑒

βˆ’ π‘Ž14 1 (𝜈1) 1 βˆ’(𝜈0) 1 𝑑

1+(𝐢) 1 𝑒 βˆ’ π‘Ž14 1 (𝜈1) 1 βˆ’(𝜈0) 1 𝑑

, (𝐢) 1 =(𝜈1) 1 βˆ’(𝜈0) 1

(𝜈0) 1 βˆ’(𝜈2) 1

it follows (𝜈0) 1 ≀ 𝜈 1 (𝑑) ≀ (𝜈1) 1

In the same manner , we get

𝜈 1 (𝑑) ≀(𝜈 1) 1 +(𝐢 ) 1 (𝜈 2) 1 𝑒

βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

1+(𝐢 ) 1 𝑒 βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

, (𝐢 ) 1 =(𝜈 1) 1 βˆ’(𝜈0) 1

(𝜈0) 1 βˆ’(𝜈 2) 1

Page 44: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 44

ISSN 2250-3153

www.ijsrp.org

From which we deduce (𝜈0) 1 ≀ 𝜈 1 (𝑑) ≀ (𝜈 1) 1

(b) If 0 < (𝜈1) 1 < (𝜈0) 1 =𝐺13

0

𝐺140 < (𝜈 1) 1 we find like in the previous case,

(𝜈1) 1 ≀(𝜈1) 1 + 𝐢 1 (𝜈2) 1 𝑒

βˆ’ π‘Ž14 1 (𝜈1) 1 βˆ’(𝜈2) 1 𝑑

1+ 𝐢 1 𝑒 βˆ’ π‘Ž14 1 (𝜈1) 1 βˆ’(𝜈2) 1 𝑑

≀ 𝜈 1 𝑑 ≀

(𝜈 1) 1 + 𝐢 1 (𝜈 2) 1 𝑒

βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

1+ 𝐢 1 𝑒 βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

≀ (𝜈 1) 1

(c) If 0 < (𝜈1) 1 ≀ (𝜈 1) 1 ≀ (𝜈0) 1 =𝐺13

0

𝐺140 , we obtain

(𝜈1) 1 ≀ 𝜈 1 𝑑 ≀(𝜈 1) 1 + 𝐢 1 (𝜈 2) 1 𝑒

βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

1+ 𝐢 1 𝑒 βˆ’ π‘Ž14 1 (𝜈 1) 1 βˆ’(𝜈 2) 1 𝑑

≀ (𝜈0) 1

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 1 𝑑 :-

(π‘š2) 1 ≀ 𝜈 1 𝑑 ≀ (π‘š1) 1 , 𝜈 1 𝑑 =𝐺13 𝑑

𝐺14 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 1 𝑑 :-

(πœ‡2) 1 ≀ 𝑒 1 𝑑 ≀ (πœ‡1) 1 , 𝑒 1 𝑑 =𝑇13 𝑑

𝑇14 𝑑

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the

theorem.

Particular case :

If (π‘Ž13β€²β€² ) 1 = (π‘Ž14

β€²β€² ) 1 , 𝑑𝑕𝑒𝑛 (𝜎1) 1 = (𝜎2) 1 and in this case (𝜈1) 1 = (𝜈 1) 1 if in addition (𝜈0) 1 =

(𝜈1) 1 then 𝜈 1 𝑑 = (𝜈0) 1 and as a consequence 𝐺13(𝑑) = (𝜈0) 1 𝐺14(𝑑) this also defines (𝜈0) 1 for the

special case

Analogously if (𝑏13β€²β€² ) 1 = (𝑏14

β€²β€² ) 1 , 𝑑𝑕𝑒𝑛 (𝜏1) 1 = (𝜏2) 1 and then

(𝑒1) 1 = (𝑒 1) 1 if in addition (𝑒0) 1 = (𝑒1) 1 then 𝑇13(𝑑) = (𝑒0) 1 𝑇14 (𝑑) This is an important

consequence of the relation between (𝜈1) 1 and (𝜈 1) 1 , and definition of (𝑒0) 1 .

we obtain

d𝜈 2

dt= (π‘Ž16) 2 βˆ’ (π‘Ž16

β€² ) 2 βˆ’ (π‘Ž17β€² ) 2 + (π‘Ž16

β€²β€² ) 2 T17 , t βˆ’ (π‘Ž17β€²β€² ) 2 T17 , t 𝜈 2 βˆ’ (π‘Ž17) 2 𝜈 2

Definition of 𝜈 2 :- 𝜈 2 =G16

G17

It follows

Page 45: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 45

ISSN 2250-3153

www.ijsrp.org

βˆ’ (π‘Ž17 ) 2 𝜈 2 2

+ (Οƒ2) 2 𝜈 2 βˆ’ (π‘Ž16 ) 2 ≀d𝜈 2

dt≀ βˆ’ (π‘Ž17 ) 2 𝜈 2

2+ (Οƒ1) 2 𝜈 2 βˆ’ (π‘Ž16 ) 2

From which one obtains

Definition of (𝜈 1) 2 , (𝜈0) 2 :-

(d) For 0 < (𝜈0) 2 =G16

0

G170 < (𝜈1) 2 < (𝜈 1) 2

𝜈 2 (𝑑) β‰₯(𝜈1) 2 +(C) 2 (𝜈2) 2 𝑒

βˆ’ π‘Ž17 2 (𝜈1) 2 βˆ’(𝜈0) 2 𝑑

1+(C) 2 𝑒 βˆ’ π‘Ž17 2 (𝜈1) 2 βˆ’(𝜈0) 2 𝑑

, (C) 2 =(𝜈1) 2 βˆ’(𝜈0) 2

(𝜈0) 2 βˆ’(𝜈2) 2

it follows (𝜈0) 2 ≀ 𝜈 2 (𝑑) ≀ (𝜈1) 2

In the same manner , we get

𝜈 2 (𝑑) ≀(𝜈 1) 2 +(C ) 2 (𝜈 2) 2 𝑒

βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

1+(C ) 2 𝑒 βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

, (C ) 2 =(𝜈 1) 2 βˆ’(𝜈0) 2

(𝜈0) 2 βˆ’(𝜈 2) 2

From which we deduce (𝜈0) 2 ≀ 𝜈 2 (𝑑) ≀ (𝜈 1) 2

(e) If 0 < (𝜈1) 2 < (𝜈0) 2 =G16

0

G170 < (𝜈 1) 2 we find like in the previous case,

(𝜈1) 2 ≀(𝜈1) 2 + C 2 (𝜈2) 2 𝑒

βˆ’ π‘Ž17 2 (𝜈1) 2 βˆ’(𝜈2) 2 𝑑

1+ C 2 𝑒 βˆ’ π‘Ž17 2 (𝜈1) 2 βˆ’(𝜈2) 2 𝑑

≀ 𝜈 2 𝑑 ≀

(𝜈 1) 2 + C 2 (𝜈 2) 2 𝑒

βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

1+ C 2 𝑒 βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

≀ (𝜈 1) 2

(f) If 0 < (𝜈1) 2 ≀ (𝜈 1) 2 ≀ (𝜈0) 2 =G16

0

G170 , we obtain

(𝜈1) 2 ≀ 𝜈 2 𝑑 ≀(𝜈 1) 2 + C 2 (𝜈 2) 2 𝑒

βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

1+ C 2 𝑒 βˆ’ π‘Ž17 2 (𝜈 1) 2 βˆ’(𝜈 2) 2 𝑑

≀ (𝜈0) 2

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 2 𝑑 :-

(π‘š2) 2 ≀ 𝜈 2 𝑑 ≀ (π‘š1) 2 , 𝜈 2 𝑑 =𝐺16 𝑑

𝐺17 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 2 𝑑 :-

(πœ‡2) 2 ≀ 𝑒 2 𝑑 ≀ (πœ‡1) 2 , 𝑒 2 𝑑 =𝑇16 𝑑

𝑇17 𝑑

.

Particular case :

If (π‘Ž16β€²β€² ) 2 = (π‘Ž17

β€²β€² ) 2 , 𝑑𝑕𝑒𝑛 (Οƒ1) 2 = (Οƒ2) 2 and in this case (𝜈1) 2 = (𝜈 1) 2 if in addition (𝜈0) 2 =

(𝜈1) 2 then 𝜈 2 𝑑 = (𝜈0) 2 and as a consequence 𝐺16(𝑑) = (𝜈0) 2 𝐺17(𝑑)

Analogously if (𝑏16β€²β€² ) 2 = (𝑏17

β€²β€² ) 2 , 𝑑𝑕𝑒𝑛 (Ο„1) 2 = (Ο„2) 2 and then

(𝑒1) 2 = (𝑒 1) 2 if in addition (𝑒0) 2 = (𝑒1) 2 then 𝑇16(𝑑) = (𝑒0) 2 𝑇17 (𝑑) This is an important

Page 46: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 46

ISSN 2250-3153

www.ijsrp.org

consequence of the relation between (𝜈1) 2 and (𝜈 1) 2

From GLOBAL EQUATIONS we obtain

π‘‘πœˆ 3

𝑑𝑑= (π‘Ž20 ) 3 βˆ’ (π‘Ž20

β€² ) 3 βˆ’ (π‘Ž21β€² ) 3 + (π‘Ž20

β€²β€² ) 3 𝑇21 , 𝑑 βˆ’ (π‘Ž21β€²β€² ) 3 𝑇21 , 𝑑 𝜈 3 βˆ’ (π‘Ž21) 3 𝜈 3

Definition of 𝜈 3 :- 𝜈 3 =𝐺20

𝐺21

It follows

βˆ’ (π‘Ž21 ) 3 𝜈 3 2

+ (𝜎2) 3 𝜈 3 βˆ’ (π‘Ž20) 3 β‰€π‘‘πœˆ 3

𝑑𝑑≀ βˆ’ (π‘Ž21) 3 𝜈 3

2+ (𝜎1) 3 𝜈 3 βˆ’ (π‘Ž20 ) 3

From which one obtains

(a) For 0 < (𝜈0) 3 =𝐺20

0

𝐺210 < (𝜈1) 3 < (𝜈 1) 3

𝜈 3 (𝑑) β‰₯(𝜈1) 3 +(𝐢) 3 (𝜈2) 3 𝑒

βˆ’ π‘Ž21 3 (𝜈1) 3 βˆ’(𝜈0) 3 𝑑

1+(𝐢) 3 𝑒 βˆ’ π‘Ž21 3 (𝜈1) 3 βˆ’(𝜈0) 3 𝑑

, (𝐢) 3 =(𝜈1) 3 βˆ’(𝜈0) 3

(𝜈0) 3 βˆ’(𝜈2) 3

it follows (𝜈0) 3 ≀ 𝜈 3 (𝑑) ≀ (𝜈1) 3

In the same manner , we get

𝜈 3 (𝑑) ≀(𝜈 1) 3 +(𝐢 ) 3 (𝜈 2) 3 𝑒

βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

1+(𝐢 ) 3 𝑒 βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

, (𝐢 ) 3 =(𝜈 1) 3 βˆ’(𝜈0) 3

(𝜈0) 3 βˆ’(𝜈 2) 3

Definition of (𝜈 1) 3 :-

From which we deduce (𝜈0) 3 ≀ 𝜈 3 (𝑑) ≀ (𝜈 1) 3

(b) If 0 < (𝜈1) 3 < (𝜈0) 3 =𝐺20

0

𝐺210 < (𝜈 1) 3 we find like in the previous case,

(𝜈1) 3 ≀(𝜈1) 3 + 𝐢 3 (𝜈2) 3 𝑒

βˆ’ π‘Ž21 3 (𝜈1) 3 βˆ’(𝜈2) 3 𝑑

1+ 𝐢 3 𝑒 βˆ’ π‘Ž21 3 (𝜈1) 3 βˆ’(𝜈2) 3 𝑑

≀ 𝜈 3 𝑑 ≀

(𝜈 1) 3 + 𝐢 3 (𝜈 2) 3 𝑒

βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

1+ 𝐢 3 𝑒 βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

≀ (𝜈 1) 3

(c) If 0 < (𝜈1) 3 ≀ (𝜈 1) 3 ≀ (𝜈0) 3 =𝐺20

0

𝐺210 , we obtain

(𝜈1) 3 ≀ 𝜈 3 𝑑 ≀(𝜈 1) 3 + 𝐢 3 (𝜈 2) 3 𝑒

βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

1+ 𝐢 3 𝑒 βˆ’ π‘Ž21 3 (𝜈 1) 3 βˆ’(𝜈 2) 3 𝑑

≀ (𝜈0) 3

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 3 𝑑 :-

Page 47: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 47

ISSN 2250-3153

www.ijsrp.org

(π‘š2) 3 ≀ 𝜈 3 𝑑 ≀ (π‘š1) 3 , 𝜈 3 𝑑 =𝐺20 𝑑

𝐺21 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 3 𝑑 :-

(πœ‡2) 3 ≀ 𝑒 3 𝑑 ≀ (πœ‡1) 3 , 𝑒 3 𝑑 =𝑇20 𝑑

𝑇21 𝑑

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the

theorem.

Particular case :

If (π‘Ž20β€²β€² ) 3 = (π‘Ž21

β€²β€² ) 3 , 𝑑𝑕𝑒𝑛 (𝜎1) 3 = (𝜎2) 3 and in this case (𝜈1) 3 = (𝜈 1) 3 if in addition (𝜈0) 3 =

(𝜈1) 3 then 𝜈 3 𝑑 = (𝜈0) 3 and as a consequence 𝐺20(𝑑) = (𝜈0) 3 𝐺21(𝑑)

Analogously if (𝑏20β€²β€² ) 3 = (𝑏21

β€²β€² ) 3 , 𝑑𝑕𝑒𝑛 (𝜏1) 3 = (𝜏2) 3 and then

(𝑒1) 3 = (𝑒 1) 3 if in addition (𝑒0) 3 = (𝑒1) 3 then 𝑇20(𝑑) = (𝑒0) 3 𝑇21(𝑑) This is an important

consequence of the relation between (𝜈1) 3 and (𝜈 1) 3

: From GLOBAL EQUATIONS we obtain

π‘‘πœˆ 4

𝑑𝑑= (π‘Ž24 ) 4 βˆ’ (π‘Ž24

β€² ) 4 βˆ’ (π‘Ž25β€² ) 4 + (π‘Ž24

β€²β€² ) 4 𝑇25 , 𝑑 βˆ’ (π‘Ž25β€²β€² ) 4 𝑇25 , 𝑑 𝜈 4 βˆ’ (π‘Ž25) 4 𝜈 4

Definition of 𝜈 4 :- 𝜈 4 =𝐺24

𝐺25

It follows

βˆ’ (π‘Ž25 ) 4 𝜈 4 2

+ (𝜎2) 4 𝜈 4 βˆ’ (π‘Ž24) 4 β‰€π‘‘πœˆ 4

𝑑𝑑≀ βˆ’ (π‘Ž25) 4 𝜈 4

2+ (𝜎4) 4 𝜈 4 βˆ’ (π‘Ž24 ) 4

From which one obtains

Definition of (𝜈 1) 4 , (𝜈0) 4 :-

(d) For 0 < (𝜈0) 4 =𝐺24

0

𝐺250 < (𝜈1) 4 < (𝜈 1) 4

𝜈 4 𝑑 β‰₯(𝜈1) 4 + 𝐢 4 (𝜈2) 4 𝑒

βˆ’ π‘Ž25 4 (𝜈1) 4 βˆ’(𝜈0) 4 𝑑

4+ 𝐢 4 𝑒 βˆ’ π‘Ž25 4 (𝜈1) 4 βˆ’(𝜈0) 4 𝑑

, 𝐢 4 =(𝜈1) 4 βˆ’(𝜈0) 4

(𝜈0) 4 βˆ’(𝜈2) 4

it follows (𝜈0) 4 ≀ 𝜈 4 (𝑑) ≀ (𝜈1) 4

In the same manner , we get

𝜈 4 𝑑 ≀(𝜈 1) 4 + 𝐢 4 (𝜈 2) 4 𝑒

βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

4+ 𝐢 4 𝑒 βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

, (𝐢 ) 4 =(𝜈 1) 4 βˆ’(𝜈0) 4

(𝜈0) 4 βˆ’(𝜈 2) 4

From which we deduce (𝜈0) 4 ≀ 𝜈 4 (𝑑) ≀ (𝜈 1) 4

(e) If 0 < (𝜈1) 4 < (𝜈0) 4 =𝐺24

0

𝐺250 < (𝜈 1) 4 we find like in the previous case,

Page 48: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 48

ISSN 2250-3153

www.ijsrp.org

(𝜈1) 4 ≀(𝜈1) 4 + 𝐢 4 (𝜈2) 4 𝑒

βˆ’ π‘Ž25 4 (𝜈1) 4 βˆ’(𝜈2) 4 𝑑

1+ 𝐢 4 𝑒 βˆ’ π‘Ž25 4 (𝜈1) 4 βˆ’(𝜈2) 4 𝑑

≀ 𝜈 4 𝑑 ≀

(𝜈 1) 4 + 𝐢 4 (𝜈 2) 4 𝑒

βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

1+ 𝐢 4 𝑒 βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

≀ (𝜈 1) 4

(f) If 0 < (𝜈1) 4 ≀ (𝜈 1) 4 ≀ (𝜈0) 4 =𝐺24

0

𝐺250 , we obtain

(𝜈1) 4 ≀ 𝜈 4 𝑑 ≀(𝜈 1) 4 + 𝐢 4 (𝜈 2) 4 𝑒

βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

1+ 𝐢 4 𝑒 βˆ’ π‘Ž25 4 (𝜈 1) 4 βˆ’(𝜈 2) 4 𝑑

≀ (𝜈0) 4

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 4 𝑑 :-

(π‘š2) 4 ≀ 𝜈 4 𝑑 ≀ (π‘š1) 4 , 𝜈 4 𝑑 =𝐺24 𝑑

𝐺25 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 4 𝑑 :-

(πœ‡2) 4 ≀ 𝑒 4 𝑑 ≀ (πœ‡1) 4 , 𝑒 4 𝑑 =𝑇24 𝑑

𝑇25 𝑑

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If (π‘Ž24β€²β€² ) 4 = (π‘Ž25

β€²β€² ) 4 , 𝑑𝑕𝑒𝑛 (𝜎1) 4 = (𝜎2) 4 and in this case (𝜈1) 4 = (𝜈 1) 4 if in addition (𝜈0) 4 =

(𝜈1) 4 then 𝜈 4 𝑑 = (𝜈0) 4 and as a consequence 𝐺24(𝑑) = (𝜈0) 4 𝐺25(𝑑) this also defines (𝜈0) 4 for the special case .

Analogously if (𝑏24β€²β€² ) 4 = (𝑏25

β€²β€² ) 4 , 𝑑𝑕𝑒𝑛 (𝜏1) 4 = (𝜏2) 4 and then

(𝑒1) 4 = (𝑒 4) 4 if in addition (𝑒0) 4 = (𝑒1) 4 then 𝑇24 (𝑑) = (𝑒0) 4 𝑇25 (𝑑) This is an important

consequence of the relation between (𝜈1) 4 and (𝜈 1) 4 , and definition of (𝑒0) 4 .

From GLOBAL EQUATIONS we obtain

π‘‘πœˆ 5

𝑑𝑑= (π‘Ž28 ) 5 βˆ’ (π‘Ž28

β€² ) 5 βˆ’ (π‘Ž29β€² ) 5 + (π‘Ž28

β€²β€² ) 5 𝑇29 , 𝑑 βˆ’ (π‘Ž29β€²β€² ) 5 𝑇29 , 𝑑 𝜈 5 βˆ’ (π‘Ž29) 5 𝜈 5

Definition of 𝜈 5 :- 𝜈 5 =𝐺28

𝐺29

It follows

βˆ’ (π‘Ž29) 5 𝜈 5 2

+ (𝜎2) 5 𝜈 5 βˆ’ (π‘Ž28) 5 β‰€π‘‘πœˆ 5

𝑑𝑑≀ βˆ’ (π‘Ž29) 5 𝜈 5

2+ (𝜎1) 5 𝜈 5 βˆ’ (π‘Ž28 ) 5

From which one obtains

Definition of (𝜈 1) 5 , (𝜈0) 5 :-

(g) For 0 < (𝜈0) 5 =𝐺28

0

𝐺290 < (𝜈1) 5 < (𝜈 1) 5

Page 49: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 49

ISSN 2250-3153

www.ijsrp.org

𝜈 5 (𝑑) β‰₯(𝜈1) 5 +(𝐢) 5 (𝜈2) 5 𝑒

βˆ’ π‘Ž29 5 (𝜈1) 5 βˆ’(𝜈0) 5 𝑑

5+(𝐢) 5 𝑒 βˆ’ π‘Ž29 5 (𝜈1) 5 βˆ’(𝜈0) 5 𝑑

, (𝐢) 5 =(𝜈1) 5 βˆ’(𝜈0) 5

(𝜈0) 5 βˆ’(𝜈2) 5

it follows (𝜈0) 5 ≀ 𝜈 5 (𝑑) ≀ (𝜈1) 5

In the same manner , we get

𝜈 5 (𝑑) ≀(𝜈 1) 5 +(𝐢 ) 5 (𝜈 2) 5 𝑒

βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

5+(𝐢 ) 5 𝑒 βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

, (𝐢 ) 5 =(𝜈 1) 5 βˆ’(𝜈0) 5

(𝜈0) 5 βˆ’(𝜈 2) 5

From which we deduce (𝜈0) 5 ≀ 𝜈 5 (𝑑) ≀ (𝜈 5) 5

(h) If 0 < (𝜈1) 5 < (𝜈0) 5 =𝐺28

0

𝐺290 < (𝜈 1) 5 we find like in the previous case,

(𝜈1) 5 ≀(𝜈1) 5 + 𝐢 5 (𝜈2) 5 𝑒

βˆ’ π‘Ž29 5 (𝜈1) 5 βˆ’(𝜈2) 5 𝑑

1+ 𝐢 5 𝑒 βˆ’ π‘Ž29 5 (𝜈1) 5 βˆ’(𝜈2) 5 𝑑

≀ 𝜈 5 𝑑 ≀

(𝜈 1) 5 + 𝐢 5 (𝜈 2) 5 𝑒

βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

1+ 𝐢 5 𝑒 βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

≀ (𝜈 1) 5

(i) If 0 < (𝜈1) 5 ≀ (𝜈 1) 5 ≀ (𝜈0) 5 =𝐺28

0

𝐺290 , we obtain

(𝜈1) 5 ≀ 𝜈 5 𝑑 ≀(𝜈 1) 5 + 𝐢 5 (𝜈 2) 5 𝑒

βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

1+ 𝐢 5 𝑒 βˆ’ π‘Ž29 5 (𝜈 1) 5 βˆ’(𝜈 2) 5 𝑑

≀ (𝜈0) 5

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 5 𝑑 :-

(π‘š2) 5 ≀ 𝜈 5 𝑑 ≀ (π‘š1) 5 , 𝜈 5 𝑑 =𝐺28 𝑑

𝐺29 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 5 𝑑 :-

(πœ‡2) 5 ≀ 𝑒 5 𝑑 ≀ (πœ‡1) 5 , 𝑒 5 𝑑 =𝑇28 𝑑

𝑇29 𝑑

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If (π‘Ž28β€²β€² ) 5 = (π‘Ž29

β€²β€² ) 5 , 𝑑𝑕𝑒𝑛 (𝜎1) 5 = (𝜎2) 5 and in this case (𝜈1) 5 = (𝜈 1) 5 if in addition (𝜈0) 5 =

(𝜈5) 5 then 𝜈 5 𝑑 = (𝜈0) 5 and as a consequence 𝐺28(𝑑) = (𝜈0) 5 𝐺29(𝑑) this also defines (𝜈0) 5 for the special case .

Analogously if (𝑏28β€²β€² ) 5 = (𝑏29

β€²β€² ) 5 , 𝑑𝑕𝑒𝑛 (𝜏1) 5 = (𝜏2) 5 and then

(𝑒1) 5 = (𝑒 1) 5 if in addition (𝑒0) 5 = (𝑒1) 5 then 𝑇28 (𝑑) = (𝑒0) 5 𝑇29(𝑑) This is an important

consequence of the relation between (𝜈1) 5 and (𝜈 1) 5 , and definition of (𝑒0) 5 .

we obtain

Page 50: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 50

ISSN 2250-3153

www.ijsrp.org

π‘‘πœˆ 6

𝑑𝑑= (π‘Ž32 ) 6 βˆ’ (π‘Ž32

β€² ) 6 βˆ’ (π‘Ž33β€² ) 6 + (π‘Ž32

β€²β€² ) 6 𝑇33 , 𝑑 βˆ’ (π‘Ž33β€²β€² ) 6 𝑇33 , 𝑑 𝜈 6 βˆ’ (π‘Ž33) 6 𝜈 6

Definition of 𝜈 6 :- 𝜈 6 =𝐺32

𝐺33

It follows

βˆ’ (π‘Ž33 ) 6 𝜈 6 2

+ (𝜎2) 6 𝜈 6 βˆ’ (π‘Ž32) 6 β‰€π‘‘πœˆ 6

𝑑𝑑≀ βˆ’ (π‘Ž33) 6 𝜈 6

2+ (𝜎1) 6 𝜈 6 βˆ’ (π‘Ž32 ) 6

From which one obtains

Definition of (𝜈 1) 6 , (𝜈0) 6 :-

(j) For 0 < (𝜈0) 6 =𝐺32

0

𝐺330 < (𝜈1) 6 < (𝜈 1) 6

𝜈 6 (𝑑) β‰₯(𝜈1) 6 +(𝐢) 6 (𝜈2) 6 𝑒

βˆ’ π‘Ž33 6 (𝜈1) 6 βˆ’(𝜈0) 6 𝑑

1+(𝐢) 6 𝑒 βˆ’ π‘Ž33 6 (𝜈1) 6 βˆ’(𝜈0) 6 𝑑

, (𝐢) 6 =(𝜈1) 6 βˆ’(𝜈0) 6

(𝜈0) 6 βˆ’(𝜈2) 6

it follows (𝜈0) 6 ≀ 𝜈 6 (𝑑) ≀ (𝜈1) 6

In the same manner , we get

𝜈 6 (𝑑) ≀(𝜈 1) 6 +(𝐢 ) 6 (𝜈 2) 6 𝑒

βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

1+(𝐢 ) 6 𝑒 βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

, (𝐢 ) 6 =(𝜈 1) 6 βˆ’(𝜈0) 6

(𝜈0) 6 βˆ’(𝜈 2) 6

From which we deduce (𝜈0) 6 ≀ 𝜈 6 (𝑑) ≀ (𝜈 1) 6

(k) If 0 < (𝜈1) 6 < (𝜈0) 6 =𝐺32

0

𝐺330 < (𝜈 1) 6 we find like in the previous case,

(𝜈1) 6 ≀(𝜈1) 6 + 𝐢 6 (𝜈2) 6 𝑒

βˆ’ π‘Ž33 6 (𝜈1) 6 βˆ’(𝜈2) 6 𝑑

1+ 𝐢 6 𝑒 βˆ’ π‘Ž33 6 (𝜈1) 6 βˆ’(𝜈2) 6 𝑑

≀ 𝜈 6 𝑑 ≀

(𝜈 1) 6 + 𝐢 6 (𝜈 2) 6 𝑒

βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

1+ 𝐢 6 𝑒 βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

≀ (𝜈 1) 6

(l) If 0 < (𝜈1) 6 ≀ (𝜈 1) 6 ≀ (𝜈0) 6 =𝐺32

0

𝐺330 , we obtain

(𝜈1) 6 ≀ 𝜈 6 𝑑 ≀(𝜈 1) 6 + 𝐢 6 (𝜈 2) 6 𝑒

βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

1+ 𝐢 6 𝑒 βˆ’ π‘Ž33 6 (𝜈 1) 6 βˆ’(𝜈 2) 6 𝑑

≀ (𝜈0) 6

And so with the notation of the first part of condition (c) , we have

Definition of 𝜈 6 𝑑 :-

(π‘š2) 6 ≀ 𝜈 6 𝑑 ≀ (π‘š1) 6 , 𝜈 6 𝑑 =𝐺32 𝑑

𝐺33 𝑑

In a completely analogous way, we obtain

Definition of 𝑒 6 𝑑 :-

(πœ‡2) 6 ≀ 𝑒 6 𝑑 ≀ (πœ‡1) 6 , 𝑒 6 𝑑 =𝑇32 𝑑

𝑇33 𝑑

Page 51: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 51

ISSN 2250-3153

www.ijsrp.org

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the theorem. Particular case :

If (π‘Ž32β€²β€² ) 6 = (π‘Ž33

β€²β€² ) 6 , 𝑑𝑕𝑒𝑛 (𝜎1) 6 = (𝜎2) 6 and in this case (𝜈1) 6 = (𝜈 1) 6 if in addition (𝜈0) 6 =

(𝜈1) 6 then 𝜈 6 𝑑 = (𝜈0) 6 and as a consequence 𝐺32(𝑑) = (𝜈0) 6 𝐺33(𝑑) this also defines (𝜈0) 6 for the special case .

Analogously if (𝑏32β€²β€² ) 6 = (𝑏33

β€²β€² ) 6 , 𝑑𝑕𝑒𝑛 (𝜏1) 6 = (𝜏2) 6 and then

(𝑒1) 6 = (𝑒 1) 6 if in addition (𝑒0) 6 = (𝑒1) 6 then 𝑇32 (𝑑) = (𝑒0) 6 𝑇33 (𝑑) This is an important

consequence of the relation between (𝜈1) 6 and (𝜈 1) 6 , and definition of (𝑒0) 6 .

We can prove the following

Theorem 3: If (π‘Žπ‘–β€²β€² ) 1 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 1 are independent on 𝑑 , and the conditions

(π‘Ž13β€² ) 1 (π‘Ž14

β€² ) 1 βˆ’ π‘Ž13 1 π‘Ž14

1 < 0

(π‘Ž13β€² ) 1 (π‘Ž14

β€² ) 1 βˆ’ π‘Ž13 1 π‘Ž14

1 + π‘Ž13 1 𝑝13

1 + (π‘Ž14β€² ) 1 𝑝14

1 + 𝑝13 1 𝑝14

1 > 0

(𝑏13β€² ) 1 (𝑏14

β€² ) 1 βˆ’ 𝑏13 1 𝑏14

1 > 0 ,

(𝑏13β€² ) 1 (𝑏14

β€² ) 1 βˆ’ 𝑏13 1 𝑏14

1 βˆ’ (𝑏13β€² ) 1 π‘Ÿ14

1 βˆ’ (𝑏14β€² ) 1 π‘Ÿ14

1 + π‘Ÿ13 1 π‘Ÿ14

1 < 0

𝑀𝑖𝑑𝑕 𝑝13 1 , π‘Ÿ14

1 as defined, then the system

If (π‘Žπ‘–β€²β€² ) 2 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 2 are independent on t , and the conditions

(π‘Ž16β€² ) 2 (π‘Ž17

β€² ) 2 βˆ’ π‘Ž16 2 π‘Ž17

2 < 0

(π‘Ž16β€² ) 2 (π‘Ž17

β€² ) 2 βˆ’ π‘Ž16 2 π‘Ž17

2 + π‘Ž16 2 𝑝16

2 + (π‘Ž17β€² ) 2 𝑝17

2 + 𝑝16 2 𝑝17

2 > 0

(𝑏16β€² ) 2 (𝑏17

β€² ) 2 βˆ’ 𝑏16 2 𝑏17

2 > 0 ,

(𝑏16β€² ) 2 (𝑏17

β€² ) 2 βˆ’ 𝑏16 2 𝑏17

2 βˆ’ (𝑏16β€² ) 2 π‘Ÿ17

2 βˆ’ (𝑏17β€² ) 2 π‘Ÿ17

2 + π‘Ÿ16 2 π‘Ÿ17

2 < 0

𝑀𝑖𝑑𝑕 𝑝16 2 , π‘Ÿ17

2 as defined are satisfied , then the system

If (π‘Žπ‘–β€²β€² ) 3 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 3 are independent on 𝑑 , and the conditions

(π‘Ž20β€² ) 3 (π‘Ž21

β€² ) 3 βˆ’ π‘Ž20 3 π‘Ž21

3 < 0

(π‘Ž20β€² ) 3 (π‘Ž21

β€² ) 3 βˆ’ π‘Ž20 3 π‘Ž21

3 + π‘Ž20 3 𝑝20

3 + (π‘Ž21β€² ) 3 𝑝21

3 + 𝑝20 3 𝑝21

3 > 0

(𝑏20β€² ) 3 (𝑏21

β€² ) 3 βˆ’ 𝑏20 3 𝑏21

3 > 0 ,

(𝑏20β€² ) 3 (𝑏21

β€² ) 3 βˆ’ 𝑏20 3 𝑏21

3 βˆ’ (𝑏20β€² ) 3 π‘Ÿ21

3 βˆ’ (𝑏21β€² ) 3 π‘Ÿ21

3 + π‘Ÿ20 3 π‘Ÿ21

3 < 0

𝑀𝑖𝑑𝑕 𝑝20 3 , π‘Ÿ21

3 as defined are satisfied , then the system

If (π‘Žπ‘–β€²β€² ) 4 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 4 are independent on 𝑑 , and the conditions

(π‘Ž24β€² ) 4 (π‘Ž25

β€² ) 4 βˆ’ π‘Ž24 4 π‘Ž25

4 < 0

(π‘Ž24β€² ) 4 (π‘Ž25

β€² ) 4 βˆ’ π‘Ž24 4 π‘Ž25

4 + π‘Ž24 4 𝑝24

4 + (π‘Ž25β€² ) 4 𝑝25

4 + 𝑝24 4 𝑝25

4 > 0

Page 52: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 52

ISSN 2250-3153

www.ijsrp.org

(𝑏24β€² ) 4 (𝑏25

β€² ) 4 βˆ’ 𝑏24 4 𝑏25

4 > 0 ,

(𝑏24β€² ) 4 (𝑏25

β€² ) 4 βˆ’ 𝑏24 4 𝑏25

4 βˆ’ (𝑏24β€² ) 4 π‘Ÿ25

4 βˆ’ (𝑏25β€² ) 4 π‘Ÿ25

4 + π‘Ÿ24 4 π‘Ÿ25

4 < 0

𝑀𝑖𝑑𝑕 𝑝24 4 , π‘Ÿ25

4 as defined are satisfied , then the system

If (π‘Žπ‘–β€²β€² ) 5 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 5 are independent on 𝑑 , and the conditions

(π‘Ž28β€² ) 5 (π‘Ž29

β€² ) 5 βˆ’ π‘Ž28 5 π‘Ž29

5 < 0

(π‘Ž28β€² ) 5 (π‘Ž29

β€² ) 5 βˆ’ π‘Ž28 5 π‘Ž29

5 + π‘Ž28 5 𝑝28

5 + (π‘Ž29β€² ) 5 𝑝29

5 + 𝑝28 5 𝑝29

5 > 0

(𝑏28β€² ) 5 (𝑏29

β€² ) 5 βˆ’ 𝑏28 5 𝑏29

5 > 0 ,

(𝑏28β€² ) 5 (𝑏29

β€² ) 5 βˆ’ 𝑏28 5 𝑏29

5 βˆ’ (𝑏28β€² ) 5 π‘Ÿ29

5 βˆ’ (𝑏29β€² ) 5 π‘Ÿ29

5 + π‘Ÿ28 5 π‘Ÿ29

5 < 0

𝑀𝑖𝑑𝑕 𝑝28 5 , π‘Ÿ29

5 as defined satisfied , then the system

If (π‘Žπ‘–β€²β€² ) 6 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 6 are independent on 𝑑 , and the conditions

(π‘Ž32β€² ) 6 (π‘Ž33

β€² ) 6 βˆ’ π‘Ž32 6 π‘Ž33

6 < 0

(π‘Ž32β€² ) 6 (π‘Ž33

β€² ) 6 βˆ’ π‘Ž32 6 π‘Ž33

6 + π‘Ž32 6 𝑝32

6 + (π‘Ž33β€² ) 6 𝑝33

6 + 𝑝32 6 𝑝33

6 > 0

(𝑏32β€² ) 6 (𝑏33

β€² ) 6 βˆ’ 𝑏32 6 𝑏33

6 > 0 ,

(𝑏32β€² ) 6 (𝑏33

β€² ) 6 βˆ’ 𝑏32 6 𝑏33

6 βˆ’ (𝑏32β€² ) 6 π‘Ÿ33

6 βˆ’ (𝑏33β€² ) 6 π‘Ÿ33

6 + π‘Ÿ32 6 π‘Ÿ33

6 < 0

𝑀𝑖𝑑𝑕 𝑝32 6 , π‘Ÿ33

6 as defined are satisfied , then the system

π‘Ž13 1 𝐺14 βˆ’ (π‘Ž13

β€² ) 1 + (π‘Ž13β€²β€² ) 1 𝑇14 𝐺13 = 0

π‘Ž14 1 𝐺13 βˆ’ (π‘Ž14

β€² ) 1 + (π‘Ž14β€²β€² ) 1 𝑇14 𝐺14 = 0

π‘Ž15 1 𝐺14 βˆ’ (π‘Ž15

β€² ) 1 + (π‘Ž15β€²β€² ) 1 𝑇14 𝐺15 = 0

𝑏13 1 𝑇14 βˆ’ [(𝑏13

β€² ) 1 βˆ’ (𝑏13β€²β€² ) 1 𝐺 ]𝑇13 = 0

𝑏14 1 𝑇13 βˆ’ [(𝑏14

β€² ) 1 βˆ’ (𝑏14β€²β€² ) 1 𝐺 ]𝑇14 = 0

𝑏15 1 𝑇14 βˆ’ [(𝑏15

β€² ) 1 βˆ’ (𝑏15β€²β€² ) 1 𝐺 ]𝑇15 = 0

has a unique positive solution , which is an equilibrium solution for the system

π‘Ž16 2 𝐺17 βˆ’ (π‘Ž16

β€² ) 2 + (π‘Ž16β€²β€² ) 2 𝑇17 𝐺16 = 0

π‘Ž17 2 𝐺16 βˆ’ (π‘Ž17

β€² ) 2 + (π‘Ž17β€²β€² ) 2 𝑇17 𝐺17 = 0

π‘Ž18 2 𝐺17 βˆ’ (π‘Ž18

β€² ) 2 + (π‘Ž18β€²β€² ) 2 𝑇17 𝐺18 = 0

𝑏16 2 𝑇17 βˆ’ [(𝑏16

β€² ) 2 βˆ’ (𝑏16β€²β€² ) 2 𝐺19 ]𝑇16 = 0

𝑏17 2 𝑇16 βˆ’ [(𝑏17

β€² ) 2 βˆ’ (𝑏17β€²β€² ) 2 𝐺19 ]𝑇17 = 0

𝑏18 2 𝑇17 βˆ’ [(𝑏18

β€² ) 2 βˆ’ (𝑏18β€²β€² ) 2 𝐺19 ]𝑇18 = 0

Page 53: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 53

ISSN 2250-3153

www.ijsrp.org

has a unique positive solution , which is an equilibrium solution for

π‘Ž20 3 𝐺21 βˆ’ (π‘Ž20

β€² ) 3 + (π‘Ž20β€²β€² ) 3 𝑇21 𝐺20 = 0

π‘Ž21 3 𝐺20 βˆ’ (π‘Ž21

β€² ) 3 + (π‘Ž21β€²β€² ) 3 𝑇21 𝐺21 = 0

π‘Ž22 3 𝐺21 βˆ’ (π‘Ž22

β€² ) 3 + (π‘Ž22β€²β€² ) 3 𝑇21 𝐺22 = 0

𝑏20 3 𝑇21 βˆ’ [(𝑏20

β€² ) 3 βˆ’ (𝑏20β€²β€² ) 3 𝐺23 ]𝑇20 = 0

𝑏21 3 𝑇20 βˆ’ [(𝑏21

β€² ) 3 βˆ’ (𝑏21β€²β€² ) 3 𝐺23 ]𝑇21 = 0

𝑏22 3 𝑇21 βˆ’ [(𝑏22

β€² ) 3 βˆ’ (𝑏22β€²β€² ) 3 𝐺23 ]𝑇22 = 0

has a unique positive solution , which is an equilibrium solution

π‘Ž24 4 𝐺25 βˆ’ (π‘Ž24

β€² ) 4 + (π‘Ž24β€²β€² ) 4 𝑇25 𝐺24 = 0

π‘Ž25 4 𝐺24 βˆ’ (π‘Ž25

β€² ) 4 + (π‘Ž25β€²β€² ) 4 𝑇25 𝐺25 = 0

π‘Ž26 4 𝐺25 βˆ’ (π‘Ž26

β€² ) 4 + (π‘Ž26β€²β€² ) 4 𝑇25 𝐺26 = 0

𝑏24 4 𝑇25 βˆ’ [(𝑏24

β€² ) 4 βˆ’ (𝑏24β€²β€² ) 4 𝐺27 ]𝑇24 = 0

𝑏25 4 𝑇24 βˆ’ [(𝑏25

β€² ) 4 βˆ’ (𝑏25β€²β€² ) 4 𝐺27 ]𝑇25 = 0

𝑏26 4 𝑇25 βˆ’ [(𝑏26

β€² ) 4 βˆ’ (𝑏26β€²β€² ) 4 𝐺27 ]𝑇26 = 0

has a unique positive solution , which is an equilibrium solution for the system

π‘Ž28 5 𝐺29 βˆ’ (π‘Ž28

β€² ) 5 + (π‘Ž28β€²β€² ) 5 𝑇29 𝐺28 = 0

π‘Ž29 5 𝐺28 βˆ’ (π‘Ž29

β€² ) 5 + (π‘Ž29β€²β€² ) 5 𝑇29 𝐺29 = 0

π‘Ž30 5 𝐺29 βˆ’ (π‘Ž30

β€² ) 5 + (π‘Ž30β€²β€² ) 5 𝑇29 𝐺30 = 0

𝑏28 5 𝑇29 βˆ’ [(𝑏28

β€² ) 5 βˆ’ (𝑏28β€²β€² ) 5 𝐺31 ]𝑇28 = 0

𝑏29 5 𝑇28 βˆ’ [(𝑏29

β€² ) 5 βˆ’ (𝑏29β€²β€² ) 5 𝐺31 ]𝑇29 = 0

𝑏30 5 𝑇29 βˆ’ [(𝑏30

β€² ) 5 βˆ’ (𝑏30β€²β€² ) 5 𝐺31 ]𝑇30 = 0

has a unique positive solution , which is an equilibrium solution for the system

π‘Ž32 6 𝐺33 βˆ’ (π‘Ž32

β€² ) 6 + (π‘Ž32β€²β€² ) 6 𝑇33 𝐺32 = 0

π‘Ž33 6 𝐺32 βˆ’ (π‘Ž33

β€² ) 6 + (π‘Ž33β€²β€² ) 6 𝑇33 𝐺33 = 0

π‘Ž34 6 𝐺33 βˆ’ (π‘Ž34

β€² ) 6 + (π‘Ž34β€²β€² ) 6 𝑇33 𝐺34 = 0

Page 54: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 54

ISSN 2250-3153

www.ijsrp.org

𝑏32 6 𝑇33 βˆ’ [(𝑏32

β€² ) 6 βˆ’ (𝑏32β€²β€² ) 6 𝐺35 ]𝑇32 = 0

𝑏33 6 𝑇32 βˆ’ [(𝑏33

β€² ) 6 βˆ’ (𝑏33β€²β€² ) 6 𝐺35 ]𝑇33 = 0

𝑏34 6 𝑇33 βˆ’ [(𝑏34

β€² ) 6 βˆ’ (𝑏34β€²β€² ) 6 𝐺35 ]𝑇34 = 0

has a unique positive solution , which is an equilibrium solution for the system

(a) Indeed the first two equations have a nontrivial solution 𝐺13 , 𝐺14 if

𝐹 𝑇 = (π‘Ž13β€² ) 1 (π‘Ž14

β€² ) 1 βˆ’ π‘Ž13 1 π‘Ž14

1 + (π‘Ž13β€² ) 1 (π‘Ž14

β€²β€² ) 1 𝑇14 + (π‘Ž14β€² ) 1 (π‘Ž13

β€²β€² ) 1 𝑇14 +

(π‘Ž13β€²β€² ) 1 𝑇14 (π‘Ž14

β€²β€² ) 1 𝑇14 = 0

(a) Indeed the first two equations have a nontrivial solution 𝐺16 , 𝐺17 if

F 𝑇19 = (π‘Ž16β€² ) 2 (π‘Ž17

β€² ) 2 βˆ’ π‘Ž16 2 π‘Ž17

2 + (π‘Ž16β€² ) 2 (π‘Ž17

β€²β€² ) 2 𝑇17 + (π‘Ž17β€² ) 2 (π‘Ž16

β€²β€² ) 2 𝑇17 +

(π‘Ž16β€²β€² ) 2 𝑇17 (π‘Ž17

β€²β€² ) 2 𝑇17 = 0

(a) Indeed the first two equations have a nontrivial solution 𝐺20 , 𝐺21 if

𝐹 𝑇23 = (π‘Ž20β€² ) 3 (π‘Ž21

β€² ) 3 βˆ’ π‘Ž20 3 π‘Ž21

3 + (π‘Ž20β€² ) 3 (π‘Ž21

β€²β€² ) 3 𝑇21 + (π‘Ž21β€² ) 3 (π‘Ž20

β€²β€² ) 3 𝑇21 +

(π‘Ž20β€²β€² ) 3 𝑇21 (π‘Ž21

β€²β€² ) 3 𝑇21 = 0

(a) Indeed the first two equations have a nontrivial solution 𝐺24 , 𝐺25 if

𝐹 𝑇27 =

(π‘Ž24β€² ) 4 (π‘Ž25

β€² ) 4 βˆ’ π‘Ž24 4 π‘Ž25

4 + (π‘Ž24β€² ) 4 (π‘Ž25

β€²β€² ) 4 𝑇25 + (π‘Ž25β€² ) 4 (π‘Ž24

β€²β€² ) 4 𝑇25 + (π‘Ž24β€²β€² ) 4 𝑇25 (π‘Ž25

β€²β€² ) 4 𝑇25 =

0

(a) Indeed the first two equations have a nontrivial solution 𝐺28 , 𝐺29 if

𝐹 𝑇31 =

(π‘Ž28β€² ) 5 (π‘Ž29

β€² ) 5 βˆ’ π‘Ž28 5 π‘Ž29

5 + (π‘Ž28β€² ) 5 (π‘Ž29

β€²β€² ) 5 𝑇29 + (π‘Ž29β€² ) 5 (π‘Ž28

β€²β€² ) 5 𝑇29 + (π‘Ž28β€²β€² ) 5 𝑇29 (π‘Ž29

β€²β€² ) 5 𝑇29 =

0

(a) Indeed the first two equations have a nontrivial solution 𝐺32 , 𝐺33 if

𝐹 𝑇35 =

(π‘Ž32β€² ) 6 (π‘Ž33

β€² ) 6 βˆ’ π‘Ž32 6 π‘Ž33

6 + (π‘Ž32β€² ) 6 (π‘Ž33

β€²β€² ) 6 𝑇33 + (π‘Ž33β€² ) 6 (π‘Ž32

β€²β€² ) 6 𝑇33 + (π‘Ž32β€²β€² ) 6 𝑇33 (π‘Ž33

β€²β€² ) 6 𝑇33 =

0

Page 55: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 55

ISSN 2250-3153

www.ijsrp.org

Definition and uniqueness of T14βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€² ) 1 𝑇14 being increasing, it follows that there

exists a unique 𝑇14βˆ— for which 𝑓 𝑇14

βˆ— = 0. With this value , we obtain from the three first equations

𝐺13 = π‘Ž13 1 𝐺14

(π‘Ž13β€² ) 1 +(π‘Ž13

β€²β€² ) 1 𝑇14βˆ—

, 𝐺15 = π‘Ž15 1 𝐺14

(π‘Ž15β€² ) 1 +(π‘Ž15

β€²β€² ) 1 𝑇14βˆ—

Definition and uniqueness of T17βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€² ) 2 𝑇17 being increasing, it follows that there

exists a unique T17βˆ— for which 𝑓 T17

βˆ— = 0. With this value , we obtain from the three first equations

𝐺16 = π‘Ž16 2 G17

(π‘Ž16β€² ) 2 +(π‘Ž16

β€²β€² ) 2 T17βˆ—

, 𝐺18 = π‘Ž18 2 G17

(π‘Ž18β€² ) 2 +(π‘Ž18

β€²β€² ) 2 T17βˆ—

Definition and uniqueness of T21βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€²) 1 𝑇21 being increasing, it follows that there

exists a unique 𝑇21βˆ— for which 𝑓 𝑇21

βˆ— = 0. With this value , we obtain from the three first equations

𝐺20 = π‘Ž20 3 𝐺21

(π‘Ž20β€² ) 3 +(π‘Ž20

β€²β€² ) 3 𝑇21βˆ—

, 𝐺22 = π‘Ž22 3 𝐺21

(π‘Ž22β€² ) 3 +(π‘Ž22

β€²β€² ) 3 𝑇21βˆ—

Definition and uniqueness of T25βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€² ) 4 𝑇25 being increasing, it follows that

there exists a unique 𝑇25βˆ— for which 𝑓 𝑇25

βˆ— = 0. With this value , we obtain from the three first

equations

𝐺24 = π‘Ž24 4 𝐺25

(π‘Ž24β€² ) 4 +(π‘Ž24

β€²β€² ) 4 𝑇25βˆ—

, 𝐺26 = π‘Ž26 4 𝐺25

(π‘Ž26β€² ) 4 +(π‘Ž26

β€²β€² ) 4 𝑇25βˆ—

Definition and uniqueness of T29βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€² ) 5 𝑇29 being increasing, it follows that

there exists a unique 𝑇29βˆ— for which 𝑓 𝑇29

βˆ— = 0. With this value , we obtain from the three first

equations

𝐺28 = π‘Ž28 5 𝐺29

(π‘Ž28β€² ) 5 +(π‘Ž28

β€²β€² ) 5 𝑇29βˆ—

, 𝐺30 = π‘Ž30 5 𝐺29

(π‘Ž30β€² ) 5 +(π‘Ž30

β€²β€² ) 5 𝑇29βˆ—

Definition and uniqueness of T33βˆ— :-

After hypothesis 𝑓 0 < 0, 𝑓 ∞ > 0 and the functions (π‘Žπ‘–β€²β€² ) 6 𝑇33 being increasing, it follows that

there exists a unique 𝑇33βˆ— for which 𝑓 𝑇33

βˆ— = 0. With this value , we obtain from the three first

equations

𝐺32 = π‘Ž32 6 𝐺33

(π‘Ž32β€² ) 6 +(π‘Ž32

β€²β€² ) 6 𝑇33βˆ—

, 𝐺34 = π‘Ž34 6 𝐺33

(π‘Ž34β€² ) 6 +(π‘Ž34

β€²β€² ) 6 𝑇33βˆ—

(e) By the same argument, the equations 92,93 admit solutions 𝐺13 , 𝐺14 if

πœ‘ 𝐺 = (𝑏13β€² ) 1 (𝑏14

β€² ) 1 βˆ’ 𝑏13 1 𝑏14

1 βˆ’

(𝑏13β€² ) 1 (𝑏14

β€²β€² ) 1 𝐺 + (𝑏14β€² ) 1 (𝑏13

β€²β€² ) 1 𝐺 +(𝑏13β€²β€² ) 1 𝐺 (𝑏14

β€²β€² ) 1 𝐺 = 0

Where in 𝐺 𝐺13 , 𝐺14 , 𝐺15 , 𝐺13 , 𝐺15 must be replaced by their values from 96. It is easy to see that Ο† is a

Page 56: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 56

ISSN 2250-3153

www.ijsrp.org

decreasing function in 𝐺14 taking into account the hypothesis πœ‘ 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique 𝐺14βˆ— such that πœ‘ πΊβˆ— = 0

(f) By the same argument, the equations 92,93 admit solutions 𝐺16 , 𝐺17 if

Ο† 𝐺19 = (𝑏16β€² ) 2 (𝑏17

β€² ) 2 βˆ’ 𝑏16 2 𝑏17

2 βˆ’

(𝑏16β€² ) 2 (𝑏17

β€²β€² ) 2 𝐺19 + (𝑏17β€² ) 2 (𝑏16

β€²β€² ) 2 𝐺19 +(𝑏16β€²β€² ) 2 𝐺19 (𝑏17

β€²β€² ) 2 𝐺19 = 0

Where in 𝐺19 𝐺16 , 𝐺17 , 𝐺18 , 𝐺16 , 𝐺18 must be replaced by their values from 96. It is easy to see that Ο† is a

decreasing function in 𝐺17 taking into account the hypothesis Ο† 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique G14βˆ— such that Ο† 𝐺19

βˆ— = 0

(g) By the same argument, the concatenated equations admit solutions 𝐺20 , 𝐺21 if

πœ‘ 𝐺23 = (𝑏20β€² ) 3 (𝑏21

β€² ) 3 βˆ’ 𝑏20 3 𝑏21

3 βˆ’

(𝑏20β€² ) 3 (𝑏21

β€²β€² ) 3 𝐺23 + (𝑏21β€² ) 3 (𝑏20

β€²β€² ) 3 𝐺23 +(𝑏20β€²β€² ) 3 𝐺23 (𝑏21

β€²β€² ) 3 𝐺23 = 0

Where in 𝐺23 𝐺20 , 𝐺21 , 𝐺22 , 𝐺20 , 𝐺22 must be replaced by their values from 96. It is easy to see that Ο† is a

decreasing function in 𝐺21 taking into account the hypothesis πœ‘ 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique 𝐺21βˆ— such that πœ‘ 𝐺23

βˆ— = 0

(h) By the same argument, the equations of modules admit solutions 𝐺24 , 𝐺25 if

πœ‘ 𝐺27 = (𝑏24β€² ) 4 (𝑏25

β€² ) 4 βˆ’ 𝑏24 4 𝑏25

4 βˆ’

(𝑏24β€² ) 4 (𝑏25

β€²β€² ) 4 𝐺27 + (𝑏25β€² ) 4 (𝑏24

β€²β€² ) 4 𝐺27 +(𝑏24β€²β€² ) 4 𝐺27 (𝑏25

β€²β€² ) 4 𝐺27 = 0

Where in 𝐺27 𝐺24 , 𝐺25 , 𝐺26 , 𝐺24 , 𝐺26 must be replaced by their values from 96. It is easy to see that Ο† is

a decreasing function in 𝐺25 taking into account the hypothesis πœ‘ 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique 𝐺25βˆ— such that πœ‘ 𝐺27

βˆ— = 0

(i) By the same argument, the equations (modules) admit solutions 𝐺28 , 𝐺29 if

πœ‘ 𝐺31 = (𝑏28β€² ) 5 (𝑏29

β€² ) 5 βˆ’ 𝑏28 5 𝑏29

5 βˆ’

(𝑏28β€² ) 5 (𝑏29

β€²β€² ) 5 𝐺31 + (𝑏29β€² ) 5 (𝑏28

β€²β€² ) 5 𝐺31 +(𝑏28β€²β€² ) 5 𝐺31 (𝑏29

β€²β€² ) 5 𝐺31 = 0

Where in 𝐺31 𝐺28 , 𝐺29 , 𝐺30 , 𝐺28 , 𝐺30 must be replaced by their values from 96. It is easy to see that Ο† is

a decreasing function in 𝐺29 taking into account the hypothesis πœ‘ 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique 𝐺29βˆ— such that πœ‘ 𝐺31

βˆ— = 0

(j) By the same argument, the equations (modules) admit solutions 𝐺32 , 𝐺33 if

πœ‘ 𝐺35 = (𝑏32β€² ) 6 (𝑏33

β€² ) 6 βˆ’ 𝑏32 6 𝑏33

6 βˆ’

(𝑏32β€² ) 6 (𝑏33

β€²β€² ) 6 𝐺35 + (𝑏33β€² ) 6 (𝑏32

β€²β€² ) 6 𝐺35 +(𝑏32β€²β€² ) 6 𝐺35 (𝑏33

β€²β€² ) 6 𝐺35 = 0

Where in 𝐺35 𝐺32 , 𝐺33 , 𝐺34 , 𝐺32 , 𝐺34 must be replaced by their values It is easy to see that Ο† is a

decreasing function in 𝐺33 taking into account the hypothesis πœ‘ 0 > 0 , πœ‘ ∞ < 0 it follows that there

exists a unique 𝐺33βˆ— such that πœ‘ πΊβˆ— = 0

Page 57: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 57

ISSN 2250-3153

www.ijsrp.org

Finally we obtain the unique solution of 89 to 94

𝐺14βˆ— given by πœ‘ πΊβˆ— = 0 , 𝑇14

βˆ— given by 𝑓 𝑇14βˆ— = 0 and

𝐺13βˆ— =

π‘Ž13 1 𝐺14βˆ—

(π‘Ž13β€² ) 1 +(π‘Ž13

β€²β€² ) 1 𝑇14βˆ—

, 𝐺15βˆ— =

π‘Ž15 1 𝐺14βˆ—

(π‘Ž15β€² ) 1 +(π‘Ž15

β€²β€² ) 1 𝑇14βˆ—

𝑇13βˆ— =

𝑏13 1 𝑇14βˆ—

(𝑏13β€² ) 1 βˆ’(𝑏13

β€²β€² ) 1 πΊβˆ— , 𝑇15

βˆ— = 𝑏15 1 𝑇14

βˆ—

(𝑏15β€² ) 1 βˆ’(𝑏15

β€²β€² ) 1 πΊβˆ—

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

G17βˆ— given by Ο† 𝐺19

βˆ— = 0 , T17βˆ— given by 𝑓 T17

βˆ— = 0 and

G16βˆ— =

a16 2 G17βˆ—

(a16β€² ) 2 +(a16

β€²β€² ) 2 T17βˆ—

, G18βˆ— =

a18 2 G17βˆ—

(a18β€² ) 2 +(a18

β€²β€² ) 2 T17βˆ—

T16βˆ— =

b16 2 T17βˆ—

(b16β€² ) 2 βˆ’(b16

β€²β€² ) 2 𝐺19 βˆ— , T18

βˆ— = b18 2 T17

βˆ—

(b18β€² ) 2 βˆ’(b18

β€²β€² ) 2 𝐺19 βˆ—

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

𝐺21βˆ— given by πœ‘ 𝐺23

βˆ— = 0 , 𝑇21βˆ— given by 𝑓 𝑇21

βˆ— = 0 and

𝐺20βˆ— =

π‘Ž20 3 𝐺21βˆ—

(π‘Ž20β€² ) 3 +(π‘Ž20

β€²β€² ) 3 𝑇21βˆ—

, 𝐺22βˆ— =

π‘Ž22 3 𝐺21βˆ—

(π‘Ž22β€² ) 3 +(π‘Ž22

β€²β€² ) 3 𝑇21βˆ—

𝑇20βˆ— =

𝑏20 3 𝑇21βˆ—

(𝑏20β€² ) 3 βˆ’(𝑏20

β€²β€² ) 3 𝐺23βˆ—

, 𝑇22βˆ— =

𝑏22 3 𝑇21βˆ—

(𝑏22β€² ) 3 βˆ’(𝑏22

β€²β€² ) 3 𝐺23βˆ—

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

𝐺25βˆ— given by πœ‘ 𝐺27 = 0 , 𝑇25

βˆ— given by 𝑓 𝑇25βˆ— = 0 and

𝐺24βˆ— =

π‘Ž24 4 𝐺25βˆ—

(π‘Ž24β€² ) 4 +(π‘Ž24

β€²β€² ) 4 𝑇25βˆ—

, 𝐺26βˆ— =

π‘Ž26 4 𝐺25βˆ—

(π‘Ž26β€² ) 4 +(π‘Ž26

β€²β€² ) 4 𝑇25βˆ—

𝑇24βˆ— =

𝑏24 4 𝑇25βˆ—

(𝑏24β€² ) 4 βˆ’(𝑏24

β€²β€² ) 4 𝐺27 βˆ— , 𝑇26

βˆ— = 𝑏26 4 𝑇25

βˆ—

(𝑏26β€² ) 4 βˆ’(𝑏26

β€²β€² ) 4 𝐺27 βˆ—

Obviously, these values represent an equilibrium solution

Finally we obtain the unique solution

𝐺29βˆ— given by πœ‘ 𝐺31

βˆ— = 0 , 𝑇29βˆ— given by 𝑓 𝑇29

βˆ— = 0 and

𝐺28βˆ— =

π‘Ž28 5 𝐺29βˆ—

(π‘Ž28β€² ) 5 +(π‘Ž28

β€²β€² ) 5 𝑇29βˆ—

, 𝐺30βˆ— =

π‘Ž30 5 𝐺29βˆ—

(π‘Ž30β€² ) 5 +(π‘Ž30

β€²β€² ) 5 𝑇29βˆ—

𝑇28βˆ— =

𝑏28 5 𝑇29βˆ—

(𝑏28β€² ) 5 βˆ’(𝑏28

β€²β€² ) 5 𝐺31 βˆ— , 𝑇30

βˆ— = 𝑏30 5 𝑇29

βˆ—

(𝑏30β€² ) 5 βˆ’(𝑏30

β€²β€² ) 5 𝐺31 βˆ—

Obviously, these values represent an equilibrium solution

Page 58: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 58

ISSN 2250-3153

www.ijsrp.org

Finally we obtain the unique solution

𝐺33βˆ— given by πœ‘ 𝐺35

βˆ— = 0 , 𝑇33βˆ— given by 𝑓 𝑇33

βˆ— = 0 and

𝐺32βˆ— =

π‘Ž32 6 𝐺33βˆ—

(π‘Ž32β€² ) 6 +(π‘Ž32

β€²β€² ) 6 𝑇33βˆ—

, 𝐺34βˆ— =

π‘Ž34 6 𝐺33βˆ—

(π‘Ž34β€² ) 6 +(π‘Ž34

β€²β€² ) 6 𝑇33βˆ—

𝑇32βˆ— =

𝑏32 6 𝑇33βˆ—

(𝑏32β€² ) 6 βˆ’(𝑏32

β€²β€² ) 6 𝐺35 βˆ— , 𝑇34

βˆ— = 𝑏34 6 𝑇33

βˆ—

(𝑏34β€² ) 6 βˆ’(𝑏34

β€²β€² ) 6 𝐺35 βˆ—

Obviously, these values represent an equilibrium solution

ASYMPTOTIC STABILITY ANALYSIS

Theorem 4: If the conditions of the previous theorem are satisfied and if the functions (π‘Žπ‘–β€²β€² ) 1 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 1

Belong to 𝐢 1 ( ℝ+) then the above equilibrium point is asymptotically stable.

Proof: Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

𝐺𝑖 = πΊπ‘–βˆ— + 𝔾𝑖 , 𝑇𝑖 = 𝑇𝑖

βˆ— + 𝕋𝑖

πœ•(π‘Ž14

β€²β€² ) 1

πœ•π‘‡14 𝑇14

βˆ— = π‘ž14 1 ,

πœ•(𝑏𝑖′′ ) 1

πœ•πΊπ‘— πΊβˆ— = 𝑠𝑖𝑗

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

𝑑𝔾13

𝑑𝑑= βˆ’ (π‘Ž13

β€² ) 1 + 𝑝13 1 𝔾13 + π‘Ž13

1 𝔾14 βˆ’ π‘ž13 1 𝐺13

βˆ— 𝕋14

𝑑𝔾14

𝑑𝑑= βˆ’ (π‘Ž14

β€² ) 1 + 𝑝14 1 𝔾14 + π‘Ž14

1 𝔾13 βˆ’ π‘ž14 1 𝐺14

βˆ— 𝕋14

𝑑𝔾15

𝑑𝑑= βˆ’ (π‘Ž15

β€² ) 1 + 𝑝15 1 𝔾15 + π‘Ž15

1 𝔾14 βˆ’ π‘ž15 1 𝐺15

βˆ— 𝕋14

𝑑𝕋13

𝑑𝑑= βˆ’ (𝑏13

β€² ) 1 βˆ’ π‘Ÿ13 1 𝕋13 + 𝑏13

1 𝕋14 + 𝑠 13 𝑗 𝑇13βˆ— 𝔾𝑗

15𝑗=13

𝑑𝕋14

𝑑𝑑= βˆ’ (𝑏14

β€² ) 1 βˆ’ π‘Ÿ14 1 𝕋14 + 𝑏14

1 𝕋13 + 𝑠 14 (𝑗 )𝑇14βˆ— 𝔾𝑗

15𝑗=13

𝑑𝕋15

𝑑𝑑= βˆ’ (𝑏15

β€² ) 1 βˆ’ π‘Ÿ15 1 𝕋15 + 𝑏15

1 𝕋14 + 𝑠 15 (𝑗 )𝑇15βˆ— 𝔾𝑗

15𝑗=13

If the conditions of the previous theorem are satisfied and if the functions (a𝑖′′ ) 2 and (b𝑖

β€²β€² ) 2 Belong to

C 2 ( ℝ+) then the above equilibrium point is asymptotically stable

Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

G𝑖 = Gπ‘–βˆ— + 𝔾𝑖 , T𝑖 = T𝑖

βˆ— + 𝕋𝑖

βˆ‚(π‘Ž17β€²β€² ) 2

βˆ‚T17 T17

βˆ— = π‘ž17 2 ,

βˆ‚(𝑏𝑖′′ ) 2

βˆ‚G𝑗 𝐺19

βˆ— = 𝑠𝑖𝑗

taking into account equations (global)and neglecting the terms of power 2, we obtain

d𝔾16

dt= βˆ’ (π‘Ž16

β€² ) 2 + 𝑝16 2 𝔾16 + π‘Ž16

2 𝔾17 βˆ’ π‘ž16 2 G16

βˆ— 𝕋17

Page 59: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 59

ISSN 2250-3153

www.ijsrp.org

d𝔾17

dt= βˆ’ (π‘Ž17

β€² ) 2 + 𝑝17 2 𝔾17 + π‘Ž17

2 𝔾16 βˆ’ π‘ž17 2 G17

βˆ— 𝕋17

d𝔾18

dt= βˆ’ (π‘Ž18

β€² ) 2 + 𝑝18 2 𝔾18 + π‘Ž18

2 𝔾17 βˆ’ π‘ž18 2 G18

βˆ— 𝕋17

d𝕋16

dt= βˆ’ (𝑏16

β€² ) 2 βˆ’ π‘Ÿ16 2 𝕋16 + 𝑏16

2 𝕋17 + 𝑠 16 𝑗 T16βˆ— 𝔾𝑗

18𝑗 =16

d𝕋17

dt= βˆ’ (𝑏17

β€² ) 2 βˆ’ π‘Ÿ17 2 𝕋17 + 𝑏17

2 𝕋16 + 𝑠 17 (𝑗 )T17βˆ— 𝔾𝑗

18𝑗 =16

d𝕋18

dt= βˆ’ (𝑏18

β€² ) 2 βˆ’ π‘Ÿ18 2 𝕋18 + 𝑏18

2 𝕋17 + 𝑠 18 (𝑗 )T18βˆ— 𝔾𝑗

18𝑗 =16

If the conditions of the previous theorem are satisfied and if the functions (π‘Žπ‘–β€²β€² ) 3 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 3 Belong to

𝐢 3 ( ℝ+) then the above equilibrium point is asymptotically stabl

Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

𝐺𝑖 = πΊπ‘–βˆ— + 𝔾𝑖 , 𝑇𝑖 = 𝑇𝑖

βˆ— + 𝕋𝑖

πœ•(π‘Ž21

β€²β€² ) 3

πœ•π‘‡21 𝑇21

βˆ— = π‘ž21 3 ,

πœ•(𝑏𝑖′′ ) 3

πœ•πΊπ‘— 𝐺23

βˆ— = 𝑠𝑖𝑗

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

𝑑𝔾20

𝑑𝑑= βˆ’ (π‘Ž20

β€² ) 3 + 𝑝20 3 𝔾20 + π‘Ž20

3 𝔾21 βˆ’ π‘ž20 3 𝐺20

βˆ— 𝕋21

𝑑𝔾21

𝑑𝑑= βˆ’ (π‘Ž21

β€² ) 3 + 𝑝21 3 𝔾21 + π‘Ž21

3 𝔾20 βˆ’ π‘ž21 3 𝐺21

βˆ— 𝕋21

𝑑𝔾22

𝑑𝑑= βˆ’ (π‘Ž22

β€² ) 3 + 𝑝22 3 𝔾22 + π‘Ž22

3 𝔾21 βˆ’ π‘ž22 3 𝐺22

βˆ— 𝕋21

𝑑𝕋20

𝑑𝑑= βˆ’ (𝑏20

β€² ) 3 βˆ’ π‘Ÿ20 3 𝕋20 + 𝑏20

3 𝕋21 + 𝑠 20 𝑗 𝑇20βˆ— 𝔾𝑗

22𝑗 =20

𝑑𝕋21

𝑑𝑑= βˆ’ (𝑏21

β€² ) 3 βˆ’ π‘Ÿ21 3 𝕋21 + 𝑏21

3 𝕋20 + 𝑠 21 (𝑗 )𝑇21βˆ— 𝔾𝑗

22𝑗 =20

𝑑𝕋22

𝑑𝑑= βˆ’ (𝑏22

β€² ) 3 βˆ’ π‘Ÿ22 3 𝕋22 + 𝑏22

3 𝕋21 + 𝑠 22 (𝑗 )𝑇22βˆ— 𝔾𝑗

22𝑗 =20

If the conditions of the previous theorem are satisfied and if the functions (π‘Žπ‘–β€²β€² ) 4 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 4 Belong to

𝐢 4 ( ℝ+) then the above equilibrium point is asymptotically stabl

Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

𝐺𝑖 = πΊπ‘–βˆ— + 𝔾𝑖 , 𝑇𝑖 = 𝑇𝑖

βˆ— + 𝕋𝑖

πœ•(π‘Ž25

β€²β€² ) 4

πœ•π‘‡25 𝑇25

βˆ— = π‘ž25 4 ,

πœ•(𝑏𝑖′′ ) 4

πœ•πΊπ‘— 𝐺27

βˆ— = 𝑠𝑖𝑗

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

𝑑𝔾24

𝑑𝑑= βˆ’ (π‘Ž24

β€² ) 4 + 𝑝24 4 𝔾24 + π‘Ž24

4 𝔾25 βˆ’ π‘ž24 4 𝐺24

βˆ— 𝕋25

Page 60: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 60

ISSN 2250-3153

www.ijsrp.org

𝑑𝔾25

𝑑𝑑= βˆ’ (π‘Ž25

β€² ) 4 + 𝑝25 4 𝔾25 + π‘Ž25

4 𝔾24 βˆ’ π‘ž25 4 𝐺25

βˆ— 𝕋25

𝑑𝔾26

𝑑𝑑= βˆ’ (π‘Ž26

β€² ) 4 + 𝑝26 4 𝔾26 + π‘Ž26

4 𝔾25 βˆ’ π‘ž26 4 𝐺26

βˆ— 𝕋25

𝑑𝕋24

𝑑𝑑= βˆ’ (𝑏24

β€² ) 4 βˆ’ π‘Ÿ24 4 𝕋24 + 𝑏24

4 𝕋25 + 𝑠 24 𝑗 𝑇24βˆ— 𝔾𝑗

26𝑗 =24

𝑑𝕋25

𝑑𝑑= βˆ’ (𝑏25

β€² ) 4 βˆ’ π‘Ÿ25 4 𝕋25 + 𝑏25

4 𝕋24 + 𝑠 25 𝑗 𝑇25βˆ— 𝔾𝑗

26𝑗 =24

𝑑𝕋26

𝑑𝑑= βˆ’ (𝑏26

β€² ) 4 βˆ’ π‘Ÿ26 4 𝕋26 + 𝑏26

4 𝕋25 + 𝑠 26 (𝑗 )𝑇26βˆ— 𝔾𝑗

26𝑗 =24

If the conditions of the previous theorem are satisfied and if the functions (π‘Žπ‘–β€²β€² ) 5 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 5 Belong to

𝐢 5 ( ℝ+) then the above equilibrium point is asymptotically stable

Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

𝐺𝑖 = πΊπ‘–βˆ— + 𝔾𝑖 , 𝑇𝑖 = 𝑇𝑖

βˆ— + 𝕋𝑖

πœ•(π‘Ž29

β€²β€² ) 5

πœ•π‘‡29 𝑇29

βˆ— = π‘ž29 5 ,

πœ•(𝑏𝑖′′ ) 5

πœ•πΊπ‘— 𝐺31

βˆ— = 𝑠𝑖𝑗

Then taking into account equations (global) and neglecting the terms of power 2, we obtain

𝑑𝔾28

𝑑𝑑= βˆ’ (π‘Ž28

β€² ) 5 + 𝑝28 5 𝔾28 + π‘Ž28

5 𝔾29 βˆ’ π‘ž28 5 𝐺28

βˆ— 𝕋29

𝑑𝔾29

𝑑𝑑= βˆ’ (π‘Ž29

β€² ) 5 + 𝑝29 5 𝔾29 + π‘Ž29

5 𝔾28 βˆ’ π‘ž29 5 𝐺29

βˆ— 𝕋29

𝑑𝔾30

𝑑𝑑= βˆ’ (π‘Ž30

β€² ) 5 + 𝑝30 5 𝔾30 + π‘Ž30

5 𝔾29 βˆ’ π‘ž30 5 𝐺30

βˆ— 𝕋29

𝑑𝕋28

𝑑𝑑= βˆ’ (𝑏28

β€² ) 5 βˆ’ π‘Ÿ28 5 𝕋28 + 𝑏28

5 𝕋29 + 𝑠 28 𝑗 𝑇28βˆ— 𝔾𝑗

30𝑗=28

𝑑𝕋29

𝑑𝑑= βˆ’ (𝑏29

β€² ) 5 βˆ’ π‘Ÿ29 5 𝕋29 + 𝑏29

5 𝕋28 + 𝑠 29 𝑗 𝑇29βˆ— 𝔾𝑗

30𝑗=28

𝑑𝕋30

𝑑𝑑= βˆ’ (𝑏30

β€² ) 5 βˆ’ π‘Ÿ30 5 𝕋30 + 𝑏30

5 𝕋29 + 𝑠 30 (𝑗 )𝑇30βˆ— 𝔾𝑗

30𝑗=28

If the conditions of the previous theorem are satisfied and if the functions (π‘Žπ‘–β€²β€² ) 6 π‘Žπ‘›π‘‘ (𝑏𝑖

β€²β€² ) 6 Belong to

𝐢 6 ( ℝ+) then the above equilibrium point is asymptotically stable

Denote

Definition of 𝔾𝑖 , 𝕋𝑖 :-

𝐺𝑖 = πΊπ‘–βˆ— + 𝔾𝑖 , 𝑇𝑖 = 𝑇𝑖

βˆ— + 𝕋𝑖

πœ•(π‘Ž33

β€²β€² ) 6

πœ•π‘‡33 𝑇33

βˆ— = π‘ž33 6 ,

πœ•(𝑏𝑖′′ ) 6

πœ•πΊπ‘— 𝐺35

βˆ— = 𝑠𝑖𝑗

Then taking into account equations(global) and neglecting the terms of power 2, we obtain

Page 61: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 61

ISSN 2250-3153

www.ijsrp.org

𝑑𝔾32

𝑑𝑑= βˆ’ (π‘Ž32

β€² ) 6 + 𝑝32 6 𝔾32 + π‘Ž32

6 𝔾33 βˆ’ π‘ž32 6 𝐺32

βˆ— 𝕋33

𝑑𝔾33

𝑑𝑑= βˆ’ (π‘Ž33

β€² ) 6 + 𝑝33 6 𝔾33 + π‘Ž33

6 𝔾32 βˆ’ π‘ž33 6 𝐺33

βˆ— 𝕋33

𝑑𝔾34

𝑑𝑑= βˆ’ (π‘Ž34

β€² ) 6 + 𝑝34 6 𝔾34 + π‘Ž34

6 𝔾33 βˆ’ π‘ž34 6 𝐺34

βˆ— 𝕋33

𝑑𝕋32

𝑑𝑑= βˆ’ (𝑏32

β€² ) 6 βˆ’ π‘Ÿ32 6 𝕋32 + 𝑏32

6 𝕋33 + 𝑠 32 𝑗 𝑇32βˆ— 𝔾𝑗

34𝑗 =32

𝑑𝕋33

𝑑𝑑= βˆ’ (𝑏33

β€² ) 6 βˆ’ π‘Ÿ33 6 𝕋33 + 𝑏33

6 𝕋32 + 𝑠 33 𝑗 𝑇33βˆ— 𝔾𝑗

34𝑗 =32

𝑑𝕋34

𝑑𝑑= βˆ’ (𝑏34

β€² ) 6 βˆ’ π‘Ÿ34 6 𝕋34 + 𝑏34

6 𝕋33 + 𝑠 34 (𝑗 )𝑇34βˆ— 𝔾𝑗

34𝑗 =32

The characteristic equation of this system is

πœ† 1 + (𝑏15β€² ) 1 βˆ’ π‘Ÿ15

1 { πœ† 1 + (π‘Ž15β€² ) 1 + 𝑝15

1

πœ† 1 + (π‘Ž13β€² ) 1 + 𝑝13

1 π‘ž14 1 𝐺14

βˆ— + π‘Ž14 1 π‘ž13

1 𝐺13βˆ—

πœ† 1 + (𝑏13β€² ) 1 βˆ’ π‘Ÿ13

1 𝑠 14 , 14 𝑇14βˆ— + 𝑏14

1 𝑠 13 , 14 𝑇14βˆ—

+ πœ† 1 + (π‘Ž14β€² ) 1 + 𝑝14

1 π‘ž13 1 𝐺13

βˆ— + π‘Ž13 1 π‘ž14

1 𝐺14βˆ—

πœ† 1 + (𝑏13β€² ) 1 βˆ’ π‘Ÿ13

1 𝑠 14 , 13 𝑇14βˆ— + 𝑏14

1 𝑠 13 , 13 𝑇13βˆ—

πœ† 1 2

+ (π‘Ž13β€² ) 1 + (π‘Ž14

β€² ) 1 + 𝑝13 1 + 𝑝14

1 πœ† 1

πœ† 1 2

+ (𝑏13β€² ) 1 + (𝑏14

β€² ) 1 βˆ’ π‘Ÿ13 1 + π‘Ÿ14

1 πœ† 1

+ πœ† 1 2

+ (π‘Ž13β€² ) 1 + (π‘Ž14

β€² ) 1 + 𝑝13 1 + 𝑝14

1 πœ† 1 π‘ž15 1 𝐺15

+ πœ† 1 + (π‘Ž13β€² ) 1 + 𝑝13

1 π‘Ž15 1 π‘ž14

1 𝐺14βˆ— + π‘Ž14

1 π‘Ž15 1 π‘ž13

1 𝐺13βˆ—

πœ† 1 + (𝑏13β€² ) 1 βˆ’ π‘Ÿ13

1 𝑠 14 , 15 𝑇14βˆ— + 𝑏14

1 𝑠 13 , 15 𝑇13βˆ— } = 0

+

πœ† 2 + (𝑏18β€² ) 2 βˆ’ π‘Ÿ18

2 { πœ† 2 + (π‘Ž18β€² ) 2 + 𝑝18

2

πœ† 2 + (π‘Ž16β€² ) 2 + 𝑝16

2 π‘ž17 2 G17

βˆ— + π‘Ž17 2 π‘ž16

2 G16βˆ—

πœ† 2 + (𝑏16β€² ) 2 βˆ’ π‘Ÿ16

2 𝑠 17 , 17 T17βˆ— + 𝑏17

2 𝑠 16 , 17 T17βˆ—

+ πœ† 2 + (π‘Ž17β€² ) 2 + 𝑝17

2 π‘ž16 2 G16

βˆ— + π‘Ž16 2 π‘ž17

2 G17βˆ—

πœ† 2 + (𝑏16β€² ) 2 βˆ’ π‘Ÿ16

2 𝑠 17 , 16 T17βˆ— + 𝑏17

2 𝑠 16 , 16 T16βˆ—

Page 62: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 62

ISSN 2250-3153

www.ijsrp.org

πœ† 2 2

+ (π‘Ž16β€² ) 2 + (π‘Ž17

β€² ) 2 + 𝑝16 2 + 𝑝17

2 πœ† 2

πœ† 2 2

+ (𝑏16β€² ) 2 + (𝑏17

β€² ) 2 βˆ’ π‘Ÿ16 2 + π‘Ÿ17

2 πœ† 2

+ πœ† 2 2

+ (π‘Ž16β€² ) 2 + (π‘Ž17

β€² ) 2 + 𝑝16 2 + 𝑝17

2 πœ† 2 π‘ž18 2 G18

+ πœ† 2 + (π‘Ž16β€² ) 2 + 𝑝16

2 π‘Ž18 2 π‘ž17

2 G17βˆ— + π‘Ž17

2 π‘Ž18 2 π‘ž16

2 G16βˆ—

πœ† 2 + (𝑏16β€² ) 2 βˆ’ π‘Ÿ16

2 𝑠 17 , 18 T17βˆ— + 𝑏17

2 𝑠 16 , 18 T16βˆ— } = 0

+

πœ† 3 + (𝑏22β€² ) 3 βˆ’ π‘Ÿ22

3 { πœ† 3 + (π‘Ž22β€² ) 3 + 𝑝22

3

πœ† 3 + (π‘Ž20β€² ) 3 + 𝑝20

3 π‘ž21 3 𝐺21

βˆ— + π‘Ž21 3 π‘ž20

3 𝐺20βˆ—

πœ† 3 + (𝑏20β€² ) 3 βˆ’ π‘Ÿ20

3 𝑠 21 , 21 𝑇21βˆ— + 𝑏21

3 𝑠 20 , 21 𝑇21βˆ—

+ πœ† 3 + (π‘Ž21β€² ) 3 + 𝑝21

3 π‘ž20 3 𝐺20

βˆ— + π‘Ž20 3 π‘ž21

1 𝐺21βˆ—

πœ† 3 + (𝑏20β€² ) 3 βˆ’ π‘Ÿ20

3 𝑠 21 , 20 𝑇21βˆ— + 𝑏21

3 𝑠 20 , 20 𝑇20βˆ—

πœ† 3 2

+ (π‘Ž20β€² ) 3 + (π‘Ž21

β€² ) 3 + 𝑝20 3 + 𝑝21

3 πœ† 3

πœ† 3 2

+ (𝑏20β€² ) 3 + (𝑏21

β€² ) 3 βˆ’ π‘Ÿ20 3 + π‘Ÿ21

3 πœ† 3

+ πœ† 3 2

+ (π‘Ž20β€² ) 3 + (π‘Ž21

β€² ) 3 + 𝑝20 3 + 𝑝21

3 πœ† 3 π‘ž22 3 𝐺22

+ πœ† 3 + (π‘Ž20β€² ) 3 + 𝑝20

3 π‘Ž22 3 π‘ž21

3 𝐺21βˆ— + π‘Ž21

3 π‘Ž22 3 π‘ž20

3 𝐺20βˆ—

πœ† 3 + (𝑏20β€² ) 3 βˆ’ π‘Ÿ20

3 𝑠 21 , 22 𝑇21βˆ— + 𝑏21

3 𝑠 20 , 22 𝑇20βˆ— } = 0

+

πœ† 4 + (𝑏26β€² ) 4 βˆ’ π‘Ÿ26

4 { πœ† 4 + (π‘Ž26β€² ) 4 + 𝑝26

4

πœ† 4 + (π‘Ž24β€² ) 4 + 𝑝24

4 π‘ž25 4 𝐺25

βˆ— + π‘Ž25 4 π‘ž24

4 𝐺24βˆ—

πœ† 4 + (𝑏24β€² ) 4 βˆ’ π‘Ÿ24

4 𝑠 25 , 25 𝑇25βˆ— + 𝑏25

4 𝑠 24 , 25 𝑇25βˆ—

+ πœ† 4 + (π‘Ž25β€² ) 4 + 𝑝25

4 π‘ž24 4 𝐺24

βˆ— + π‘Ž24 4 π‘ž25

4 𝐺25βˆ—

πœ† 4 + (𝑏24β€² ) 4 βˆ’ π‘Ÿ24

4 𝑠 25 , 24 𝑇25βˆ— + 𝑏25

4 𝑠 24 , 24 𝑇24βˆ—

πœ† 4 2

+ (π‘Ž24β€² ) 4 + (π‘Ž25

β€² ) 4 + 𝑝24 4 + 𝑝25

4 πœ† 4

Page 63: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 63

ISSN 2250-3153

www.ijsrp.org

πœ† 4 2

+ (𝑏24β€² ) 4 + (𝑏25

β€² ) 4 βˆ’ π‘Ÿ24 4 + π‘Ÿ25

4 πœ† 4

+ πœ† 4 2

+ (π‘Ž24β€² ) 4 + (π‘Ž25

β€² ) 4 + 𝑝24 4 + 𝑝25

4 πœ† 4 π‘ž26 4 𝐺26

+ πœ† 4 + (π‘Ž24β€² ) 4 + 𝑝24

4 π‘Ž26 4 π‘ž25

4 𝐺25βˆ— + π‘Ž25

4 π‘Ž26 4 π‘ž24

4 𝐺24βˆ—

πœ† 4 + (𝑏24β€² ) 4 βˆ’ π‘Ÿ24

4 𝑠 25 , 26 𝑇25βˆ— + 𝑏25

4 𝑠 24 , 26 𝑇24βˆ— } = 0

+

πœ† 5 + (𝑏30β€² ) 5 βˆ’ π‘Ÿ30

5 { πœ† 5 + (π‘Ž30β€² ) 5 + 𝑝30

5

πœ† 5 + (π‘Ž28β€² ) 5 + 𝑝28

5 π‘ž29 5 𝐺29

βˆ— + π‘Ž29 5 π‘ž28

5 𝐺28βˆ—

πœ† 5 + (𝑏28β€² ) 5 βˆ’ π‘Ÿ28

5 𝑠 29 , 29 𝑇29βˆ— + 𝑏29

5 𝑠 28 , 29 𝑇29βˆ—

+ πœ† 5 + (π‘Ž29β€² ) 5 + 𝑝29

5 π‘ž28 5 𝐺28

βˆ— + π‘Ž28 5 π‘ž29

5 𝐺29βˆ—

πœ† 5 + (𝑏28β€² ) 5 βˆ’ π‘Ÿ28

5 𝑠 29 , 28 𝑇29βˆ— + 𝑏29

5 𝑠 28 , 28 𝑇28βˆ—

πœ† 5 2

+ (π‘Ž28β€² ) 5 + (π‘Ž29

β€² ) 5 + 𝑝28 5 + 𝑝29

5 πœ† 5

πœ† 5 2

+ (𝑏28β€² ) 5 + (𝑏29

β€² ) 5 βˆ’ π‘Ÿ28 5 + π‘Ÿ29

5 πœ† 5

+ πœ† 5 2

+ (π‘Ž28β€² ) 5 + (π‘Ž29

β€² ) 5 + 𝑝28 5 + 𝑝29

5 πœ† 5 π‘ž30 5 𝐺30

+ πœ† 5 + (π‘Ž28β€² ) 5 + 𝑝28

5 π‘Ž30 5 π‘ž29

5 𝐺29βˆ— + π‘Ž29

5 π‘Ž30 5 π‘ž28

5 𝐺28βˆ—

πœ† 5 + (𝑏28β€² ) 5 βˆ’ π‘Ÿ28

5 𝑠 29 , 30 𝑇29βˆ— + 𝑏29

5 𝑠 28 , 30 𝑇28βˆ— } = 0

+

πœ† 6 + (𝑏34β€² ) 6 βˆ’ π‘Ÿ34

6 { πœ† 6 + (π‘Ž34β€² ) 6 + 𝑝34

6

πœ† 6 + (π‘Ž32β€² ) 6 + 𝑝32

6 π‘ž33 6 𝐺33

βˆ— + π‘Ž33 6 π‘ž32

6 𝐺32βˆ—

πœ† 6 + (𝑏32β€² ) 6 βˆ’ π‘Ÿ32

6 𝑠 33 , 33 𝑇33βˆ— + 𝑏33

6 𝑠 32 , 33 𝑇33βˆ—

+ πœ† 6 + (π‘Ž33β€² ) 6 + 𝑝33

6 π‘ž32 6 𝐺32

βˆ— + π‘Ž32 6 π‘ž33

6 𝐺33βˆ—

πœ† 6 + (𝑏32β€² ) 6 βˆ’ π‘Ÿ32

6 𝑠 33 , 32 𝑇33βˆ— + 𝑏33

6 𝑠 32 , 32 𝑇32βˆ—

πœ† 6 2

+ (π‘Ž32β€² ) 6 + (π‘Ž33

β€² ) 6 + 𝑝32 6 + 𝑝33

6 πœ† 6

πœ† 6 2

+ (𝑏32β€² ) 6 + (𝑏33

β€² ) 6 βˆ’ π‘Ÿ32 6 + π‘Ÿ33

6 πœ† 6

Page 64: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 64

ISSN 2250-3153

www.ijsrp.org

+ πœ† 6 2

+ (π‘Ž32β€² ) 6 + (π‘Ž33

β€² ) 6 + 𝑝32 6 + 𝑝33

6 πœ† 6 π‘ž34 6 𝐺34

+ πœ† 6 + (π‘Ž32β€² ) 6 + 𝑝32

6 π‘Ž34 6 π‘ž33

6 𝐺33βˆ— + π‘Ž33

6 π‘Ž34 6 π‘ž32

6 𝐺32βˆ—

πœ† 6 + (𝑏32β€² ) 6 βˆ’ π‘Ÿ32

6 𝑠 33 , 34 𝑇33βˆ— + 𝑏33

6 𝑠 32 , 34 𝑇32βˆ— } = 0

And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and

this proves the theorem.

Acknowledgments:

The introduction is a collection of information from various articles, Books, News Paper reports, Home Pages Of

authors, Journal Reviews, Nature β€˜s L:etters,Article Abstracts, Research papers, Abstracts Of Research Papers,

Stanford Encyclopedia, Web Pages, Ask a Physicist Column, Deliberations with Professors, the internet including

Wikipedia. We acknowledge all authors who have contributed to the same. In the eventuality of the fact that there

has been any act of omission on the part of the authors, we regret with great deal of compunction, contrition,

regret, trepidiation and remorse. As Newton said, it is only because erudite and eminent people allowed one to piggy

ride on their backs; probably an attempt has been made to look slightly further. Once again, it is stated that the

references are only illustrative and not comprehensive

REFERENCES

1. Dr K N Prasanna Kumar, Prof B S Kiranagi, Prof C S Bagewadi - MEASUREMENT DISTURBS

EXPLANATION OF QUANTUM MECHANICAL STATES-A HIDDEN VARIABLE THEORY -

published at: "International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012

Edition".

2. DR K N PRASANNA KUMAR, PROF B S KIRANAGI and PROF C S BAGEWADI -CLASSIC 2

FLAVOUR COLOR SUPERCONDUCTIVITY AND ORDINARY NUCLEAR MATTER-A NEW

PARADIGM STATEMENT - published at: "International Journal of Scientific and Research Publications,

Volume 2, Issue 5, May 2012 Edition".

3. A HAIMOVICI: β€œOn the growth of a two species ecological system divided on age groups”. Tensor,

Vol 37 (1982),Commemoration volume dedicated to Professor Akitsugu Kawaguchi on his 80th

birthday

4. FRTJOF CAPRA: β€œThe web of life” Flamingo, Harper Collins See "Dissipative structures” pages 172-

188

5. HEYLIGHEN F. (2001): "The Science of Self-organization and Adaptivity", in L. D. Kiel, (ed) .

Knowledge Management, Organizational Intelligence and Learning, and Complexity, in: The

Encyclopedia of Life Support Systems ((EOLSS), (Eolss Publishers, Oxford) [http://www.eolss.net

6. MATSUI, T, H. Masunaga, S. M. Kreidenweis, R. A. Pielke Sr., W.-K. Tao, M. Chin, and Y. J

Kaufman (2006), β€œSatellite-based assessment of marine low cloud variability associated with

aerosol, atmospheric stability, and the diurnal cycle”, J. Geophys. Res., 111, D17204,

doi:10.1029/2005JD006097

7. STEVENS, B, G. Feingold, W.R. Cotton and R.L. Walko, β€œElements of the microphysical structure of

numerically simulated nonprecipitating stratocumulus” J. Atmos. Sci., 53, 980-1006

Page 65: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 65

ISSN 2250-3153

www.ijsrp.org

8. FEINGOLD, G, Koren, I; Wang, HL; Xue, HW; Brewer, WA (2010), β€œPrecipitation-generated

oscillations in open cellular cloud fields” Nature, 466 (7308) 849-852, doi: 10.1038/nature09314,

Published 12-Aug 2010

9. R WOOD β€œThe rate of loss of cloud droplets by coalescence in warm clouds” J.Geophys. Res., 111,

doi: 10.1029/2006JD007553, 2006

10. H. RUND, β€œThe Differential Geometry of Finsler Spaces”, Grund. Math. Wiss. Springer-Verlag,

Berlin, 1959

11. A. Dold, β€œLectures on Algebraic Topology”, 1972, Springer-Verlag

12. S LEVIN β€œSome Mathematical questions in Biology vii ,Lectures on Mathematics in life sciences, vol

8” The American Mathematical society, Providence , Rhode island 1976

(13) Arndt, M. et al., Wave-particle duality of C60 molecules, Nature 401, 680-682 (1999)

(14) Yacoby, A., Heiblum, M., Mahalu, D., and Shtrikman, H., Coherence and phase sensitive measurements in a quantum dot, Phys. Rev. Lett. 74, 4047-4050 (1995).

(15) Gustavsson, S., Leturcq, R., Studer, M., Ihn, T., and Ensslin, K., Time-Resolved Detection of Single-Electron Interference, Nano Lett. 8, 2547-2550 (2008).

(16)^ F. Hoyle (1946). "The synthesis of the elements from hydrogen". Monthly Notices of the Royal

Astronomical Society 106: 343–383. Bibcode 1946MNRAS.106..343H.

(17)^ E. M. Burbidge, G. R. Burbidge, W. A. Fowler, F. Hoyle (1957). "Synthesis of the Elements in

Stars". Reviews of Modern Physics 29 (4): 547–

650. Bibcode1957RvMP...29...547B. DOI:10.1103/RevModPhys.29.547.

(18)^ Jones, Lauren V. (2009), Stars and galaxies, Greenwood guides to the universe, ABC-CLIO, p. 65–

67, ISBN 0-313-34075-7

(19)^ a b c d BΓΆhm-Vitense, Erika (1992), Introduction to Stellar Astrophysics, 3, Cambridge University

Press, pp. 93–100, ISBN 0-521-34871-4

(20)^ Reiners, A.; Basri, G. (March 2009). "On the magnetic topology of partially and fully convective

stars". Astronomy and Astrophysics 496 (3): 787–790. Bibcode2009A&A...496...787R. DOI: 10.1051/0004-

6361:200811450.

(21)^ a b de Loore, Camiel W. H.; Doom, C. (1992), Structure and evolution of single and binary stars,

Astrophysics and space science library, 179, Springer, pp. 200–214,ISBN 0-7923-1768-8

(22)^ a b c Jeffrey, C. Simon (2010), "Stellar structure and evolution: an introduction", in Go swami, A.;

Reddy, B. E., Principles and Perspectives in Cosmo chemistry, Springer, pp. 64–66, ISBN 3-642-10368-5

(23)^ Karttunen, Hannu; Oja, Heikki (2007), Fundamental astronomy (5th ed.), Springer, p. 247, ISBN 3-

540-34143-9

Page 66: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 66

ISSN 2250-3153

www.ijsrp.org

(24)^ Reid, I. Neill; Suzanne L., Hawley (2005), New light on dark stars: red dwarfs, low-mass stars,

brown dwarfs, Springer-Praxis books in astrophysics and astronomy (2nd ed.), Springer, p. 108, ISBN 3-

540-25124-3

(26)^ Salaris, Maurizio; Cassisi, Santi (2005), Evolution of stars and stellar populations, John Wiley and

Sons, pp. 119–123, ISBN 0-470-09220-3

(27)^ Schuler, S. C.; King, J. R.; The, L.-S. (2009), "Stellar Nucleosynthesis in the Hyades Open

Cluster", The Astrophysical Journal 701 (1): 837–

49, arXiv:0906.4812,Bibcode 2009ApJ...701..837S, DOI:10.1088/0004-637X/701/1/837

(28)^ Goupil, M. J.; Lebreton, Y.; Marques, J. P.; Samadi, R.; Baudin, F. (January 2011), "Open issues in

probing interiors of solar-like oscillating main sequence stars 1. From the Sun to nearly suns", Journal of

Physics: Conference Series 271 (1): 012031, Bibcode 2011JPhCS.271a2031G, DOI:10.1088/1742-

6596/271/1/012031.

(29)Wolf, S. A. et al., Spintronics: A spin-based electronic vision for the future, Science 294, 1488-1495 (2001).

(30)Awschalom, D. D., and FlattΒ΄e, M. E., Challenges for semiconductor spintronics, Nature Phys. 3 153-159 (2007).

==============================================================================

Page 67: 1DR K N PRASANNA KUMAR, 2PROF B S KIRANAGI ...While we do resort to concept formulation, related phenomenological methodologies, transformational minimal conditions we neither resort

International Journal of Scientific and Research Publications, Volume 2, Issue 8, August 2012 67

ISSN 2250-3153

www.ijsrp.org

First Author: 1Mr. K. N.Prasanna Kumar has three doctorates one each in Mathematics, Economics,

Political Science. Thesis was based on Mathematical Modeling. He was recently awarded D.litt. for his work on

β€žMathematical Models in Political Scienceβ€Ÿ--- Department of studies in Mathematics, Kuvempu University,

Shimoga, Karnataka, India Corresponding Author:[email protected]

Second Author: 2Prof. B.S Kiranagi is the Former Chairman of the Department of Studies in Mathematics,

Manasa Gangotri and present Professor Emeritus of UGC in the Department. Professor Kiranagi has guided

over 25 students and he has received many encomiums and laurels for his contribution to Co homology Groups

and Mathematical Sciences. Known for his prolific writing, and one of the senior most Professors of the

country, he has over 150 publications to his credit. A prolific writer and a prodigious thinker, he has to his credit

several books on Lie Groups, Co Homology Groups, and other mathematical application topics, and excellent

publication history.-- UGC Emeritus Professor (Department of studies in Mathematics), Manasagangotri,

University of Mysore, Karnataka, India

Third Author: 3Prof. C.S. Bagewadi is the present Chairman of Department of Mathematics and Department

of Studies in Computer Science and has guided over 25 students. He has published articles in both national and

international journals. Professor Bagewadi specializes in Differential Geometry and its wide-ranging

ramifications. He has to his credit more than 159 research papers. Several Books on Differential Geometry,

Differential Equations are coauthored by him--- Chairman, Department of studies in Mathematics and Computer

science, Jnanasahyadri Kuvempu University, Shankarghatta, Shimoga district, Karnataka, India