1984 hynes-griffin and franklin - seismic coefficient

40
-- ,,"\ ' . ::4 -,I, ARMY COE LIBRARY SACRAMEN' i 11II i I1I1IIIII1II1I j III11111111111111111111111 91001012 MISCELLANEOUS PAPER GL-84-13 RATIONALIZING THE SEISMIC COEFFICIENT METHOD by Mary E. Hynes-Griffin, Arley G. Franklin Geotechnical Laboratory DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers PO Box 631 Vicksburg, Mississippi 39180 July 1984 Final Report Approved For Public Release: Distnbution Unlimited OCT 2 11991 I Richmond t (S'10) Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314 Under CWIS Work Unit 31145

Upload: genesparc

Post on 01-Jan-2016

647 views

Category:

Documents


55 download

DESCRIPTION

Earthquake Analysis

TRANSCRIPT

Page 1: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

--

,,"\ '

~~

.::4-,I, ,:~.

ARMY COE LIBRARY SACRAMEN'

i11II iI1I1IIIII1II1I jIII~ 11111111111111111111111 91001012MISCELLANEOUS PAPER GL-84-13

RATIONALIZING THE SEISMIC COEFFICIENT METHOD

by

Mary E. Hynes-Griffin, Arley G. Franklin

Geotechnical Laboratory

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers

PO Box 631 Vicksburg, Mississippi 39180

July 1984

Final Report

Approved For Public Release: Distnbution Unlimited

OCT 2 11991

I Richmond (;j~1" [~14 t'Hl4,~II·\')h;H~J

t

(S'10)

~ Prepared for DEPARTMENT OF THE ARMY

US Army Corps of Engineers Washington, DC 20314

Under CWIS Work Unit 31145

Page 2: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Ditta E.ntered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUIolBER 3. RECIPIENT'S CATALOG NUMBERr' GOVT ACCESSiON NO.

Miscellaneous Paper GL-84-13 5. TYPE OF REPORT 4 PERIOO COVERED4. TI TL E (W1d SUb/lllo)

RATIONALIZING THE SEISMIC COEFFICIENT METHOD Final report 6. PERFORIolING ORG. REPORT NUIolBER

8. CONTRACT OR GRANT NUMBER(.)7. AUTHOR(o)

Mary E. Hynes-Griffin and Arley G. Franklin

10. PROGRAIol ELEIolENT. PROJECT, TASK AREA 4 ....ORK UNIT NUMBERS

9. PERFORIolING ORGANIZATION NAIolE AND ADDRESS

US Army Engineer Waterways Experiment Station Geotechnical Laboratory CWIS Work Unit 31145 PO Box 631, Vicksburg, Mississippi 39180

12. REPORT DATE11. CONTROLLING OFFICE N AIolE AN 0 ADDRESS

July 1984 US Army Corps of Engineers DEPARTMENT OF THE ARMY

13. NUIolBER OF PAGES

Washington, DC 20314 37 15. SECURITY CLASS. (01 thl. '.porr)14. IolONITORING AGENCY NAIolE a ADDRESS(II dlll.r..' lrom Co<Hrollln, Ollleo)

Unclassified

IS •. DECLASSIFICATION/DO....NGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (01 thlo Repor/)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEWENT (ot the abatrac:t ent.r.d in Block 10. it dill.rent from Report)

18. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161.

19. KEY WORDS (Continue on ... ve,. •• • ~d. It n.c•••.",. .,d Identify by block number)

Dams--Earthquake effects--Mathematics (LC) Seismic coefficient method Embankments (LC) (WES) Earth dams (LC) Earthquakes and hydraulic structures (LC)

2Cl. AB5rRACT (Caatfauo ............... H _ _ Id ....ttr ",. bloc" n ..... t...)

The seismic stability of embankment dams may be evaluated by a rela­tively simple method, originally proposed by N. M. Newmark, in cases where there is no threat of liquefaction or severe loss of shear strength under seismic shaking. This method is based on idealization of the potential slide mass as a sliding block on an inclined plane which undergoes a history of earthquake-induced accelerations. The result is a computation of the expected final displacement of the block relative to the base. A necessary refinement

(Continued) FO_

EDITION OF' I NOV 65 IS OBSOLETEDO J ...... n 1m Unclassified SECURITY CLASSIFICAT'OH OF ,H'S PA:""...E (JPnNn Det. En/ered)

"'

I

Page 3: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(l"l ... D.'. En'.red)

20. ABSTRACT (Continued).

is the consideration of amplification of the base motions in the embankment, which is evaluated by means of a linear elastic analysis. Sliding block anal­yses have been done for 348 horizontal components of natural earthquakes and 6 synthetic records. These computations, together with available results of amplification analyses, suggest that a pseudostatic seismic coefficient analy­sis would be appropriate for embankment dams where it is not necessary to con­sider (a) liquefaction or severe loss of shear strength, (b) vulnerability of the dam to small displacements, or (c) very severe earthquakes, of magnitude 8 or greater. A factor of safety greater than 1.0, with a seismic coefficient. equal to one-half the predicted bedrock acceleration, would assure that defor­mations would not be dangerously large.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When D.,. Entered)

Page 4: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

PREFACE

The screening analysis reported herein is based on seismic stability

evaluations of several earth dams, in particular Richard B. Russell Dam in

Georgia and South Carolina and Ririe Dam in Idaho, and was performed by the

Earthquake Engineering and Geophysics Division (EE&GD), Geotechnical Labora­

tory (GL), U. S. Army Engineer Waterways Experiment Station (WES) , Vicksburg,

Miss.. This study was sponsored by the Office, Chief of Engineers (OCE) , U. S.

Army, under the Civil Works Investigational Studies (CWIS), Soils Research

Program (Work Unit 31145), "Liquefaction of Dams and Foundations During Earth­

quakes," for which Mr. R. F. Davidson was the OCE Technical Monitor.

The research was conducted and the report prepared by Ms. M. E.

Hynes-Griffin, EE&GD, and Dr. A. G. Franklin, Principal Investigator and

Chief, EE&GD. Appendix A was prepared by Mr. F. K. Chang, EE&GD. The study

was performed under the general supervision of Dr. W. F. Marcuson III, Chief,

GL.

COL Tilford C. Creel, CE, was Commander and Director of WES during the

preparation of this report. Mr. F. R. Brown was Technical Director.

1 "'

Page 5: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

CONTENTS

Page

PREFACE . . . . . . . . . . . 1

APPENDIX A: TABLES OF SLIDING BLOCK CALCULATIONS FOR STRONG-MOTION DATA, EARTHQUAKES OF THE WESTERN UNITED STATES AND OTHER COUNTRIES, AND SYNTHETIC ACCELEROGRAMS ..... Al

PART I: INTRODUCTION . 3

PART II: PERMANENT DISPLACEMENT ANALYSIS 5

Stability Analysis . . . . . 5 Sliding Block Analysis 8 Embankment Response Analysis 13

PART III: CONCLUSIONS 19

REFERENCES 20

TABLE 1

2 ""'-,

Page 6: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

RATIONALIZING THE SEISMIC COEFFICIENT METHOD

PART I: INTRODUCTION

1. Until the 1960's, seismic analysis of dams consisted essentially of

the seismic coefficient ~ethod, in which a static, horizontal inertia force

was applied to the potential sliding mass in an otherwise conventional static

limit analysis. The magnitude of the inertia force was chosen on the basis of

judgment and tradition; a rational basis was lacking. Alternatives to this

approach became available during the 1960's and 1970's. A method of analysi~

that dealt with the softening or liquefaction of granular soil? was evolved,

largely through work at the University of California at Berkeley, with Profes­

sor H. B. Seed playing the leading role. This approach is based on comparison

of dynamic shear stresses computed in a transient response analysis to the

cyclic strength (resistance to liquefaction) obtained from laboratory cyclic

shear tests or from empirical correlations of liquefaction occurrence (and non­

occurrence) with Standard Penetration Tests (Seed, et al. 1975a, bj Seed 1979j

Seed and Idriss 1983). A second alternative is to deal with the permanent de­

formations that might be anticipated if the embankment and foundation soils do

not suffer liquefaction or severe softening under cyclic loading, using as an

idealized model of the displaced part of the embankment a rigid block sliding

on an inclined plane. This approach was proposed by the late Professor N. M.

Newmark in his Rankine Lecture (1965). Other contributions to a coherent pro­

cedure using this approach have been made by Professors Ambraseys and Sarma,

Imperial College, London (e.g. Ambraseys and Sarma 1967; Sarma 1975,1979),

the Berkeley group (Goodman and Seed 1966, Makdis~ and Seed 1977), and the

U. S. Army Engineer Waterways Experiment Station (WES) (Franklin and Chang

1977, Franklin and Hynes-Griffin 1981).

2. Sufficient experience has been gained in the application of the New­

mark approach to allow some conclusions to be drawn. In the absence of lique­

faction effects, dams with adequate static factors of safety against sliding

are not likely to be predicted by this analysis to be subject to deformations

so large as to endanger their reservoirs, through limited sliding deformations

may be predicted. This result suggests that many--perhaps most--permanent

displacement analyses do not really need to be done, and that some simple

screening method should be applied to separate those dams that are clearly

3

""

Page 7: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

safe against earthquake-induced failure from those that require further anal­

ysis. A seismic coefficient analysis can serve this screening function, be­

cause the accumulated experience in permanent displacement analyses now pro­

vides a rational basis for choosing the value of the coefficient. The

rationale is based on assuring that deformations will be limited to tolerable

values, assuming the worst combination of earthquake loads and resonant em­

bankment response. A procedure that uses this approach is proposed in this

report.

4

Page 8: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

PART II: PERMANENT DISPLACEMENT ANALYSIS

3. The major components of a permanent displacement analysis of the

Newmark type, as applied by the WES, are shown in Figure 1. The primary com­

ponent is the analysis of motions of a system consisting of a rigid block

sliding on an inclined plane, chosen to represent a potential sliding mass in

an embankment, as described by Newmark. A conventional limit analysis, or

slope stability analysis, with slight modifications, provides the shearing

resistance between the block and plane. Because bedrock motions may be ampl!­

fied upon being propagated upward through an embankment, a rigid-body model

may underestimate displacements, and an analysis of the amplification response

of the embankment is incorporated to account for amplified accelerations in

the embankment.

GEOLOGICAL AND

SEISMOLOGICAL EVALUATION

FIELD INVESTIGATION

Testing Sampling

LABORATORY INVESTIGATION

Routine Dynamic

SLIDING BLOCK

ANALYSIS

EMBANKMENT RESPONSE COMPUTE ANALYSIS u vs. h

lJ L I STABILITY r ...., ANALYSIS

Figure 1. Permanent displacement analysis

Stability Analysis

4. The concept of the traditional pseudostatic, seismic coefficient

method of analysis is illustrated in Figure 2. In an otherwise conventional

static stability analysis, such as a method of slices analysis, the earthquake

loading is represented by a statically applied horizontal force kW, where W

is the weight of the slice and k is the seismic coefficient, which is some

fraction of gravity. The value of k is generally prescribed by code or reg­

ulation, with values usually in the range of 0.05 to 0.20, depending on the

seismicity of the site. The procedure is described in EM 1110-2-1902 (U. S.

Army, Office, Chief of Engineers 1970) and in many standard texts.

5 "",

Page 9: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

kW ... I +

Ei + 1

W

~

~c

Ft~N Figure 2. Earthquake stability analysis by pseudostatic

method using seismic coefficient.

5. For analysis of permanent displacements, the shearing resistance be­

tween the potential sliding mass and the underlying base is evaluated in terms

of a critical acceleration N , defined as the acceleration (of the ground or

embankment below the sliding surface) that will reduce the factor of safety

against sliding to unity, i.e., that will make sliding imminent. The value of

N , which is expressed as a fraction of gravity (g) , is obtained through a

stability analysis similar to conventional pseudostatic stability analyses,

but which includes two special features. One is that the stability is evalu­

ated in terms of a critical acceleration rather that a factor of safety, and

the other is that, because the amplified accelerations vary over the height of

the embankment, critical accelerations are determined for possible sliding

masses whose bases lie at various elevations in the section (Figure 3).

6. The analysis may be performed using conventional stability analysis

6

Page 10: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

+

r::: o-CO > CD CD

'l" critical acceleration

Figure 3. Critical acceleration as a function of elevation

methods such as those of Bishop (1955) or Morgenstern and Price (1965). Trial

values of acceleration may be used to find the value that reduces the factor

of safety to unity. The Sarma method (Sarma 1975), which employs a slip sur­

face of arbitrary shape, determines the value of N directly.

7. In principle, the analysis can be performed on either a total or an

effective stress basis, but the problems of estimating pore pressures induced

by cyclic shearing are avoided by using a total stress analysis. The usual

Corps of Engineers practice for static stability analyses is to use a compos­

ite shear strength envelope based on the S test (consolidated-drained) at low

confining pressures and the R test (consolidated-undrained) at high confining

pressures (Figure 4). This strength envelope, which conservatively takes into

account possible dissipation of shear-induced negative pore pressures that

might occur in the field but cannot occur in an undrained test in the labora­

tory, is recommended for pervious soils. For soils of low permeability, in

which undrained conditions are more likely to exist during an earthquake, an

undrained (R) strength envelope would be appropriate.

8. Makdisi and Seed (1977) point out that substantial permanent strains

may be produced by cyclic loading of soils to stresses near the yield stress,

while essentially elastic behavior is observed under many (>100) cycles of

loading at 80 percent of the undrained strength. They recommend the use of

80 percent of the undrained strength as the "dynamic yield strength" for soils

that exhibit small increases in pore pressure during cyclic loading, such as

clayey materials, dry or partially saturated cohesionless soils, or very dense

saturated cohesionless materials.

7 --.,

Page 11: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

f-­

til til <J.) .... til

.... eo <J.)

s: til

normal stress (J

Figure 4. Composite "S-R" strength envelope

Sliding Block Analysis

9. Figure 5 presents the elements of the sliding block analysis (Frank­

lin and Chang 1977). The potential sliding mass in Figure Sa is in a condi­

tion of impending failure, so that the factor of safety equals unity. This

condition is caused by the acceleration of both the base and the mass toward

the left of the sketch with an acceleration of Ng. The acceleration of the

mass is limited to this value by the limit of the shear stresses that can be

exerted across the contact, so that if the base acceleration were to increase,

the mass would move downhill relative to the base. By D'Alembert's principle,

the limiting acceleration is represented by an inertia force NW applied

pseudostatically to the mass in a direction opposite to the acceleration.

10. Figure 5b shows the force polygon for this situation. The angle of

inclination 8 of the inertia force may be found as the angle that is most

critical; this is, the angle that minimizes N. Its value is usually within

a few degrees of zero, and since the results of the analysis are not sensitive

to it, it can generally be ignored. The angle ~ is the direction of the re­

sultant S of the shear stresses on the interface and is determined in the

course of the stability analysis. The same force polygon applies to the model

of a sliding block on a plane inclined at an angle ~ to the horizontal (Fig­

ure 5c). Hence, the sliding block model is used to represent the sliding mass

in an embankment.

8

Page 12: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

o

S

pf -1l

\ p

..-- W\ NW

a. POTENTIAL SLIDING MASS b. FORCE POLYGON FOR F.S.=-1.0

Q)

o I­

oW -

Nd W

UPHILL

DOWNHILL ..

displacement

NuW

c. SLIDING BLOCK MODEL d. FORCE-DISPLACEMENT RELATION

time

OF SLIDING MASS

RELA TlVE DISPLACEMENT

DURING ONE CYCLE

GROUND VELOCITY VgCt)

o" e \ & , f:.t0..~, fI:.\.¥ ..

o o iJ.)

>

>.-

e. COM PUT A TION OF DISPLACEMENT

Figure 5. Elements of the sliding block analysis

9

....

Page 13: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

11. The force-displacement relation in Figure 5d is assl~ed to apply to

this system. The force in this diagram is the inertia force corresponding to

the instantaneous acceleration of the block, and the displacement is the slid­

ing displacement of the block relative to the base. It is usually assumed

that resistance to uphill sliding is large enough that all displacements are

downhill. This assumption, in addition to simplifying the calculations, 1S

both realistic and conservative (Franklin and Chang 1977).

12. If the base (i.e., the inclined plane) is subjected to some se­

quence of acceleration pulses (the earthquake) large enough to induce s~iding

of the block, the result will be that after the motion has abated, the block

will come to rest at some displaced position down the slope. The amount of

permanent displacement, which will be called u, can be computed by using

Newton's second law of motion, F = rna , to write the equation of motion for

the sliding block relative to the base, and then numer1cally or graphically

integrating (twice) to obtain the resultant displacement. During the time

intervals when relative motion is occurring, the acceleration of the block

relative to the base is given by

cos (~ - e - ~) u = = (abase N) (1)a r e l cos ~

- (a N)\ . a- \ base ­

where

a = relative acceleration between the block and the inclined planer e l

a = acceleration of the inclined plane, a function of timebase N = critical acceleration level at which sliding begins

~ = direction of the resultant shear force and displacement, and the inclination of the plane

e = direction of the acceleration, measured from the horizontal

~ = friction angle between the block and the plane

The acceleration a is the earthquake acceleration acting at the level ofbase

the sliding mass in the embankment. It is assumed to be equal to the bedrock

acceleration multiplied by an amplification factor that accounts for the

q~asi-elastic response of the embankment.

13. The permanent displacement is determined by twice integrating the

relative accelerations over the total duration of the earthquake record. It 1S

assumed that ~, ~,and e do not change with time; thus, the coefficient

10 "'

Page 14: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

a is a constant and is not involved in the integration. In the final stage

of analysis, the result of the integration is multiplied by the coefficient

a , the determination of which requires knowledge of the embankment properties

and the results of the pseudostatic stability analysis. For most practical

problems, the coefficient a differs from unity by less than 15 percent (Fig­

ure 6). For the purposes of this report, a value of unity will be assumed.

45, » .. } ,. I I II

en CD CD "­CD CD

"C

Q:)

I

~ 15

a= 1.0 1.3

o r I ! I

o 15 30 45

¢. degrees

Figure 6. Values of the coefficient a

14. The integration can be easily visualized on a plot of base velocity

versus time, obtained by a single integration of the acceleration record (Fig­

ure 5e). Since the slope of the velocity curve is the acceleration, the

limiting acceleration Ng of the block defines .the velocity curve for the

block by straight lines in those parts of the plot where the critical accel­

eration has been exceeded in the base. The area between the curves gives the

relative displacement.

15. In this analysis, the characteristics of the sliding mass in the

embankment are represented only by the critical acceleration N and the am­

plification factor, the latter being simply a constant multiplying factor.

The permanent displacement u for a particular earthquake record can be de­

termined as a function of N/A ,where Ag is the peak value of the earth­

quake acceleration, and the u versus N/A curve can be determined from the

earthquake record without reference to a particular embankment.

11

Page 15: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

16. Kutter (1982) has done limited experimental testing of this method

by means of model embankments shaken by simulated earthquakes in the Cambridge

University geotechnical centrifuge. For these tests, the sliding block model

gave poor predictions of very small displacements «1 em), but if strength

degradation was provided for, it produced good predictions when the displace­

ments at prototype scale were greater than about 1 cm.

17. The following example, drawn from Kutter's test results for embank­

ment model D and earthquake I , demonstrates the application of the dis­

placement calculation procedures described herein. If the yield acceleration

for the embankment model is calculated on the basis of 80 percent of the mea­

sured shear strength, and the measured amplification of the base motion is in­

cluded, the predicted displacement is 15.0 em and the corresponding measured

displacement is 16.4 em at the prototype scale.

18. Sliding block analyses have been done at the WtS for 348 horizontal

earthquake components and 6 synthetic records. These calculations are tabu­

lated in Appendix A. The results are summarized in Figure 7, which shows the

mean, mean plus one standard deviation (a), and upper bound curves, for all

natural records and all synthetic records representing magnitudes smaller than

8.0. (Caution is recommended in interpreting these curves quantitatively In

terms of relative probability, because the data base is biased by over­

representation of a single earthquake, the 1971 San Fernando earthquake, which

produced records at many locations.)

19. The question of how much deformation is tolerable has no single

answer; it depends on such factors as the size and geometry of the dam, the

zonation, the location of the sliding surface, and the amount of freeboard

available. The authors have arbitratily chosen 1 m of permanent displacement

as a tolerable upper limit. Such a deformation would surely be considered

serious damage, but it could be tolerated in most dams without immediately

threatening the integrity of the reservoir. The unusual cases where a dam

could not tolerate 1 m of displacement, because of small freeboard or vulner­

ability of critical design features to small displacements, should be evalu­

ated by other methods.

20. When Figure 7 is entered at 100 em (1 m) of displacement, the cor­

responding N/A value is 0.17. Thus, deformations will be limited to less

than 1 m of displacement if the critical acceleration is as much as 0.17 times

the peak acceleration on the sliding surface.

12

Page 16: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

1000' I I

"'.0;061

"'6

-E o 100'

0", /)0'

I" 11

""= "I"" I-::s

1 0 I I

0.01 0.1 1.0

N/A

Figure 7. Permanent displacement u versus N/A , based on 348 horizontal components and 6 synthetic accelerograms

Embankment Response Analysis

21. Amplification of ground motions in the embankments may be examined

by analysis of a shear-beam model of the embankment-foundation system. A

closed-form solution has been obtained by Sarma (1979) for the problem illus­

trated by Figure 8. The model considered is an untruncated triangular wedge

of height hI with a shear-wave velocity SI and density PI ' underlain by

a foundation layer with thickness h ' shear-wave velocity S2 ' and density2 P2' Both the wedge and foundation are linearly visco-elastic and have the

Isame damping ratio D. The earthquake motions are considered to be rigid-body

I

I 13

Page 17: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

T 81 , P 1 ,D

h2 8 2 , P2 ,D

~f~~~~~~~~ -- at t)

Figure 8. Mathematical model for viscoelastic shear beam analysis of embankment and foundation response

by the Sarma method

motions in the rock underlying the foundation layer, and it is assumed that

all motions are horizontal (hence, a shear-beam model). Shear-wave veloc­

ities and damping values are chosen so as to be consistent with expected

strain levels. The computation of accelerations is carried out in the time

domain.

22. Geometry and material properties are described in terms of the

dimensionless parameters m and q , which are defined as

P1 S1 Sl h2 m =-- and q =-- (2)

P2S2 S2h 1

23. For use with the sliding block analysis, accelerations are averaged

over a wedge that is selected to be approximately equivalent in volume and

location to a potential sliding mass with its base at some chosen elevation,

as shown in Figure 9. The average acceleration acting on the wedge at any

instant is taken as

a av

=JAa(z) A

dA (3)

where a(z) is the acceleration of the area element dA, at elevation z ,

and A is the total area of the wedge.

24. The largest average acceleration that acts on the wedge at any time

during the earthquake shaking is produced as the output of the computer pro­

gram, and the ratio of that acceleration value to the peak bedrock accelera­

tion is taken as the amplification factor for the wedge. In Figure 10, values

of the amplification factor are plotted against the embankment fundamental pe­

riod T for one record of the Parkfield earthquake of 27 June 1966. Curves o

14 "'.

Page 18: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

c o /C'J o::> ill

ill

TT1

~...8?~/:::V~/~~f~Aa amplification factor

Figure 9. Computation of average acceleration acting on the sliding mass

3.0

-o

I ­

02.0

C'J-C 0--C'J o

- 1.0 a. E ca

0

m = 0.5

q =O. 5

damping =20%

0.1 0.5 1.0 4.0

fundamental period, seconds

Figure 10. A~plification curves for the S 25 Wcomponent, Temblor No. 2 Record, Parkfield earthquake of 27 June 1966

(damping = 20 percent)

are shown for wedges with their bases at various distances y/h (defined1

in Figure 9) from the crest, for a single combination of m and q values

(m = 0.5, q = 0.5).

25. Amplification curves have been obtained from 27 strong-motion

earthquake records and a wide range of m and q values (representing em­

bankments on rock and on foundation layers of varied thickness, and with a

variety of relative embankment-foundation stiffnesses). Damping values used

ranged from 15 to 20 percent. Also, numerous computed amplification values

have been obtained from finite element analyses and from the literature.

15 "

Page 19: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Figure 11 presents a summary of computed resonant response, obtained by plot­

ting the values at the peaks of the amplification curves. Table 1 shows these

peak amplification values. Amplification values obtained from finite element

analyses, which do not necessarily represent resonant conditions, are gener­

ally lower than these curves indicate.

26. To use these curves in a permanent displacement analysis, pick off

the amplification factor for the depth of sliding being investigated, and mul­

tiply the peak bedrock acceleration by that value before entering the plot of

displacement versus N/A. This step involves an assumption that the sliding

block analysis and the amplification analysis can be decoupled. In fact,

there is good reason to believe that decoupling results in overestimates of

the amplification when very strong shaking is involved. The amplification may

be large in cases where the motions are small and the embankment behavior is

nearly elastic (Gazetas, et al. 1981), but this assumption is not compatible

with inelastic embankment response. If accelerations are high enough to pro­

duce sliding on a deep surface, then the embankment is incapable of propa­

gating these large accelerations to higher elevations. The critical accelera­

tion on a slip surface defines the magnitude of acceleration that can be prop­

agated beyond it. At the same time, the critical acceleration always de­

creases with depth, in a homogeneous section with constant slopes.

27. A note of caution is in order for dams with abrupt changes in sec­

tion or zoning that would cause a reduction in yield accelerations for slip

surfaces above the base of the embankment. For example, some dams have slopes

that steepen abruptly near the crest. However, for upstream slip surfaces,

the reduction in yield acceleration due to steeper slopes is usually more

than offset by an increase due to lower pore pressures if the steeper

section lies above the pool elevation. Upstream or downstream berms will also

result in relatively reduced yield accelerations for slip surfaces that lie

entirely above the berms. For these or similar cases, a profile of yield ac­

celerations can be developed from stability analyses; Figure 11 can be used to

estimate amplification factors; and potential displacement can be calculated

from Figure 7 for each of the potential slip surfaces identified in the sta­

bility analyses.

28. The authors conclude that, except for a few special cases, deep

sliding surfaces are of greatest significance when evaluating the possibility

of displacements that could threaten the integrity of the structure, and

16

l-

l l I·

· i

· .,

Page 20: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

:1

u J

CREST 0 u 1 u

I

I J

u 0.4

y Ih 1

0.6

, I

..I

1 I 0.8

J

u

BAS E 1.0 !

I I I I I

0.2 l- t

/S!l ~~~~~

I

o 1.0 2.0 3.0 4.0 u

amplification factor

i

5.0 I , , ! , !

Figure 11. Amplification factors for linearly viscoelasticJ embankments at resonance

...

17

-l

Page 21: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

accordingly, they look for a limiting amplification factor representing slid­

i.rig surfaces at the base of the embankment. Figure 11 shows that the value al

the mean plus 2a limit is approximately 3.0. Applying this amplification fac­

tor to the N/A value, 0.17, which gives an upper bound of 1-m displacement

for the rigid-plastic sliding block, the ratio of critical acceleration to

peak bedrock acceleration is 0.5.

r

~

~

18

nmccullo
Highlight
Page 22: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

1 ]

PART III: CONCLUSIONS

29. The results of analysis of earthquake strong-motion records using a , j

sliding block model and a decoupled elastic response analysis

manent displacements for deep-seated sliding surfaces limited

show that per­

to less than 1 m

n carr be assured if tbe ratio of critical acceleration to peak bedrock accelera­

tion is at least 0.5. This value is considered to be very conservative and

subject to downward revision as better understanding of elastic-plastic ampli­

fication response of embankments is developed.

30. Furthermore, a pseudostatic, seismic coefficient analysis can serve

as a useful screening procedure to separate dams that are clearly safe against ~

earthquake-induced sliding failure from those that require further analysis.

The permarrent displacement analyses described in this report provide a ra­

tional basis for choosing the value of the seismic coefficient.

31. The suggested procedure is as follows:

a. Carry out a conventional pseudostatic stability analysis, using - a seismic coefficient equal to one-half the predicted peak bed­

rock acceleration.

b. Use a composite S-R strength envelope for pervious soils, and - the R (undrained) strength for clays, multiplying the shear

strength in either case by 0.8.

c. Use a minimum factor of safety of 1.0.

32. This procedure should not be used in the following cases:

a. wbere areas are subject to great earthquakes (of magnitude 8.0 or greater).

b. wbere materials in either the embankment or foundation are sus­ceptible to liquefaction under the design cyclic loading.

c. wbere the available freeboard is small, or where the dam has safety-related features that are vulnerable to small deformations.

19

nmccullo
Highlight
nmccullo
Highlight
nmccullo
Highlight
nmccullo
Highlight
nmccullo
Highlight
Page 23: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

-------.."""""-,-"""~-...~~~~~.J~~::.~~"':'~~~~:.,~:'>'~~::~_~~

REFERENCES

Ambraseys, N. N., and Sarma, S. K. 1967. "The Response of Earth Dams to Strong Earthquakes," Geotechnique, Vol 17, No.2, pp 181-213.

Bishop, A. W. 1955. "The Use of the Slip Circle in the Stability Analysis of Slopes," Geotechnique, Vol 5, No.1, pp 7-17.

Franklin, A. G., and Chang, F. K. 1977. "Earthquake Resistance of Earth and Rock-Fill Dams; Permanent Displacements of Earth Embankments by Newmark Slid­ing Block Analysis," Miscellaneous Paper S-71-17, Report 5, U. S. Army Engi­neer Waterways Experiment Station, CE, Vicksburg, Miss.

Franklin, A. G., and Hynes-Griffin, M. E. 1981. "Dynamic Analysis of Embank­ment Sections, Richard B. Russel Dam," Proceedings, Earthquakes and Earthquake Engineering - The Eastern United States Conference, Knoxville, Tenn.

Gazetas, G., Debchaudhury, A., and Gasparini, D. A. 1981. "Random Vibration Analysis for the Seismic Response of Earth Dams," Geotechnique, Vol 31, No.2, pp 261-277.

Goodman, R. E., and Seed, H. B. 1966. "Earthquake-Induced Displacements in Sand Embankment," Journal of the Soil Mechanics and Foundations Division, A~erican Society of Civil Engineers, Vol 92, No. SM2, pp 125-146.

Jennings, P. C., Housner, G. W., and Tsai, N. C. 1968. "Simulated Earthquake Motions," Earthquake Engineering Research Laboratory Report, California Institute of Technology.

Kutter, B. L. 1982. "Centrifugal Modelling of the Response of Clay Embank­ments to Earthquakes," Ph.D. dissertation, Cambridge University.

Makdisi, F. I., and Seed, H. B. 1977. "Simplified Procedure for Estimating Darn and Embankment Earthquake-Induced Deformations," Journal of the Geotech­nical Engineering Division, American Society of Civil Engineers, Vol 104, No. GT7, pp 849-867.

Morgenstern, N. R., and Price, V. E. 1965. "The Analysis of the Stability of General Slip Surfaces," Geotechnique, Vol 15, No.1, pp 79-93.

Newmark, N. M. 1965. "Effects of Earthquakes on Dams and Embankments," Geo­technique, Vol 15, No.2, pp 139-160.

Sarma, S. K. 1975. "Seismic Stability of Earth Dams and Embankments," Geo­technique, Vol 25, No.4, pp 743-761.

1979. "Response and Stability of Earth Dams During Strong Earth­quakes," Miscellaneous Paper GL-79-13, U. S. Army Engineer Waterways Experi­ment Station, CE, Vicksburg, Miss. .

Seed, H. B. 1979. "Considerations in the Earthquake-Resistant Design of Earth and Rockfill Dams," Geotechnigue, Vol 29, No.3, pp 215-263.

Seed, H. B., and Ld r i s s , I. M. 1969. "Rock Motion Accelerograms for High Magnitude Earthquakes," EERC 69-7, Earthquake Engineering Research Center, University of California, Berkeley, Calif.

1983. "Evaluation of Liquefaction Potential Using Field Per­formance Data," Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol 109, No.3, pp 458-482.

20

Page 24: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Seed, H. B., Idriss, 1. 11., Lee, K. 1., and Hakdisi, F. 1. 19753. "Dynamic Analysis of the Slide in the Lower San Fernando Darn During the Earthquake of 9 February 1971," Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol 101, No. GT9, pp 889-911.

1975b. "The Slides in the San Fernando Darns During the Earthquake of February 9, 1971," Journal of the Geotechnical Engineering Division, American Society of Civil Engineers, Vol 101, No. GT7, pp 651-688.

U. S. Army, Office, Chief of Engineers. 1970. "Engineering and Design - Sta­bility of Earth and Rock-Fill Dams," Engineer l1anual 1110-2-1902, Washington, D. C.

21

Page 25: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

1

Am

pli

fica

tio

n F

acto

rs

for

Em

bank

men

t R

espo

nse

at

Res

onan

ce

Am

plI

fica

tio

n F

acto

r

'L

y -

hi

+ h

2 h

I h 2

Dam

ping

m

~

0

.2

0.4

0

.6

0.8

1

.0

1.2

1.

r-1

.6

--­

--­

1.8

2

.0

Per

cen

t A

ccel

erog

ram

0 0

2,6B

2

.50

2

.31

2

.06

1.

77

-­20

0,5

0.

125

2.8

9

2.5

8

2.4

1

2.1B

1.

63

1. 5

6

0,5

0.

25

3.3

4

2.9

2

2.5

5

2.3

5

2.1

0

1. 6

4 I.

56

I. 4

4

0.5

0.

375

3.5

0

3.1

6

2.7

7

2.5

4

2.2

9

2.0

3

I. 8

0 I.

61

I. 4

9 -­

Max

imum

of

9

reco

rds:

0.5

0

.5

3.47

3

.20

2.

B8

2.6

6

2.4

'\

2.2

0

1. 9

9 I.

BO

1. 6

1 1.

51

a.

San

Fer

nand

o 19

71,

Pac

oim

a,

0.5

0.

75

3.15

2.

9B

2. B

I 2

.65

2.

51

2.3

3

2.1

7

2.0

3

1. 9

2 I.

79

3 co

mpo

nent

s

0.5

1.

00

2.7f

'. 2.

71

2.64

2.

57

2.49

2

.37

2

.26

2.

15

2,07

I.

9B

b.

El

Cen

tro

1940

, 2

com

pone

nts

1. 0

0 0.

25

2.6

6

2.5

5

2.43

2

.26

2.

07

1. B

5 1.

78

-­c.

K

oyna

196

7,

2 co

mpo

nent

s

I.00

0

.50

2

.54

2

.49

2.

41

2,3

2

2.1

7

2.0

2

1. B

5 1.

75

-­d.

Pa

rkf

i eId

19

66,

Cho

l am

e ,

I co

mpo

nent

I. 0

0 0

.75

2

.46

2

.44

2.

39

2.3

2

2.2

2

2.11

1.

98

1. 8

4 1.

71

-­e.

P

ort

Hue

nem

e 19

57,

1 co

mpo

nent

1. 0

0 1.

00

2.42

2

.40

2

.36

2.

31

2.2

3

2.15

2

.06

1.

94

1. B

3 I.

70

.1.0

0 1.

50

2.37

2

.36

2.

33

2,31

2

.26

2

.20

2

.14

2.

07

1. 9

9 1.

92

1. 0

0 2

.00

2

.36

2

.35

2.

33

2.3

0

2.2

7

2,24

2

.19

2.

13

2,O

B

2.0

3

0.8

O

.B

2.57

2

.53

2.

47

2,40

2

.30

2,

IB

2.0

7

1. 9

3 1.

79

I.66

0 0

2.5B

2

.29

1.

B9

1.66

1.

43

-­H

elen

a 19

35,

Car

roll

C

oll

ege,

E-

W

o 5

0.18

5 3

.16

2

,65

2.

19

1.8

2

1. 6

2 -­

Hel

ena

1935

, C

arro

ll

Co

lleg

e,

E-W

o 5

0.5

2.

9B

2.77

2.

41

2.2

3

1.95

Hel

ena

1935

, C

arro

ll

Co

lleg

e,

E-W

0 0

2.9B

2

.70

2

.62

1.

91

1. 5

7 --

Par

kfi

eld

19

66,

Tem

blor

No

.2,

S 25

W

0.5

0,

185

3.3

4

3.0

4

2.5

8

2.19

1.

79

--P

ark

fiel

d

1966

, T

embl

or

No

.2,

S 25

W

0.5

0

.5

3.3

8

3.2

3

2.97

2

.66

2.

31

--P

ark

fiel

d

1966

, T

embl

or N

o.2

, S

25 W

()

0 2

55

2.4

4

2.25

2.

01

1.71

--

Oro

vil

le

1975

, O

rov

ille

Dam

, N

53

W

0.5

0.

185

2 68

2

.56

2.

41

2.2

0

1. 9

5 --

Oro

vil

le

1975

, O

rov

ille

Dam

, N

53

W

0.5

0

.5

2 69

2.

67

2.61

2.

51

2.35

--

Oro

vil

le

1975

, O

rov

ille

Dam

, N

53

W

0 0

2.31

2.

04

1. 9

6 1.

82

I. 6

3 --

San

Fer

nand

o 19

71,

Gri

ffit

h P

ark

, N-

W

O. "

()

185

2.61

>

2.31

2.

07

I. 9

5 1.

7B

San

Fer

nand

o 19

71,

Gri

ffit

h

Par

k,

N-W

0,5

0

.5

2.61

2.

44

-­-­

--Sa

n F

erna

ndo

1971

, G

riff

i t h

Par

k,

N-W

(Con

tinu

ed)

(Sh

e,o

l I

of

3)

-)

Page 26: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

---

Tab

le

1 (C

onti

nued

)

Y-

hI

t L

hh 2

hI

2

Dam

ping

m

0

.2

0.4

0

.6

0.8

1

.0

1.2

1.4

1.6

1.8

2

.0

Per

cen

t A

ccel

erog

ram

--

..!L­

0 0

2.01

1.

90

1. 7

3 1.

54

1. 3

1 --

20

San

Fern

ando

19

71,

Cas

taic

N 6

9 W

0.5

0.18

5 2.

26

2.13

1.

88

1.68

1.

48

--Sa

n Fe

rnan

do

1971

, C

asta

ic N

69

W

0.5

0

.5

2.47

2.

38

2.24

2.

02

1. 8

2 --

San

Fern

ando

19

71,

Cas

taic

N 6

9 W

0 0

2.19

1.

96

--Sa

n Fe

rnan

do

1971

, C

asta

ic N

21

E

0.5

0.18

5 2.

57

2.22

--

San

Fern

ando

19

71,

Cas

taic

N 2

1 E

0.5

0.5

2.09

2.

52

2.26

--

San

Fern

ando

19

71,

Cas

taic

N 2

1 E

0.5

0.

5 4.

36

4.02

3.

61

3.19

2.

73

2.21

1.

84

1.65

1.

53

1. 4

4 15

E

l C

entr

o A

rray

N

o.

10,

Key

ston

e R

oad,

N

50

E,

10/1

5/79

I.

00

0.5

3.43

3.

26

3.03

2.

78

2.50

2.

15

1. 9

7 1.

79

1.73

1.

67

El

Cen

tro

Arr

ay

No.

10

, K

eyst

one

Roa

d,

N 5

0 E

, 10

/15/

79

0.5

0.

5 3.

30

3.14

2.

85

2.55

2.

39

2.16

1.

97

1.84

1.

75

1. 6

6 Im

peri

al V

alle

y E

arth

quak

e,

Ho

ltv

ille

P

ost

Off

ice,

S 4

5 W

, 10

/15/

79

1.0

0.

5 2.

70

2.60

2.

54

2.44

2.

30

2.13

2.

02

1. 9

1 1.

85

1. 7

8 Im

peri

al V

alle

y E

arth

quak

e,

Ho

ltv

ille

P

ost

Off

ice,

S

45 W

, 10

/15/

79

0.5

0.

5 4.

58

4.40

4.

12

3.78

3.

38

2.91

2.

44

2.17

1.

99

1. 8

5 Im

peri

al V

alle

y E

arth

quak

e,

Ho

ltv

ille

P

ost

Off

ice,

N

45

W,

10/1

5/79

1.

0

0.5

3.92

3.

81

3.63

3.

41

3.15

2.

86

2.67

2.

47

2.38

2.

29

Impe

rial

V

alle

y E

arth

quak

e,

Ho

ltv

ille

P

ost

Off

ice,

N

45

W,

10/1

5/79

0.

5

0.5

4.

01

3.81

3.

49

3.08

2.

64

2.19

1.

79

1. 6

0 1.

50

1. 3

9 I

Wes

tern

Was

hing

ton

Ear

thqu

ake,

U

. S.

A

rmy

Bas

e ST

A 00

00,

S 02

W,

4/13

/49

1.0

0.

5 3.

24

3.08

2.

85

2.59

2.

38

2.14

1.

99

1. 8

3 1.

76

1. 6

8 W

este

rn

Was

hing

ton

Ear

thqu

ake,

U

. S.

A

rmy

Bas

e ST

A 00

00,

S 02

W,

4/13

/49

0.5

0.

5 3.

95

3.75

3.

44

3.09

2.

72

2.26

1.

83

1. 6

0 1.

51

1.44

Im

peri

al V

alle

y E

arth

quak

e,

El

Cen

tro

Arr

ay

No

.3,

Pine

U

nion

Sch

ool,

S

40 E

, 10

/15/

79

I 1.

0

0.5

3.25

3.

14

2.97

2.

75

2.50

2.

22

2.05

1.

87

1. 7

9 1.

71

I Im

peri

al V

alle

y E

arth

quak

e,

El

Cen

tro

Arr

ay

No

.3,

Pine

U

nion

Sch

ool,

S

40 E

, 10

/15/

79

0.5

0.

5 3.

32

3.21

3.

02

2.78

2.

49

2.14

I.

84

1.65

I.

53

I. 4

3 I

Impe

rial

V

alle

y E

arth

quak

e,

£1 C

entr

o A

rray

N

o.3

, Pi

ne

Uni

on S

choo

l,

S 50

W,

10/1

5/79

1.

0

. 0.

5 2.

78

2.71

2.

62

2.48

2.

30

2.09

1.

98

I.86

I.

81

I. 7

5 I

Impe

rial

V

alle

y E

arth

quak

e,

El

Cen

tro

Arr

ay

No

.3,

Pine

U~ion

S

choo

l,

S 50

W,

10/1

5/79

0.

5

0.5

3.13

2.

93

2.63

2.

35

2.09

1.

80

1. 5

3 1.

40

1. 3

2 1.

25

I E

l C

entr

o A

rray

N

o.

10,

Key

ston

e R

oad,

N

40

W,

10/1

5/79

1.

0 0.

5 2.

41

2.35

2.

24

2. 1

1 1.

95,

1.77

I.

66

I.54

I.

50

I. 4

6 I

£1 C

entr

o A

rray

N

o.

10,

Key

ston

e R

oad,

N

40

W,

10/1

5/79

(C

onti

nued

) (S

heet

2

of

3)

:= :11

--

iIiii

i;;;

----

-....

iiiiiii

Page 27: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

1 (C

oncl

uded

)

~

0.4

L hI

0.6

0

.8

1.0

1

.2

y

-!..:

..L

-hI

+

h2

h 2 1

.6

1.8

2

.0

Sum

mar

y V

alue

s o

f A

mp

lifi

cati

on

Fac

tors

Ave

rage

2

.95

2

.77

2

.61

2

.40

2

.17

2

.14

1.

98

1. 8

3 1

. 76

1

.69

(a)

Ave

rage

+

a

(0.5

8)

3.5

3

(0.5

4)

3.3

1

(0.5

0)

3.1

1

(0.4

6)

2.8

6

(0.4

4)

2.6

1

(0.2

9)

2.4

3

(0.2

5)

2.2

3

(0.2

5)

2.D

8

(0.2

5)

2.0

1

(0.2

5)

1. 9

4

Max

imum

4

.58

4

.40

4

.12

3

.78

3

.38

2

.91

2

.67

2

.47

2

.38

2

.29

(Sh

eet

3 o

f 3)

Page 28: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

APPENDIX A

TABLES OF SLIDING BLOCK CALCULATIONS FOR STRONG-MOTION DATA FROM E~~.THQUAKES OF THE WESTERN L~ITED STATES AlfD OTHER COVNTRIES, AND

SYNTHETIC ACCELEROGRAMS

Page 29: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

•••Tab

le

AI

Str

on

l-M

oli

on

D

.la

l E

e r

rhq

uek

es

ol

Wes

tern

U

nil

ed

Sta

tes

(Un

llo

r.l

y

Pro

cess

ed

at

C.l

ilo

rn

la

Ins

tit

ut

e o

f T

ech

no

lou

L

and

Oth

er

Co

un

triu

'ITA

V

P

eak

Pl"

'.kCI

T S

illf

D

ale

P

eak

Dil

ph

ce­

Ep

i cen

t re

I R

ich

ler

Ho

dd

ied

Acr

e le

r e t

i oe

fi It

C

l...

tfi­

of

[pi

cen

te r

l11s

lrL

iale

nl

Velo

cit

y

..0'

Ili s

t an

ce

tba

nil

ud

e H

erce

llI

D

ure

t io

n V

.lu

es

ol

u (c

m)

lor

N/'"

;:

~~

R

eto

rdJ

08

S

ldlo

n

cal

ion"

* E

Ulh

qu

ak

e L

ora

lio

n _

C

o.p

onen

t

c.

__

H__

In

len

l il

y

~.

0.

1 O~I

.~~

.s

siss

s:

~--

""-­

AO

OI

[1

Cen

tro

S

ite,

lep

er

i el

Va

lley

1

-18

-.0

J2

°44

1 S

00

· £

3.1

.1

B.'

1

0.9

9

.3

6.7

V

III

JO

16

\.3

(1

90

.7)'

J8

.81

(1

1.8

7)'

I.J

' (0

.19

),

11

5'2

1'

S 90

° \II

2

10

.1

36

.9

19

.8

13

19

1.8

(2

13

.9)

17

.68

(.

9.9

) 1

.88

(1

23

) U

p 2

06

.3

10

.8

1.6

1.00

2 N

ort

hw

es

t C

el i

Icrr

ue

Ea

r t h

­10

-)-

11

4

0·1

7'

N

S •

•'

W

10

2.0

4

.8

2.•

1

6.3

q

uak

e,

Fern

da

le

Cit

y

Hal

l 1

2'°

'8'

W

H .

6'

W

10

9.1

7

.'

2.7

U

p 26

.•

2.2

1

.6

1.00

3 K

ern

Cou

nty

[Ulh

qu

..ke

,

)-2

1-1

2

35

·00

. S

000

[ .6

.1

6.2

2

.7

12

6.0

7

.7

VII

10

(8

0.3

1)

(27

.03

) (0

.94

) A

lhR

U"

"

11

9'0

2 '

S 9

0'

W

12

.1

9.1

2

.9

50

8••

08

(13

1.1

3)

3'.

17

(.

1.1

11

1

.\1

(2

.\ 7

) U

p 2

9.3

4.

1 3

.0

1.00

4 K

ern

Cou

nty

[ulh

qu

d,r

.

)-2

1-1

2

31

'00

' H

H

21

' [

11

2.1

1

5.7

6

.7

.3.0

7.

7 V

II

I.

92

.82

(1

01

.2)

29 I.

(23

73)

0.7

) (0

.84

) T

dl

Lrn

cc lu

Sc

hool

1

19

'02

' W

S

69

' E

1

11

.9

17

.7

9.2

I.

1

12

.2

(13

8.9

) 28

10

(l

6.1

6)

0 91

(I

. 2

J)

Up

10

2.9

6

.7

1.0

A00

5 K

ern

C

eu

nt v

E

arth

qu

.ke,

)-

21

-12

3

1'0

0'

N .

2'

E

81

.8

11

.8

•. 6

8

9.1

7.

7 V

II

I.

12

4.3

3

(14

8.1

) .6

.11

(1

1.2

2)

1.0

1

(J.

7I)

S

lnl.

h

rb

arl

11

9'0

2'

S 48

0 [

12

8.6

1

9.3

1

.8

60

11

9.6

0

96

.•

) .J

.•I

(.6

.3')

2

.2J

(0.0

0)

Ccu

rt h

cuse

U

p '3

.6

1.0

2

.2

"006

h

rn

C

ount

y [u

thq

u.k

e,

)-2

1-1

2

31

'00

' 5

000

I•.

1 6

.1

1.1

119.

1 7.

7 V

II

82

68.7

1 (9

1.2

6)

22

.11

(l

O.I

J)

0.1

8

(O.;

J 1

Hol

lyvo

od S

tau

le

B..u~enl

1

19

'02

• N

90

' .3

.1

9.•

1

.9

82

93

.2.

(11

0.1

1)

39

,'1

(1

0.7

8)

1.1

. (I

. 16

) U

p 2

2.1

•.

2 2

.2

A00

7 k

un

C

ount

y [a

rlh

qu

lk.e

. )-

21

-12

3

1'0

0'

N

S 0

0 0

W

18

.1

6.6

•.

1

11

9.1

7.

7 V

II

79

79

.10

(1

08

.11

) 2

J.3

9

(l1

.26

) 0

.•01

(0

.61

)

Hol

lyvo

od

Slo

Ua

r

p,

E.

Lol

1

19

'02

' W

N

90

° (,

.1

.2

8.9

6

.•

79

9•.

98

(16

0.1

1)

42

.JO

(1

1.7

1)

1.6

7

( 1

.4.)

U

p 2

0.3

3

.0

3.•

A00

8 E

urek

a h

il'l

hq

u.k

r,

Eu

rek

. 1

2-2

1-1

. 32

'38'

H

H

II'

W

16•.

1

H.6

12

.•

2•. 0

6

.1

VII

2

6(l

6)

20

1.1

7

0.1

. ••

) '0

.67

(2

9.7

4)

2.1

9

(0. II

) F

eder

al

Bu

dd

in.

1170

07

1 W

H

79

' E

2

12

.1

29

.'

1•.

1 30

1

01

.01

(1

20

.06

) 3

0.1

0

(l'

.II)

1.9

8

(I.

74)

Up

81.3

8

.2

'.7

"0

09

Eu

reo k

. E

I rth

qu

d.r

I F

ernd

..1e

1

2-2

1-1

' 3

2'3

8'

N •

•'

E

11

1.1

3

1.6

1•

. 2

.0.'

6.1

V

II

20

(l1

) 2

92

.22

(2

80

.82

) 9

1.9

8

(86

.28

1

9.0

0

('

.88

) C

ity

Hil

l 1

11

'07

' N

.6

' W

1

97

.3

26

.0

9.6

2

0(l

0)

13

7.0

1

(96

.62

) 3

8.3

7

(28

.09

) 2

.J6

(0

.•

8)

Up

.1.9

7

.6

3.9

AOIO

Sa

n Jo

U'

Ear

thq

ud

.f',

Sa

n 9

-.-1

1

31

'22

' N

N

H'

W

10

0.2

1

0.8

2.8

9

.8

1.1

VII

JO

1

7.1

8

(l0

.10

) '.

1'

(0.6

6)

0.3

1

(0.2

. )

JO

Il'

Ban

k of

"

-'ric

a

12

1'1

3'

W

N 1

9'

[ 1

01

.8

1.7

30

(1

2.3

1)

(2 .

•0)

(0

.1.)

B

.-em

ent

Up

".2

1

.2

1.2

AO

ll £I

A

1.-.

o,

Baj

a C

.lif

orn

i.

2-9

-16

H

"I'

N

5 0

W

32 .•

•• 0

2.•

1

21

.9

6.8

V

I 70

(7

6.2

11

(2

6.2

7)

(0.8

9 )

h

rlh

qu

.lk

r,

t:l

Cen

tro

Sr t

e,

11

5°5

5'

W

S 9

0'

W

10.

I 7

.0

•. 1

70

8

9.1

8

(10

0.7

.)

30

.11

(l

0.2

2)

0.6

1

(6.1

6)

l.p

eri.

1

V.l

ley

Ir

ria

dio

n

Up

12.•

2

.9

1.6

Dh

lric

lt

"012

[1

A

I...

. h

j.

C.l

ifo

rn

i.

2-9

-16

3

\"1

' H

S

00°

W

11

.8

1.9

I.

1

21

.9

hrt

hq

u4

Ike,

E

l C

entr

o

Sj t

e ,

11

1'1

1'

W

S 9

W

II •

2

.7

2 Ie

pe

r i e

l V

.lle

y

lr r

tge

t rc

n U

p 3

.7

1.8

2 D

lilr

irt

(Afl

ulh

ock

)

"0

1]

San

rra

nd

leO

E

arlh

qu

ab

, 3

-22

-1)

31

'.0

' N

N

45°

.1

.9

2.9

I.

16

.8

1.3

V

II

26

(12

.9J)

(J

99

) (0

.08

) Sa

n F

ran

cisc

o

Pa

d h

e

12

2'2

9'

W

N 4

5 1

••.

9 1

.0

I .•

26

2

7.1

7

(ll

.ll)

8

.80

(1

0 .•

1)

02

. (0

.72

) U

p 2

6.8

1.

1 0

.9

A01

4 Sa

n fu

ncu

co

h

rlh

qu

ak

e.

3-2

2-1

) 37

°t..O

' N

09

' W

.1

.8

2.9

1

.3

11

.2

1.3

V

II

21

'.9

J

('.9

11

1

..1

(1

.31

) 0

11

(0

.01

)

San

Fr a

nc

Lec

c A

h'u

nd

er

12

2°2

9'

N 8

1'

[ .1

.•

2.1

1.0

B

uil

din

S

BU

If_

nl

Up

30

.0

1.3

0 .•

AO

l5

Su

fr

an

cisc

o

hrlh

qu

ak

t.

3-2

2-1

) J7

°t..0

' N

N

10

' E

8

1.8

'.9

2.

3 1

1.8

1

.3

VII

12

7

.89

(2

.76

) 1.•

9 (0

.82

) 0

.06

(0

.09

)

Su

E

r an

c i e

co

Gol

den

C

ale

1

22

'29

' W

S

flOG

r 1

02

.8

0.8

• .6

Par

k

Up

37

.2

1.2

0.7

AO

lb

San

Ft a

nc rs

co

[arl

"q

ua

ke,

3

-22

-17

31

°t..0

' N

S

09°

W

83

.8

I.I

1.1

1•.

6 I.

J V

II

San

Fra

nci

sco

S

lale

8u

J Id

ina

1

22

'29

' W

S

81

' W

II

. I

0.9

• .0

8u

e-e

nl

U

p '3

.1

2.3

0.6

AO

l7

San

f r en

c i

ac

c E

er

t h

qu

ek

e ,

3

-22

-11

3

1"0

' N

26

' 3

9.0

2

.0

I .I

2•

.3

I.J

VI

Oak

l.n

d

CH

y H

all

12

2'2

9'

S 6

.'

23

.7

1.2

1.1

Bu

e-e

nl

Up

11

.3

0.9

1.

3

__

__

_~_

.. ~

_"

....>

.("Co

"'o""-

'.lo"'u

"'·....·L

) _

Hot

..:

Lu

c sr

to

oe

In

Ca

lifo

rn

ia

l,m

l('a

o

cr

tie r

v t .

.e

no

ted

. •

A

.. a

llu

wll

,lC

ll.

I ..

Intl

'l'"

BIc

dla

t.-.

an

d H

R .

. h

ard

r o

c k

. (S

ht'

el

I 0

( II

)t

Va

lue.

In

pa

ren

t h

.... 1

'1

er

e L

ur

revl

'rll

ed

a t

rec

t Io

n

of ~h.!llnK.

Page 30: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

CIT

F

ih

~

"H

ord

ina

Sta

t io

n

Sil

e

Cl.

..ifi~

~

Dat

e 01

h

rlh

qu

..h

Ep

icen

ter

Lo

c.ti

on

ID.tr~nt

~

A

Pr.

k A

ccch

uli

on

~~

V

P~.k

Vd

oci

ty

.ssi

sss:

11 P

r.k.

Oi,p"cr~

..

01

__C

lI__

[pic

cn

tul

Dil

l.a

cc

__

D__

Rjc

hlc

r K

alai

tude

--"-

­"

od

ifie

d

Her

c.H

i In

uD

iity

D

ura

l iD

a

----

-!!£

­0:

02

AO

U

Ho

Ua

ler

hrt

b-q

u...

.e ,

ell

y M

.lI

IIc

lhtu

4-

1-61

36

-40'

12

1"11

' If W

5

01"

W

• 89

" W

Up

6).

' 11

S.7

49.1

7.1

17.1

4.

7

2. I

1

.1

2.2

40

.0

\.6

V

II

)0

\1.\

1

(1\.

\4)

12.9

1 (1

9.1

.)

0.2

) (0

.19

)

A01

9 J

oru

la"

l h

rth

qll

".e

, £1

CU

ltro

Sh

e ,

lep

uh

l ',

lllt

' Ir

rlla

tio

a D

ietr

iet

4-1

-61

))

"09

' 11

6"01

' M

W

5

DO

" W

• 90

" W

Up

127.

1 \6

. )

29

.7

21.1

1•

. 7

) ..

12

.2

11

.0

).9

69.1

6

.\

VI

60

169.

27

(l0

6.7

1)

4).

7\

(\).

1)

0.9

9

(I.

46)

A02

0 8

orr

l'lo

"1

ta

rlb

qU

8kf,

Su

, D

iflo

4

-1-6

1

))"0

9'

• 5

00"

W

19

.\

6.0

•.

4

109.

9 6

.\

VI

)0

Lll

b'

, P.

...r

lo

lld

"l

116"

01'

W

" 90

" E

U

p 2

1.9

1

2.7

6.

1 1.

9 ).

0

I.)

1021

L

ool

Bu

tb ll

flb

qu

".t

, V

erno

n O

lD 1

u1

ldio

S

)-1

0-)

) ))O

n'

11

7"\

9'

• W

• D

."

Es

12"

E

lip

1)0

.6

1\1

.\

14

9.\

21

.7

17

.0

12

.0

1\.

\ 1

7.\

7

..

47

.1

6. )

V

I )0

)0

1

\6.4

1

(21

6.)

))

(66

.0)

)0.2

7

(l7

.21

) (1

1.4

\)

0.1

8

(0.\

0)

(0.1

7 )

1102

2 S

ou

then

C8

1U

oro

h t

Ulb

qu

ak

r.

loll

yv

oo

d 5

toro

lo I

ull

dl_

1

, ••

tbou

••

10

-2-)

) ))

"47

' 1

1'-

01

' M

W

5

DO

" [

• 90

" W

lip

.). )

1\ .

• 26

.1

\.2

9

.4

1.9

1.1 .. ) 0.9

31.2

5

.4

B02

1 S

ou

lbeu

C.I

Ho

rnia

Elr

lbq

u"

:f,

10

-2-)

) ))

-47

1 •

5 DO

" E

)2

.1

2.0

0

.1

lB.2

\.

4

Hol

lrvo

od S

tou

le a

uU

din

l 1

l.-0

1 1

W

I 90

" 1

26.4

2

.2

0.4

".~.l·

lip

10

. )

0.9

0

.\

!O24

L

ower

C

"H

orn

h

larl

bq

ua

kr.

Ii

(fa

ln

lllp

l!ri

al h

iler

12

-)0

-)4

)2

"12

' •

11

5")

0'

W

• D

O"

1 •

90"

Elip

1\6

.1

179.

1 61

.1

20

.\

11

.\

1.1

4.2

).

7

\.6

60

.1

6.\

V

I )0

)0

1

9.6

4

(11

21

) (9

\ 92

) 24

.96

(25.

191

(28

.6\)

0

.)1

(0

.67

) (1

.17

)

1025

; H

ehn

a.

l1oa

1.1o

. t.

rlh

qu

".e

. .t

hn

.l,

l"on

.tlu

, eu

ro

ll

CO

U"

.f

IlII

10

-)1

-)\

46

")7

' •

11

1"\

1'

W

• D

O"

I •

90"

[U

p

.103

.\

:142

.\ 1

7.\

7. )

13

. )

9.\

I..

).7

2

.1

6.6

6

.0

VII

2

\.0

7

(11

.40

) (2

).\9

) 6

.))

().O

O)

(6.1

) 0

.29

(0

.06

) (0

.\1

)

8026

h

t If

orlb

....ee

t C

ali

hrn

ia

hrt

hq

ua

kt

I F

end

ale

C

ity

M

oll

9-1

1-3

1

40"1

1'

• 12

4"41

' W

5

4\"

\I

• 4

\" W

lip

11.0

.9

17

.1

)1.6

6.6

6

.6

I..

).9

1

.6

0.6

II.

) \.

\ V

I 20

20

(1

9.1

7)

(2)

.\6

) (' .

29

) (6

. )j)

(0

.19

) (0

.26

)

5027

2n

d b

rlh

vea

l C

.l H

an

i.

hrl

bq

ua

"'.

h

re.d

.l.

Cit

y 1

.11

2-9

-41

4

0"\

4'

I 1

2\"

24

' W

5

.\" W

• 4

\" W

lip

61. )

31

.•

19

.2

).\

) ..

2.1

2.0

2

.2

1.9

91

.4

6.6

V

I

1028

W

ul.

n W

uh

hll

Ga

hrt

i'lq

uar

..e

I

Dia

tric

t la

liD

lfu

all

'n a

1 A

rwy

....

4-1

)-4

9

46"0

6'

• 12

2"42

' W

I

02"

W

• U

" II

lip

66

.\

U.9

2

2.0

1.2

7.

9 2.•

2.•

2

.7

2. )

\7.1

7.

1 V

III

40

6\

(12

6.1

9)

(10

0.)

9)

(54

.19

) (l

0."

) 0

81

) (0

.\1

)

8029

W

ult

ra W

uh

iD.l

oD

h

rtb

qu

ab

, O

IJ'l

llii

. \l

ub

iD.t

o.,

.'

Ib"

.,.

111t

L

ak

luto

ry

4-1

)-4

9

46-0

6 j

If 12

2"42

' W

S

O."

[

I 16

" W

lip

1.61

.6

17

4.6

'0

.6

21.•

1

7.0

6

.1

1.\

1

0.4

4

.0

16.

I 7.

1 V

III

\0

26

1)1

.24

(2

49

.9\)

(1

31

.66

) 21

.71

(6).

19

) (l

).7

1)

0.1

2

(I. I)

I (0

.66

)

BOlO

.o

rtb

ln C

.IU

oro

h b

rth

qu

ah

, h

,.d

.lo

Cit

y 1

.11

9-2

2-\

2

40"1

2'

• 1

24

"2\'

W

I

44"

W

I 46

" W

\)

.1

10.1

6

.9

4.7

2

.0

1.9

4

).2

s.

s V

I

Up

29

.2

).0

1

.\

110)

1 W

hu

ler

lid

le,

C.I

Ho

nia

le

rlb

qu

ah

I T

lfl

Lh

coln

1

-12

-\4

n"

oo'

• 11

9"01

' W

21"

15

U"

I 6

).9

6

6.1

\.

1

).6

1.

7 1.

1 4

).0

\.

9

VII

20

(2

1.)

7)

(\.0

\ )

(0

J2)

Sct.

ool

TY

Ane

l lip

)\.

\ 2

.4

2.9

B03

2 P

Ule

l So

und,

W..

hin

lto

n

£..r

thD

qu..k

lt.

Ol)

'llpJ

a,

Wu

bin

lto

n,

Ht.

h.y

Tu

t L

ab

orl

lory

4-2

9-6

\ 4

7"2

4'

• 12

2"11

' W

I

D."

l

5 16

" W

lip

13

4.2

19

•. )

\9.9

1.0

12

.7

).0

2.7

).1

1.

7

61.1

6

.\

VII

\0

)2

6

7.9

(6

2.0

) (7

).7

) 14

.1

(1\.

91

) (1

1.2

) 0

.16

(0

1

\)

(0.\

)

BO

ll P

ark

fitl

d,

CIl

Uo

rn!a

hrlh~

qu

.h,

Ch

ola

_,

St...

ndoa

A

ruy

If~

. 2

6-2

7-6

6

)\"\4

' •

12

0"\

4'

W

• 6

\"0

.­4

79

.6

20

2.2

77

.9

14.1

26

. )

4. )

)1

.9

\.6

V

II

I. 12

)\).

0

(2

\)))

(42

.91

) 6

1.)

(6

7.1

) (1

).1

6)

Lt.

(1

.•1

) (0

.22

)

BO

llt

P..r

kfi

eld

, C

alH

oraJ

a h

rlh

­q

u.k

e,

Cb

ola

at,

Sb

aadb

n A

ruy

10.

~

6-2

7-6

6

n"\4

' •

120-

S4'

W

• 0

\"

W

• II

" 1

0.­

)47

. I

42

\.7

11

6.9

22

.\

2\ .

• 6

.1

\.2

7.

1 ).

4

)2.4

\.

6

VI

1\

22

64.4

1 (4

2. )

6)

(66

.\)

13

.)

(11

.64

) (1

6.)

7)

0.0

66

O

.lI)

(1

.09

)

BO)~

P

.rU

hld

, C.

.lli

fora

ia

£..n

h..

qu...

.e.

Cho

l"M

e, S

h..a

don

Aru

y I

fo.

6-2

7-6

6

)\"\4

' •

120-

54'

W

I \0

" 1

M .

0"

W -2

32

.6

2"9

.6

77.7

10

.1

11

.1

4.\

4.•

).

9

2.1

)4.1

\.

6

VI

26

20

40

.10

(.

0.7

7)

(47

.4)

7.69

(6

.47

) (9

.44

) 0

.16

(0

.10

) (0

.•

1)

10)6

P

lrk

U..

ld,

CIl

Uo

rnl.

h

rlh

D

qu...

... ,

Ch

o"

'",

Sb..n

don

bu

y N

o.

12

6-2

7-6

6

3\"

\4'

W

12

0"\

.'

W

• \0

" 1

• -.0"

W

\2.1

li

),2

.

<14.

6

7.0

1

.0

\.0

•. 1

\.

7

2.6

)6.\

\.

6

VI

40

70.0

1 (1

0.2

0)

1).

\7

(11

.6))

0

.00

4

(0.1

4 )

(Con

Unu

otd)

(S

her

t 2

0 r

I')

Page 31: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

....

-..

• .. .

.-•

••

DA

V

P

eak

Pu

kC

IT

Sit

e O

ate

Puk

D

iap

hce

· E

pic

rntr

ll

Rlc

hte

r l1

0dif

ied

Acc

eler

ati

on

file

C..

..H

of

Ep

rcen

te r

Inst

r.-e

nt

Vel

ocit

y

Dil

tln

l;C

th

an

itu

dt

"'u

ClI

l i

Du

rati

on

V.l

utl

of

u (c

a)

for

NIl

. ;.

~

c./

sec

2 "D

' _

_1<

0_

_

Inte

na

ity

I!

£...-

o.~

RH

Ord

in&

S

tlt

ion

Iuth

qu

ak

e L

ocl

t io

n C

a.p

oaen

l _

_C

D__

~

.ssus

s: --

"--

BO

ll P

ark

fiel

d,

CIl

Ha

mh

Ea

rth

­H

Il 6-

21-6

6 3~'~4'

N

N

6~0

\I

26

4.3

14.~

4

.1

31

.0

~.6

V

II

2~

(0

.91

) q

u"

:r f

e.b

lol"

N

o.2

12

00H

' \I

S 2~'

\I

34

0.8

22.~

~.~

22

(0

.80

) D

o""

129.

8 4

.4

1.4

BO

l8

hrk

field

, C

.lif

orn

h

Ear

lb­

6-21

-66

N 3

6'

\I \4

.2

\.1

1.

2 7

6.\

~.6

29

1

0.l

S

(9.2

4)

1.8~

(1

.64

) 0.

024

(0.0

28

) q

uak

e,

San

Lu

il

Ob

i.p

o S

~4'

\I

\1.4

O

.S

0.6

R

ecre

atio

n B

uil

dia

l U

p 6.

1 \.

3

0.9

8039

2n

d N

orth

cen

C

alH

orn

h [

nth

­\2

-\0

-61

40

°30'

N

S I

I'

E

20

,4

2.3

0

.9

~0.6

~.8

q

u"

:c,

lUfe

h

Fed

en)

124°

36'

W

N 1

E

19.~

2

.8

1.4

29

S.84~

(1

.96

) 1.6~

(1

.13

) 0.

088

(0.0

32

) B

uU

dio

l Do

...

1.1

I.~

1

.3

B04

0 B

arrc

lo "

ouR

li in

h

rth

qu

....e.

4-8

-68

33

°09'

N

N )

)0 8

40

.0

3.1

1.6

13

4.4

6.~

116'

OS

' \I

4~.~

4

.2

2.9

2

3.2

2

(20

.00

) 3

.88

(4

.96

) 0.

012

(0.1

36

)Sa

n O

nofr

e SC

E P

over

N

5/0

\I

Ph

at

Dov

n H

.2

3.~

1

.7

C04

\ Sa

n F

eru

nd

o £

uth

qu

";e

I HR

2

-9-1

\ 3

4'2

4'

H

S \6

° E

1

14

1.\

11

3.2

31

.1

9.\

6.

6 \6

38

1.3

(264.~)

11

.01

(81

.06

) 0

.1\

(1.4~)

P

acot

.. P

••

IlS

·23

14

21l

'III

S 14

° \I

\0~4.9

5

/ .1

\0.8

\4

23

4.2

(ll0

.1)

62

.80

m

.2S

) 1.

48

(0.1

6)

Down

6

96

.0

~S.3

19

.3

C04

2 SI

D F

ero8

0do

hrt

hq

ulk

e,

2-9

-11

3

4'2

4'

N

S 14

° \I

21

.\

2.9

1.

1 A

fteu

bo

ck l

it

S2. 6

ee

e ,

\18

°23

'42

" \I

S \6

° E

2

0.1

\.~

0

.9

Pac

oi..

D••

D

ova

8.2

\.

\ 1

.0

C04

4 S

in F

uu

nd

o h

rtb

qu

de,

2-9

-11

34

°24'

N

S

14°

\I \0

9.9

4

.8

2.2

Aft

eub

ock

It

10

4.6

IC

C.

11

8°2

3'4

2"

\I S

\6'

£ 11

3.2

4. I

2

.3

raco

t.. D

••

Do"

" 40.~

1

.8

1.0

C04

8 S

.n F

erna

ndo

Ear

tbq

uak

e.

2-9

-11

3

4'2

4'

\I N

00°

\I

2~0.0

3

0.0

1

4.9

2

2.4

6.

6 V

II

306.

1 (294.~)

9

7.2

(7

0.2

) 0

.91

82

'"

Ori

on B

ou

ln.r

d,

IIS

02

3'4

2"

\I S

90°

\I 13

1. I

2

3.9

\3

.8

m4

.1)

(12

1.9

) h

t F

loor

I H

olid

ay

Inn

Do...

\61.~

3

2.0

1

4.6

CO

H

San

Fer

un

do

brtb

qu

lb,

2-9

-11

3

4°2

4'

\I N

16

' £

91

.8

11

.\

9.2

4

2.8

6.

6 V

II

I~

ue

s. ~)

()

6.

\8)

(0.

)6)

2~O

lu

t F

int

St r

eet

, II

S'2

3' 4

2" \

I N

H'

II

122.

1 2

\.9

1

1.6

I~

14

3.8

(11

3.6

) 3

2.4

4

(J6

.JS

) 1.

212

(0.1

2)

aU

elie

Rt.

L

o,

An

lele

l Do

wn

4S

.0

1.8

S.

S is

CO~4

S

U F

ern-

ado

Eu

thq

ulb

I \,A

2

-9-1

\ 34

°24'

\I

H ~2'

\I

\41

.\

\1.4

1

1.8

V

II

40

\09

.\

ucs.s

) 26

.16

(I~.02)

1.

28

(0.1

4)

44S

Fil

uer

o.

5t r

ee

t I

IIS

02

3'4

2"

\I S

3So

II

117.

0 \1

.3

II.S

40

11

8.2

(I32.~)

31

.12

(3~.0~)

O

.IS

(0.4

1)

Su

bb

uee

eftl

, L

oa M

aci

el

Do.

..

~\.1

\0

.1

s.i

40

00~6

Su

o fe

rnan

do

E.a

rtbq

uake

I

2-9

-11

3

4'2

4'

N

N 2

\' 8

3

09

.4

\6.~

4

.2

2S

.6

6.6

V\

30

42.0

6 (J

9.8

6)

9.~0

(9.~9)

0

.03

(0.~3)

O

ld R

idle

Rou

te,

CU

hie

II

S·2

3. 7

' \I

N 6

9'

II

26~.4

2

1.2

9

.3

30

(68

.01

) (2~.08)

(\

.36

) D

ovn

\~3.3

6

.2

3.~

30

00~1

s.

... F

erna

ado

Eu

thq

ulb

, 2

-9-1

\ 3

4'2

4'

N

S 00

° II

\0

3.S

11

.0

S.6

3

7.\

6.

6 V

II

40

12~.29

(1

24

.18

) 3

7.0

2

(29

.19

) 0

.92

(1

.03

) H

oll

po

od

Sto

ule

II

S·2

3.1

' \I

• 90

° I

\48

.2

19

.4

13

.\

40

1~4.6~

(l

SO.O

S)

41

.74

(42.1~)

0.

7S

(U2

1

...e

.ea

t U

p 49

.S

6.0

3.

S 40

OO~S

SI

D r

UG

.nd

o b

rth

qu

";e

I 2

-9-1

\ 3

4°2

4'

N

S 0

0'

II

161.

3 16.~

S.

O

37

.\

6.6

VII

2\

8

2.6

6

(82

.01

) u.~~

(1

4.8

0)

0.'

3

(0. 3~)

M

ollft

"Ood

S

tora

le

\18

°23

.7'

\I •

90°

I 2

07

.0

2\.

1

\4.7

2\

(I~2.21)

(J

9.7

8)

(I.4

1)

P.

8.

Lot

U

p n.

o ~.O

3

.0

2\

00~9

Sa

n F

un

.nd

o E

uth

qu

":e

. 2

-9-1

\ 34

°24'

N

N

46°

\I

\33

.8

9.6

7.

s 3

9.8

6.

6 V

II

ss

10. 1

3 (8~.S2)

12

.60

(10

.88

) 0

.14

(0

.22

)19

01 A

yenu

e,

Tbe

Sh

u

11

8°2

3.7

' \I

S 44

° \I

14

7.\

\6

.7

12

.2

ss

(U2

.90

) (l

4.9

1)

(0.0

1)

Subb

..N

CD

t D

o...,

66

.7

4.8

2.~

~~

0062

Si

n F

ern

lnd

o E

artb

qu

ake,

2-

9-11

34

°24'

N

N

38

' \I

118.

0 \6

.\

12

.0

42

.8

6.6

V

II

30

(m.4

3)

m.3

6)

(0.1

9)

1640

So

utb

Har

eDlo

S

tree

t.

11

8'2

3.7

' \I

S ~2'

\I

130.

0 11

.6

6.9

30

\\

1.9

4

(11

1.1

0)

32.6

4 (J~.02)

1

.40

(\

.83

)h

t F

loor

, L

a. A

Dle

lel

Dov

a 1

4.6

9

.0

4.\

30

006~

Sa

D F

erft

lDdo

Ear

thq

ulk

e,

A,I

2

-9-1

\ 1

4°2

4'

N

S 00

° \I

146.

1 1

8.0

\0

.3

40

.0

VII

\7

73

.76

(98

.12

) 16

.34

(16

.12

) 0

.11

(0

.6S

) 37

10 W

t"h

ire l

ou

lev

ard

, \U

·B.l

' \I

S 9

'III •

\5~.1

2

2.\

\2

.9

11

(16

3.4

3)

(JS

.89

) (0

.12

) B

alet

ND

t,

Loa

Anl

e1e

l D

ova

13

.\

9.0

4

.9

\1

D06

8 SI

D F

ern

lnd

o r:

lrth

qu

ke,

2

-9-1

\ 3

4·2

N

Jrf 0

I 8

1.2

1

2.6

S

.\

3~.0

6.

6 V

II

1080

1I

o11y

woo

d la

u1

evar

d,

\18

°23

.7'

\I N

90°

E

9

S.0

1

3.3

1.

2 B

Ile8

tDt,

L

ol

Aal

e le

a D

o...

~1.2

~.6

4

.2

£011

S

in F

eru

nd

o E

artb

qu

lke.

2

-9-1

\ 3

4'2

4'

N

S 00

° \I

26.~

\.

9

\.4

8

6.0

6

.6

Wh

eeh

r R

idle

II

S0

23

.7'

\I N

90°

E

2~.3

2.s

2.

1 13

.71

1.7~

O.O~

Do

WD

1).

0

2.4

3

.1

£012

S

in F

erna

ndo

Ea

rth

qu

lh,

2-9-

11

34

'24

' N

N

1~0

\I

82.2

20

.S

\4.7

3

9.1

6

.6

VII

U

13

2.63

(l61.~8)

~~.19

(6~.19)

0

.13

(0

.41

)46

80

Vi l

ab

i re

B

ou1e

YIr

dI

11

8°2

3.1

' \I

Nn°

E

II~.O

2

U

\1.I

\8

(1I4.~~)

(3

6.1

1)

(1.2

0)

Bll

etle

nt,

L

oa A

ald

ra

Do"

" 64

.S

6.9

3

.2

18

(Sb••

' 3

of

\1)

Page 32: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

Al

(Co

al h

ued

)

IiA

V

P

utt

C

IT

Sit

e

DaU

P

uk

P

uk

D

i.p

lace

­lp

l.u

ntr

a l

Richt~r

lt

odil

h:d

Arc

elen

tio

aFi

Ie

Cl...

iH-

01

[p I

ceete

r

Iaa

t ru

.ea

t V

elo

dty

..a

t D

1Iu

ace

H

_InH

ude

Ker

call

i D

ura

tio

n

Va

luu

of

u (~A

:=

~

R

eco.

.-dl

na S

tlli

on

~

E

artb

quak

e L

ocal

i~

C

OI!

2one

nt.

ca

tuc

2 O

J/le

e -_

<-.

_-

__

ka__

_

_H_

_

la,t

e.aa

Hy ~~

o:

M

n_

[0

7S

Sla

Fer

nlo

do

lutb

qu

lh.

1-9-

11

34

'24

' N

00

' I

133.

8 2

2.3

1

1.4

4

0.1

6

.6

VII

11

16

4.64

(1

91

.40

) ( 1

.33

)34

70 W

ihh

he

&cu

hv

ud

, 1

11

'23

.1'

W

5 9

0'

W

11

1.8

1

1.5

11

.6

21

(lS

9.1

S)

(0.1

5)

Su

bb

uee

eat.

L

oa M

le! l

ea

Do...

. 4

1.3

7.

3 3

.9

22

[071

1 5

10

re

rua

do

!u

tbq

ulk

.e.

1-9

-11

3

4'2

4'

N

• ~O'

W

!l

6. s

2

3.1

13

.1

41.~

6

.6

VII

11

16

3.18

(1

61

.68

) 3

3.1

8

(34

.46

) 1.

99

(0,1

1)

WIU

r la

d P

over

lu

Ud

inl.

1

1I'

23

.1'V

5

40

'W

169.

2 16

.1

8.9

a

ueeen

t.

Lo,

A

nle

Iel

Do...

. 6

1.1

1

0.2

6

.4

lOal

Sa

n re

raaa

do

brt

hq

ua

ke

, 2-

9-11

3

4'1

4'

MS

08

' E

2

13

,0

9.9

1

.0

32

.9

6.6

V

I 34

(3

6.9

4)

(3.0

8)

(O.O~)

a

an

t.

hH

orh

D__

, III'n

.l'

W

S 8

2'

W

198.

3 6

.2

4.6

34

20

.91

(24

.15

) 1

.6l

(2.5

])

0.1

3

(0.0

1)

Ou

tlet

Wor

kl

Dow

6

3.1

4.

5 1.

8 34

10

82

SIn

Fer

n,n

do

b r

tbq

ulk

e,

2-9-

11

34

'14

' N

5 I~'

E

2

0).

) 2

2.1

1.

1 3

2.8

6.

6 V

I 31

(1

13

.31

) (6

1.6

3)

(2.9

0)

San

la f

eli

cia

DI•

• 1

11

'23

.1'

W

5 H

' W

1

74

.0

11.1

~.3

31

1

10

.10

(1

09

.39

) 3

1.6

3

(34

.64

) 1.

69

(UO

)C

rut

Dow

65

.0

6.1

1.1

31

lO

ll

Sao

fera

.ad

o lu

tbq

ulh

. 1

-9-1

1

)4'1

4'

N

S 0

0'

W

158.

2 1

1.3

9

.0

40

.0

6.6

V

II

l~

10

3.51

(l

01

.31

) 1

9.1

1

(26

.24

) 0

.80

(0

.86

)34

07 6

tll

Ih.r

eet.

a

"ee£

at.

1

11

'2].

1'

W

.90

' I

161.

9 1

6.5

1

0.3

2~

(9

8.0

3)

(21

.01

) (0

.41

)L

o.

Aa

t.le

. D

ow

5

5.5

8

.8

4.4

2~

FO

l6

51

0 fe

rala

do

la

rtb

qu

.kt.

A

1

-9-1

1

34

'24

'.

• 13

' W

1

04

.6

17.4

1

4,8

4

9.4

6.

6

190.

16

(13

1.2

7)

38

.49

(3

0.6

8)

1.41

(o

.n)

Ver

Doa

. Q

'II)

Bu

i14

tal

IIS

'n.l

'V

50

1'V

1

0,5

1

5.1

10

.1

Up

42.1

6

.1

4.0

r0

87

h,O

F

ern

lod

o Il

rtll

qu

"::

e I

2-9

-11

3

4'2

4'.

5

04

' I

16

.8

~.O

3

.6

88

,5

6.6

V

I (S

S.l

l)

(U.~)

(0

.11

)la

the.d

Iu

Ud

J.al

. 1

11

'23

.1'

II 5

16

' W

1

8.2

8

.0

5.7

13

0,95

(1

l1.6

) 31

.67

(31

. 71)

0

.31

(0

.10

)S

lala

Aal

, O

na

te C

ouat

,

Up

16,1

1

.4

1.1

FO

U

Sill!

fer

nla

do

lart

llq

ulh

, A

,I

2-9

-11

3

4'2

4'.

8

10

' I

265.

1 3

0.7

IL

l 34

.1

6.6

VII

21

(lB.~9)

(6

1.3

6)

(1.3

4)

6lJ

lut B

roal

tvl'

, H

un

idp

ll

11

1'2

3.1

' V

S

20

' W

20

9.1

23

.5

5.3

21

15

6.01

(1

79

.32

) 66.~~

(6

1.8

5)

2.61

(1

.98

)S

e'r.

ice

Bu

Ud

inl.

Gle

nd

ale

D

ow

m.s

1~.6

s.

6 21

r0

89

Sla

fer

nla

do

hrtb

qu

ah

. 2-

9-71

3

4'2

4'

N

8 5

3'

E

13

1.9

2

0.8

14.~

4

4.0

6

.6

VII

22

80

8 So

utll

Oli

n S

treet

I 1

18

'23

.1'

W

53

1'

W

13

9.0

2

0.1

1

1.6

22

11

9.60

(1

22

.68

) 2

9.1

1

(16

.51

) 0

.12

L

o,

Aa

lelu

D

ow

1~.

3

9.9

6

.0

F09

2 Sl

a fe

rnla

do

hrt

hq

u.k

e,

2-9-

11

34

'14

'.

8 6

2'

E

64

.2

13

.8

10

.3

43, I

6,6

V

II

(10

4.1

1)

(l4

.62

) (O

.B)

2011

Zo

ad

"..

lau

e.

a..e

.Dt

I 1

18

'13

.1'

V

5 1

8'

W

19.1

II.~

6

.3

(68

.54

) (2

3.4

0)

(0.1

6)

Lol

A

ale

lu

Dow

4

8.1

1

.1

3.8

r09S

S

la F

enal

ndo

hrtb

qu

lb.

2-9

-11

3

4'2

4'.

5

U'

I 96

.1

16

.8

10.6

3

1.4

6

.6

VII

12

0 lf

orL

b R

ok

ruo

a &

cuh

nrd

. III'n

.l'

V

5 0

1'

W

83

.9

11

.9

ILl

(lS

l.lJ

) (S~.

37)

( 1

.90

)Su

bbl,e

rmea

t,

Lol

Aa

leln

D

ow

16

.5

6.2

3

.9

r098

Sl

a fe

rala

do

brt

bq

u.k

e.

1-9

-11

3

4·2

4'.

5

B'

I 2

36

.4

21

.1

13

.1

4l.

1

6.6

V

II

22

94

,08

(7

5.1

8)

9.14

(1

4.6

7)

0,0

4

(0.4

2)

646

Sout

ll 01

he "

v.au

e I

11

1'2

).1

'1/

5]l'

W

19

2.0

1

1.5

1

3.4

a.

.eer

at.

L

al

AD

ldes

D

ow

6

9.2

9

.6

5.3

fl

OI

Sao

fern

lad

o Il

rth

qu

d:e

. 1-

9-11

3

4'1

4'.

8

00

' W

37

. s

1.5

1.

1 1

01

.6

6.6

6.

3~

(5

.S~)

1

.56

(l.6~)

0

.20

(0

.16

)14

1..o

a C

Mlp

aay,

Col

lon

11

8'2

3.7

' W

90

' I

30

.0

2.1

1

.3

Up

19

.1

1.5

1

.4

Ha2

Sa

n F

eula

do

!.u

tbq

ua

h.

HR

2-9"

11

)48

24

'"

• 0

I 1

4.6

1

.4

0.8

6

8.5

6

.6

2.0

1

(1.3

4)

0.5

1

(0.5

8)

0.01

(0

,01

)lo

rt T

eJoa

l T

eJoa

1

18

'23

.1'

W

• '0

' I

10

.6

1.3

0.7

(3.4

1)

(1.3

0)

(0.0

5)

Dow

1

5.3

1

.0

0.5

flO

) Si

a F

eraa

ndo

Ear

tbq

ulk

e,

1-9

-11

3

4'2

4'.

00

' I

91.5

4

.4

2.5

45

.4

6.6

P

lap

ial

Pla

nt.

III'n

.l'V

.9

0'W

!l

O.S

5

.4

1.4

31

.33

(3

0.6

8)

1.3

4

19.6

0)

O.I~

(0

.23

)P

urb

loli

Oil

D

ow

41

.4

2.3

1

.1

FI0

4 Si

a fe

m.a

do

ia

rtb

qu

-ke.

2-

9-11

3

4'2

4'.

00

' E

8

5.2

8

.5

2.0

5

1.2

6

.6

0.0

Pla

ph

l P

Ala

t I

11

8'n

.7'

W

• 9

W

103.

1 6

.0

1.3

13.4

4 (1

5.3

9)

1.1

l (1

.96

) 0

,09

(0

.01

) eo

....

. D

ow

35.5

3

.8

1.2

flO

S Si

n F

erna

ndo

Ear

thq

ulk

e,

1-9-

11

34°2

4 1

II

S0

W

83.1

8

.3

4.0

38

.1

6.6

V

II

60

.01

(4

9.8

1)

9.8

6

(U

I)

0.2

6

(0.1

4)

UCLA

R

uct

or

L..

bou

tory

I 1

II'2

3.1

'W

.90

'1

11

.6

1,5

4,

9 (5

2.0

4)

(8.6

5)

(0.0

7)

Lo.

A

nld

rI

Up

61

.1

4.5

1.

9

GI0

6 SI

n le

raaa

do

hrt

hq

ua

ke.

llR

1

-9-1

1

)4'1

4'4

1"

M

8 0

0'

W

81.5

5

.8

1.6

36

.1

6.6

V

II

CIT

Srt

.-.o

IOli

ul

lla

o2

4 '0

0" W

S

90

· W

IS

S.6

1

1.6

s.

0 2~

31

.11

(36

.14

) 8

.10

(1

0.6

3)

0.6

2

(0.3

9)

Lab

<lU

lory

. r.u

deu

D

ow

83.~

5.

1 2

.3

2~

CI0

7 Sa

o F

emla

do

Elr

thq

ulk

e I

1-9-

11

34°1

4' 4

1" N

N 0

0'

[ 9

3.5

1

.9

3.0

3

9.8

6

.6

VII

16

(6

3.0

1)

(11

.48

) (0

.5\

)A

lbea

.eU

II.

CIT

11

1°24

' 00

" W

If

90

· I

10

7.3

1

4.3

1

.3

16

105.

19

(13

9.1

1)

3l ,

01

(33

.54

) 0

38

(2

.00

) D

ow

9l.

9

6.6

l.

6

16

(Con

Un

ued

) (S

hee'

4 01

II

)

Page 33: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

.... 1

(Coo

llou

ed)

CIT

F

Ur

~

Rec

ord

to.1

Sta

tiO

D

Sit

e

C..

.. i(

~

Dll

e of

hrtbqua~

Ep

tcen

ter

Loc

atio

D

lo.t

ruee

Dt ~

A

Peal

l. A

ecel

era

tio

D

<8

/,0

,2

v Pu

ll.

Yel

oett

)'

<8/

.0<

lJ

Pe.1l

. D

i.p

hce·

...

t _

_<8_

_

£p

ieeD

tra

l D

ilta

Dce

_

_h

l_

_

Ric

hte

r K

.aln

ttu

de

--"-

­l1

0dif

ied

K

erca

U i

hle

Da

ity

O

ura

tioo

~

il:'H

V

llu

e. o

f u {~A

It

.n

GI0

8 Sa

il F

ern

and

o E

arth

qu

ake,

C

IT "

HU

h.

Lib

ra'}

' A

2-

9-71

3

4°2

4'4

210

N

1

18

"24

'00

" II

• O

Oa

£ •

90"

E

19

8.0

1

81

.6

9.8

1

6.]

2

.1

6.9

3

9.8

6

.6

VI!

35

35

5

6.1

2

(58

.20

) (9

1.7

3)

11.~9

(1

6.8

))

(20.

)))

0

.01

(0

.18

) (0

.1))

D

o""

91

.2

8. I

2.

4 35

G

IIO

Sa

n F

en.a

do

IU

lhq

u.e

lr.e

. C

IT J

et

Pro

pu

hio

D

1.Ib

orat

ory

a..

ew

at

A,I

2-

9-11

1~"2~'~2"

N

11

8°2"

'00"

W

S 82

" E

S

08

· W

D

o""

20

1.8

1

]9.0

1

26

.]

I] .

4 9

.0

5. I

5.0

2

.9

2.6

]1.5

6

.6

VII

23

23

23

(51

.20

) (3

3.6

3)

(12

.96

) (1

1.0

))

(0.2

5)

(0.0

2)

GI1

2 Sa

o F

era'

Dd

o I.

rtb

qu

.ak

e I

611

Wel

t S

iub

Str

eet,

"

.eeeo

t.

Lo,

AG

ae lu

2-9-

71

34

.24

14

2" N

11

8°H

'OO

Il

W

If ~

W

3S-

E

Dow

10

1.9

1

8.5

5

3.2

11

.0

15.

I 9

.9

11

.0

9.2

5.2

40

.5

6.6

V

ll 45

45

45

10

3.93

(1

01

.24

) (Ill

98

) 21

.66

(l0

.06

) (2

1.9

8)

1.31

(0

.17

) (0

.18

)

GII~

S'

D

Fen

.od

Cl

£u

thq

ua

h.

hla

d8

1e

fire S

hU

oa

S

ton

ae

RO

M,

Ptl

.cla

le

A

2-9

-71

34

°24'

''2'

' N

1

18

"24

'00

" II

56

J: S

]0"

II D

ow

11

0.8

13

6.2

86

.6

14.0

9

.]

1.6

3.8

2.

I

2.4

]2.]

6.

6 V

I 30

30

30

108.

19

(12

6.6

5)

(86

.10

) ~1.14

(4

5.8

1)

(2l.

59

) 0

.95

(0

.63

) (0

.03

)

H1I

5 Sa

D F

erU

Dd

e. E

,lI'

tbq

u.e

h I

1~2~O

V

entu

ri B

oule

vard

. "

'eee

'al

2-9-

11

3~"24'42"

N

ll

S02

4 'O

O "

W

N 1

1"

t •

19°

W

Dow

22

0.6

1

46

.0

94

.5

28

.2

2].

5

9.]

13

.4

10

.3

4.3

29.

] 6.

6 V

II

39

39

39

211.

08

(25

0.1

))

(26

1.3

))

55

.15

(8

3.6

3)

(74

.89

) 0

.93

(0

. ~6)

(1

.24

)

HII

8 S

ia F

uo

.ad

e b

rtb

qu

lke.

86

39

Ua

eo 1

D

Ave

Due

) 1

.ue.

eDt,

L

oa A

D.r

lu

2-9-

11

]4"2

4'4

2"

N

11

8"2

4'0

0"

II 5

~5"

I

5 45

" II

Dow

33

.1

]2.1

4

1.0

11

.8

9.1

6

.9

8.8

1.8

3

.9

50

.2

6.6

VI

16

16

16

281.

1B

(25

1.6

2)

(14

6.6

2)

114.

86

(10

1.4

2)

(41

.10

) 1.

65

(0.1

0)

(0.6

8)

HI2

1 SI

O r

nD

8ad

o la

rtb

qU

lb,

90

0 S

oy

th I

're

eo

Dt

Ave

ou.e

I a

ale

seD

t,

All

ull

bn

2-9

-71

34

°24'

42"

N

1

1."

24

'00"

II

S 9

W

5 00

" II

Dow

11

9.4

1

12

.]

19

.2

11.1

1

0.5

8

.2

8.6

4

.4

3.4

~I.I

6.

6 VI

I 21

21

21

132.

13

(11

3.8

7)

(72

.35

) 35

.26

(l1

.34

) (2

3.5

6)

1.39

(0

.5)

(0.4

0)

H12~

SI

O F

eral

ado

Ear

tbq

uak

e,

2600

N

utvo

od

Av

uu

e,

....

mea

t.

Fu

lhrt

oD

A

2-9

-71

3"

°24'

42"

N

11

8"2

4'0

0"

II S

90°

W

5

00"

II D

ow

]4.9

3

4.5

14

. I

4.4

5

.8

2.]

2.1

2. I

1

.9

16

.8

6.6

V

I 3~

34

34

59

.86

(l

U3

) (5

6.6

5)

11.2

5 (8

.)2

) (2

0.0

8)

0.2

6

(0.1

1 )

(0

.57

)

1128

S

u F

en.a

do

la

rlh

qu

b.

4l!t

Nor

-til.

a...h

un

t A

veD

ue I

....

Nea

l,

le'f

'erl

y H

Ull

2-9-

71

34

"24

' ~2"

N

1

1."

24

' 00"

II

• 00

" E

8

90"

II D

owo

60

.9

91

.6

36

.4

1l.

2

15

.0

5.8

7.2

8.1

2

.3

20

20

20

(128

.11)

(1

48

.85

) (4

6.3

4)

(4/.

16

) (2

.23

) (2

.1 il

1131

Sa

a. F

el'D

ud

o la

rth

qu

lh,

4~O

lo

rtb

Ito

.bur

y D

rhe,

li

t F

loo

r, an

.rly

HH

Io

2-9-

71

34°2

"'4

211

PI

118°

24'0

0" W

I

~Oo

I

I "0

· V

D

owo

18

4.3

1

60

.6

]7.2

17

.2

14

.1

4.5

9.2

6.

1 2

.3

38.2

6

.6

VI

48

U

U

84.1

1 (9

8.5

5)

(8l.

57

) 13

.32

(24

.23

) (2

0.4

2)

0.11

(0

.12

) (0

.90

)

11]4

S8

a F

eral

ado

lutb

qu

....e

, 18

00

Cen

tury

P

uk

lil

t,

....

.-ea

t (P

l).

La.

A

.ale

lu

2-9

-71

3

4"2

4' 4

2"

N

118°

24'0

0" V

54"

E

8 36

6 I

Dow

91

.9

82

.]

62

.5

16. I

10

. I

5. I

II.]

6

.2

2.5

38

.9

6.6

VII

49

49

49

(20

5.9

6)

(16

1.]

))

(41

.85

) (3

5.3

3)

(2.3

6)

(1.8

6)

11]1

S

ia F

en'l

lda

lu

thq

ulk

e,

uno

Ven

tura

lG

uh

vu

'd,

"'e

Mll

l,

1.0.

A

aae1

u

2-9

-71

J

4·H

'42

11

N

1186

24 '

00"

W

S 8

1-

I S

09

6 W

D

owo

140.

2 1

29

.0

99

.9

16.1

2

2.3

1

.9

1.1

8

.4

2.6

29

.0

6.6

V

I!

39

39

39

235.

53

(16

5.1

0)

(12

1.0

4)

101.

38

02

.66

) (4

3.9

4)

0.4

6

(1.9

2 )

(1.2

3)

]141

S

n f

eru

ad

o E

'l't

bq

ulk

e.

1.Ik

.e K

uehe

s A

ruy

la

. 1

HR

2-9-

11

3"-2

4'42

"

N

11

8"2

4'0

0"

II ..

21°

E

86

9" E

D

ow

145.

5 10

8.9

9].

0

18

.0

14.4

11

. I

].4

2

.9

2.9

29

.6

6.6

VI

22

22

22

81

.29

(8

8.4

0)

(55

.19

) 21

.38

(24

.11

) (2

1.8

9)

0.1

4

(2

04)

(0.3

4)

]14

2

SID

Fer

D8D

do b

rtb

qu

.h,

lAb

RU

lbes

A

ruy

No.

4

HR

2-9

-71

]4

"24

'42

" N

1

18

"24

'00

" II

8 69

" E

8

21"

II D

o""

16

8.2

1

4].

5

15

0.8

5.]

8

.6

6.8

1.2

1

.1

1.6

26

.8

6.6

V

I 31

31

31

22

.51

03

.8))

(2

6.3

3)

5.9

1

(l.3

9)

(~.OO)

O.I~

(0.0

5)

(0.3

6)

]14

] .h

D

hm

lDd

o E

utb

qu

llr.

e,

lAke

H

uSbe

l A

rny

No

.9

HR

2-9

-71

]~"2~'42"

N

1

18

"24

'00

" II

N 2

1"

E

• 69

" II

Dow

us.a

1

09

.4

lI.5

4.8

4

.]

2.9

2.0

2

.4

2.2

26

.6

6.6

V

I 21

21

21

13.7

1 (1

3.2

0)

(9.3

2)

3.8

6

(l.9

9)

(2.1

2)

(1.1

1 (O.O~)

(O.O~)

]144

SI

D F

eru

Dd

o lu

tbq

ulk

e,

uk

. H

u.b..

Arr

ay

No.

12

2-9-

11

3"°2

4 1

42

"

N

11

8"2

4'0

0"

II •

21°

I •

69"

II D

ow

]46

.2

21

1.9

1

05

.]

14. I

12

.4

4.1

1.8

8

.9

].3

23

.]

6.6

V

I 22

22

22

30

.15

(J6

.57

) (2

1.9

9)

8.6

] (1

2.1

0)

(8.2

9)

0.1

6

(0.4

3)

(0.6

6)

]145

S.

D

FeR

.Dd

o E

utb

qu

lke

I

HI0

1

Via

o.

"ea

Str

eet,

B

ue.e

at

I L

a.

AD

ldn

2-9-

11

]4"2

4'

N

11

8"2

]' 4

2"

II S

00

' II

5 90

" II

Dow

m.s

1

0].

4

10

6.4

3I.5

2

8.8

1

8.1

I 1.5

1

5.]

1

.0

34.9

6

.6

VII

~O

40

40

424.

25

(~1I.18)

()1

0.4

3)

181.

20

(16

0.2

9)

(12

6.1

4)

6.01

(l

.57

) (5

.13

)

JI~8

Si

n F

erD

Aod

o E

artb

qu

ake,

61

6 So

uth

Hon

aaod

ie A

veou

e,

8..e

.ea

t I

LO

l A

llie

Iea

A, I

2

-9-1

\ 34"2~'

N

11

8°23

14

2"

W

• 00

" I

9 9

W

Do"

"

10

1.6

.

11

2.0

5

1.6

16.2

I) .5

6

.1

1.3

II

. I

] .~

39

.9

6.6

vn

19

19

19

108.

23

(9).

17

) (1

28

.51

) 36

.36

()2

.19

l (4

3.2

0)

1.3

\ (0

.18

) (0

.41

)

Ll6

6 Sa

n F

ena

od

o

Ear

tbq

uak

e,

3838

u

ok

era

bi.

Bou

leva

rd,

B.l

e.e

ot,

L

o.

An

lele

l

2-9

-11

34·2~'

N

1

18

·2]'

42

" II

N

00

· I

S 9

II

Do"

"

16~

.2

141.

6 69

. I

12

.3

11

.0

5.0

4.9

5

.4

2.4

30

.8

6.6

VII

26

26

26

5~.26

02

.BO

) (6

1.0

7)

16.0

0 (5

.9B

) (1

2.9

1)

1.23

(0

.16

) (0

13

)

(Coo

tin

lled

) {S

hee

t 5

of

11)

Page 34: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

T..bl~

A

t (ContiDu~d)

CIT

fi

h

~

L1l

1

R~cordiDI

Sh

lio

D

Sao

r~rG8lJdo

In

tbC

lud

,e I

Nu

clea

r P

over

P

ha

t,

S.a

OD

oire

Sil

o

Cla

uH

i­ca

t io

a

Dat

e 01

E

arth

qu

ake

2-9-

11

Ep

Icee

t.er

lD

..tru

aen

t ~

C

<*po

oeat

34

'24

' M

In

' t

)1

8·2

l'4

2"

W

If ~

W

Ilo

vD

12

.0

. IS

.9

10.3

A

Pu

k

Acceh

nti

oa

caL.

.c2

V

Pu

k

Vel

oci

ty

00

/1«

1.1

2

.1

I.S

ll"

Pea

k D

tlp

hce

· ...

t _

_ca_

_

2.1

2.1

2.0

[pic

ealr

al

Dh

taa

u

__a

.__

13

9.1

Ric

btt

r H

a.a!

tud

e

--"-

­6

.6

Hod

ilie

d

tkrC

lIU

J

ote

a.i

ty

V

" " "

Du

Uti

OD

---.

!!£

.­V

.lu

e,

o.oI

OS

. IS

) 16

.01

(19

.17

)

01

0 (c

o)

(or

I/A

=

!-

.L-_

_

__0

_.S

_

(1.2

3)

(0.0

4)

2.~6

(3

.64

) 0

.03

(0

.04

)

M11

6 Se

D.

fero

.od

o E

Ulb

qu

lke

I

IIS0

S

ou

tb 1

111

Str

eo

t,

Su

bb

ue.

ept

t L

o. A

iI,d

e-.

A

2-9-

71

34

'24

' 1

Ill.

Zl'

42"

W

1 H

' t

S S

l· I

Ilo

vD

n.4

11

6.0

41.6

20.9

11

.1

1.9

13. }

13

. }

4.3

42.9

6

.6

VII

]]

]]

3l

20S.

31

(214

.21)

(D

O.4

4)

66.S

I (7

2,21

) (2

4.30

) 1.

36

(I.H

) (0.4~)

"119

Sa

il r.

ruo

do

lar

tbq

uak

e,

T~b.cb.pl

i'I

IIIp

lal

PIn

t,

M

Sit

•. C

np

evh

t

2-9-

71

34-2

4'

II

IU'2

3'4

2"

W

S 0

W

1 9

0'

I Ilo

vD

20.1

46

.1

31.S

1.1

2.6

2.

0

O.}

0

.'

1.2

10.1

6.

6 V

I n U

13

4.

41

(3.0~)

(S.O

) 1.

23

(O.m

(1

.10

) 0.

06

(0.0

04

) (0

.04

)

Hla

O

SaD

ru

uD

do

!u

tbq

u"

;e

4000

\N

It C

h

a A

ve D

Ue

t

bu

_a

t,

0 .

A

2-'

-71

3

4'2

4'

1 IU

'2)'

42

" W

S

00

' W

S

'0

' W

Do

....

23.9

29

.' 11

.2

S. }

I.

S

3.9

3.S

6.S

2.~

14

.3

6.6

~

~

~

20

1.77

0

1.9

1)

(19

6.6

9)

62.1

0 (2

0.)

9)

(66.

93)

0.16

(0

.21

) (0

.19

)

nU

l So

la r

eru

ad

o l

utb

qu

":e

, 60

14

Par-I

I: D

riv

e,

Gco

uad

Iud

, W

ri.b

tvoo

d

2-'

-11

3

4'2

4'

M

118·

2)'4

2" W

1

6~'

W

II

2S·

I

Do...

.

42

.4

SS

.l

22.9

3.1

2.6

2.0

1.2

0.9

1.

2

.}O

.S

6.6

v ~

W

~

I1.D

(2

].3

2)

(12

.29

) S.

61

(6.4

7)

(4.1

3)

0.22

(0

.09

) (0

.06

)

n184

Sa

D F

en'B

elo

E.r

thq

uak

e,

6014

Pu

-k,

Drh

e,

Gro

u.ad

In

",

Wr1

.htv

ood

2-'

-71

34

·24'

If

II

S'2

)'4

2"

W

.. 6

! S

u'

W

Dov

a

4].

1

SI.

2

24.1

4.6

2.

9 I.

,

1.2

O.}

0

.9

10.1

6.

6 U

U

26

]0. S

l 0

9.s

n 0

4.9

1)

7.10

(6

.21

) (4

.21

) 0.

09

(0.]

1 )

(0.1

6)

1iI1

8~

SID

'en

.ad

o l

utb

qu

lh.

Cu

boa

C.a

yoD

D..

2-'

-71

3

4'2

4'4

2"

1 1

11

'24

'00

" W

S

SO'

t 5

40

' W

Ilo

vD

67

.3

61.3

41

.S

].3

4.

S 2.

S

1.7

2.1

1.6

1~.6

6.

6 ~

~

~

2

1.]

4

(u.~)

(2

7.19

) 1

.27

~.4S)

(1

.24

) 0.

43

(0.\

1)

(0.2

1)

N18

6 SI

D F

en.a

do

brtb

qu

ah

. W

biU

hr

'.rr

owl

D..

A

2-

9-71

3

4'2

4'4

2"

1 1

11

'24

'00

" W

S

31

' E

S

S3'

W

Ilo

vD

9S.1

94

.1

SI.

6

1.1

9.

1 3.

6

4.9

S.

O

2.3

S4.1

6

.6

VI

" e " 16

.14

(71

.17

) (1

2.2

6)

II.S

2

(9.3

0)

(12

.61

) 0.

26

(O.I~)

(0

.42

)

lUll

Sa

o re

n.a

do

Eu

tbq

u.k

e,

Sno

Ail

toai

o .0.

.,

Uph

D4

A

2-9-

11

34

'24

' 42"

MilS

' W

1

11

'24

'00"

W

1

IS'

I Ilo

vD

SS. }

}S

.9

21

.]

].1

3. }

I.

S

O.}

0

.1

0.1

12.1

6.

6 V

I ~

n H

II.]

, 0

).2

])

(20

.02

) 6

.'1

(6

.46

) (}

.OS)

0

.]1

(0

.24

) (0

.30

)

Ill"

S'

D '

era.

odo

Eu

thq

u.h

r 18

10

Cen

tury

P

uk

IIat

• Pa

rlt~

h,"

li

t 1.

".1

t L

o. A

a.e

lu

A

2-9-

11

34

'24

' 42"

1

11

1'2

4'0

0"

W

1 S4

' t

1 3

6'

W

IlovD

114.

4 12

6.S

62.S

11.0

12

.1

S.O

10.1

S

.4

2.4

38

.9

6.6

V

II

e e " 10

1.]1

(1

2'.

S9

) (1

04

.39

) 1

4.)

9

(27

.S)

(20

.1])

0.

11

(0.4

21

(LIS

)

1f19

1 So

la F

emlD

,do

lart

hq

ua

kE

, 2~16

V

ia t

ejo

D,

Cro

u.D

d 'd

o.

Ver

cle.

In

nea

Ie

ve l

, 2-

9-11

3

4'2

4'4

2" II'S

' t

1

11

'24

'00

" W

S

lS'

I D

ow

24. }

40

.1

U.9

4.1

S.O

2.

2

2.6

3.

4 1.

4

61.1

6

.6

VI

" " " (9

1.1

2)

(14

.10

) (2

1.2S

) (1

l.}

1)

U4.

s0)

(0.2

1)

.19

2

Sao

Fer

alad

o I.

rtb

qu

.h,

2~OO

W

I hb

J e

e Io

ule

v.r

d,

",e

eelt

r L

o,

"o

.eln

2-9-

11

34

'24

'42

" I

11

1'2

4'0

0"

W

K 2

9'

I K

61

' W

D

ova

96. }

91

.9

42.S

14.1

U

.S

1.1

l.}

7.

9 3

.)

40.1

6

.6

VII

H

H

2S

91

.12

(1\4

.39

) (1

21.4

1)

27.2

9 0

1.1

0)

(]6

.S2

) 0

.46

(0

.31

) (I

.S3

)

IUtS

So

la F

enaD

.do

Ear

thqu

.lk.e

, Sa

D.

Ju.••

C.p

htn

Do

2-

9-11

3

4'2

4'4

2"

I 11

1'24

'00

" W

I

Sl'

W

1 33

' I

Do...

.

31.0

4

0.'

2

1.0

4.6

3

.6

].4

2.4

2.

4 1.

6

122.

6 6

.6

" " " 44

.42

(S6.

44)

(4}.

24

) 13

.46

(11

.]3

) (1

2.6

1)

0.09

(0

.)2

) (0

.26

)

1119

6 S

ao h

ra

nd

o l

utb

qu

..k

.e.

Loa

, le

acb

Sta

lt C

oll

e,t

, G

rou

d

lev

el

2-'

-11

)4

'24

'42

" I

11

1'2

4'0

0"

W

I 1

6'

W

S 1

4'

W

Dow

3S.0

]1

.2

H.I

9.S

9.3

4

.9

1.0

6.

}

).1

}S.4

6

.6

VI

~

~ ~

lSI.

"

(lS

4.4

S)

(190

.12)

SO

.21

(SS

.2l)

(6

0.1

0)

0.12

(0

.61

) ( 1

.19

)

JUt7

S

a.

hrD

.ad

o E

artb

qu

.ah

. A

Gn

Poa

t 01

1 ic

e S

tou

'll'

10

M,

AD

za

2-9-

71

3'·

24

'42

"..

IU

'24

'oo

".

II ir

iS·

I 1

4S

' W

D

ow

H.6

3S

.4

14.0

2.2

2.6

1.4

1.2

1.0

1.1

US.

O

6.6

V

43

U

U

1

1.2

) (2

0.6

1)

(11

.)))

S

.2)

(4.1

0)

(S.2

1)

0.11

(0

.14

) (0

.19

)

0198

So

la f

ll'ra

aado

E

art

hq

ua

h,

Gri

ftH

h P

ark

Ob

lern

tory

, L

o,

AD

aelll

'1

HII

2-9-

71

34

'24

' 42"

I

11

1'2

4'0

0"

W

S 0

0'

W

S 9

0'

W

Do...

.

116.

0 16

1.0

120.

0

20.S

14

.S

1.42

}.2

I S

.'S

).

38

34.0

6

.6

Vl)

2)

23

23

19

.06

(S

S.2

4)

(94

.Il)

11

.43

(22

.20

) (3

4.1

\)

0.91

(0

.'3

) (1

.04

)

01

9t

San

rem

aad

o la

rth

qu

.ate

, 162~

O

lr-p

ic

Iou

leva

rd,

Loa

A.a

atl..

.

2-9-

11

34

'24

' 42"

I

IU'2

4'O

O"

W

1 2

S'

t 1

62

' W

Do

....

I)}

.0

23

S.0

14

1.0

11.6

0 21

. 30

10

.40

9.11

10

.30

S. }

4

42

.0

6.6

VII

~

~

~

II

I.'S

(1

26.6

1)

(110

.90)

21

.40

(21

.11

) 0

2.4

0)

1.01

03

(O.I

S)

(06

')

0204

Sa

D f

ua

.ad

o t

arth

qu

ake,

20~

W

ut

Bro

ad"

a,.

Lon

l ".c

b

A

2-9-

11

)4·2

4'4

2"

"

11

1'2

4'0

0"

W

.. 0

E

19

0'

I U

p

2S.9

20

.1

12.2

S.I

}

9.S1

6.

12

S.I

I }

.2}

).Sa

13.1

6.

6 V

I 69

69

69

26

6.90

(2

01

.\3

) (2

".1

1)

111.

04

(61

.2')

(m

.66

) ).~O

(0

.2])

(1

.01

)

020~

Sa

n ft

na

nd

o E

arth

qu

ake,

T

en

iD.l

h

lan

d.

Loa

l ".c

b

A

2-9-

11

34

'24

'42

" I

11

1'2

4'0

0"

W

1 2

1'

W

S 6

9'

W

Up

21

.4

21.1

16

.1

}.]

7

10.3

0 4

.24

6.)

9

1.1

2

2.1

3

13.6

6.

6 V

I ~

~

~

222.7~

(llS

.Il)

(2

S7.

31)

,s.n

(6

2.9

2)

(94

.31

) I.]~

(0

.43

) (0

.33

)

(Con

tiD

ued

) (S

boot

6

01

\I)

e--

­l

Page 35: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

T.b

le

AI

(Co

Dli

nu

ed

)

1l

Pu

k•V

P

uk

C

IT

Sil

e

Oal

'"

Pe.

k

DJe

p le

ce­

[pic

en

tul

Rld

lt",

r H

...dj

li

ed

A.c;c:~lt'nt~oD

Fj I

..

Cl ..

..lh

· of

K

p r r

-em

er

Inll

ruaen

l 'I

rlo

cil

Y

....

t D

illu

ce

tt_

,nH

ud

e l'

krc

_ll

j D

ura ..li

,on

'I.l

uu

~

ll

.I:c

ord

ina

Sto

LIP

n

~.

h

clh

qu

.... r

_

Lo

c.I

lio

o ~

C~poDeDl_

C

fl/u

c2

H

ln

leD

l1ty

.ssi

sss:

--

'''-

---

"'-­

0206

S,

ID F

no

ud

o .

.rl

bq

u...

. e,

2-9-

11

]''''

2'0'

1,2'

' H

)1

.4

1.•

1 I.

)0

H..

Ll

01

R..c

ord

••

11

""'2

4'0

0"

W

• 9

0'

[ I,

J.9

2.

A6

I. 05

I)

(2

1.)

2 )

Sao

B

ert

iard

iBo

D

o••

II,S

1.

52

0.8

0

11

02

0]

S..

n '.

rn.o

do

l.

lrth

qu

.lk

e ,

... 2

-9-1

l H

·l""2

" i

ii iii

HO

[

6•.

6 1

.84

1

.2)

12. A

...

VI

H

(11

.1)

(l.0

1)

lo.m

ra

i.-.

on

t Il.

..u

ryo

ir.

~lI·21o'OO·'

'W

It]"

. w

9

1.0

A

. )5

1.

71

20

15

.95

(2

1,.1

71

4.0

9

(5

.a)

0.2

1

(0.2

1)

Fd

rao

ol

Up

32

.90

3

.17

1.

Jl

H

" 00

'" 1

lO

S .2

6.

6 V

I 11

10

.11

02

.")

0208

SI

D

hrD

ud

o

EU

lhq

uak

e,

2-9

-11

)4

"21,

,'1,2

" II

If

42

· [

16.•

0 2

.69

1.

61

61

(Sl.

lI)

(16

.0))

to

. 41)

Uo

ha

uiL

y

of

CaU

lon

h,

,11

·24

'00

" 'V

S

4.a°

t

l1.D

O

3.6

J 2.

11

U

(91.

'7

)

(l\

.")

(1.0

])S

aala

b

rb

u.

U

p 1

1.0

0

1.6

9

1. 4

1 U

02

10

SaD

'h

ruD

do

E

Ulh

qu

.ak

l',

2-9

-71

)·~·21,'1,2"

NS

'5·

£ 3

'.9

0

2.8

6

1.66

6

.6

II

IH.J

2)

(4.'

9)

(0.0

0F

in S

lali

DD

, Y

I'.-e

L

111\

"'24

'00"

V

S

1,:

). w

n

.40

2

.14

1

.32

" (1

1.6

0)

(l.I

I)

(0.0

')Do

...

21

.00

2.

n

1.21

o

lD

5aD

rn

un

da h

rlh

qu

..ke

, ..

2-9

-1l

)II0

21

,'42

")j

5 45

° [

o.6~

0

.2J

0.2

1

J)'.

l 6

.6

III

" I' (I

.J9

) (0

.8)

(0.0

1)

1215

C

alJ

uf,

H

oo

yu

D••

1

10

°24

'00

" W

S

45'"

W

1

.11

o

29

0.1

9

n (2

21

) (0

.60

) 1

0.0

0))

Up

0.1

6

0.1

1

0.1

1

n P2

14

Su

h

rDu

do

£

arl

bq

u.h

, 2

-9-1

1

H0

24

'U"

J6 S

S9°

lJ

15

4.0

0

2).

20

A

.02

16

.2

66

VJ

I II

9

1.9

1

(14

0.'

1)

16

.69

(1

2.1

1)

1.4

1

(0

19)

4116

1 S

un

ul

&O

ule

,u'd

. 1

1"°

24

'00

" 'Ii

5

01

'" [

11

6.00

1

6.2

0

J.9

4

1\

(91

.06

) (2

1.9

2)

(0.6

0)

Lo.

A

.ale

lu

Do...

11

1.00

9

.S4

S.

\5

11

P217

Sa

n F

ern

and

o

iUlh

qu

ak

e,

2-9

-11

)4

"24

'/'2

" iii

9

00°

"I

108.

00

1'.

70

9

."

40

.0

6.6

V

II

n 1

21

.'1

(1

l0.4

\)

11

..1

(2

9.11

1 0

.61

(0

.90

)]]

4S

W

illb

in 1

01.1

1...

..r4

, l1

S0

24

'OO

" W

)j

90'

" i

81

.10

1

6.1

0

9 .0

9 (1

11

.12

) (4

9.4

2)

(0.8

1)

Lo.

A

n...

l..

Dov

a 60

.10

7.0

7

4.6

1

n n P2

20

SaD

rcrD

ud

o h

nh

qu

.lk

e,

2-9

-71

34

°24'

,'-2"

II

9 D

O"

'W 2

4.1

0

1.01

6

.92

9

1.1

6

.6

VI

u (1

22

.91

) (l

J.IO

) (0

20

) u

141.

61

(11

1.3

0)

11.6

3 (2

1.J

I)

0.11

666

WU

l 1

9lb

. S

ltftl

, 1

18

'2"0

0"

"I

• 9

[ 1

4.3

0

1.7

1

6. J

O

(0.4

8)

Co

.h H

e...

Do.

..

9.2

9

3.4

1

2.1

1

4D

P221

Sa

D r

..lu

nd

o [

ulb

qu

.kr'

, 2~9-71

)4

'24

' 42

")j

)j D

)"

[III

l 11

7.00

1

.29

1

.11

4

3.3

6

.6

VI

n (8

.84

) (2

.)])

(O

.O!)

hO

ot.

b

ill l

tllt

ntl

1r.

1

18

"24

'00

" lJ

S7'"

Ii

161.

00

6.6

6

5.9

1

Ui1

.])

(13.

871

1.6

1

(4.7

0)

0.0

9

(0.1

61

"re

id"

Dov

a 4J

.60

•. 4

6 2

.46

2'

P222

S

a.

hrD

aDd

o

hrL

bq

u..

h,

2-9

-71

H

"24

'42

")j

9 0

0'

w

11

.90

1.

25

4.1

.

19

.]

6.6

V

I H

14

6.11

(1

1).

1,6

) 5

9.S

6

(62

.50

) 0

,75

(0

.99

)hV

}'

Lab

ou

tory

.

118

1124

'00"

W

S

90·

'V

11

.20

1

.11

4

.92

H

(1

01

.12

)

(l6

.l4

) (O

.J))

Po

rt

Hue

Ael

le

Up

10

.40

1

.19

2

.IJ

18

P22J

S

u F

Uli

and

o f

.ulb

qu

ak

e.

... 2"

9-11

)4

l'2

4'4

2")j

)j

SS·

i 69

.1

0

4.6

0

2.0

1

61

.0

6.6

~

2

1.2

8

(16

.'0

) 4

.64

(1

.40

) 0

.12

(0

16

) ...

.uld

h••

loo

. R

e••n

air

,

HS

I'H

'OO

" lJ

II

35·

W

1

3.2

0

4.19

1

.12

12

(1

6.2

6)

(6.1

0)

(0.

'))

a..

DI..

..

Dov

a ]7

.ao

2.2

4

1. 7

9 ~

PU

I Sa

D

rc,-

oao

dll

la

rlh

qu

ak

.. I

2-9

-71

34

1>24

'42"

H

DO

" [

.1. 1

0 1

0.6

0

a.2

S

11.

J 6

.6

VI

m(8

4.8

8)

(2•.•

3)

(0.4

0)

9841

U

rpcrt

Io

uh

...... r

d.

11

8·2

4'0

0"

WS

90°

\j

37

.70

1

). )0

1

0.2

0

160.

46

(1.6

.19

) II

.U

(JI.

14

) 0

.46

(0

8

4)

•to

s A

.a...

I ...

U

p 11

.90

5 61

1.

4J

m

Q23

J Sa

o fu

uo

do

EU

lbq

uak

e ,

2-9-

71

)4·2

.4'4

2"

M

S U

· w

24

] .0

0 1

1.1

0

11

.10

2

9.1

6

.6

VII

H

22

4.99

(n

l.")

17

.9'

(12

.26

) 1.

47

(2.1

2)

lU2

" 'I

eD

luu

Io

uln

.rd

, ll

so2

4'O

O"

iii

• 1

lJ

191.

00

1J.

10

9.•

6 H

1

2J.

JO

(1

64

.04

) 1

1.6

8

(l0

.11

) 0

.11

1

0.1

9)

Lo.

A

Ille

le.

Up

96

.00

9

.61

1

.12

H

Q

2J6

SaD

fu

"an

do

larlbqua~e.

2

-9-1

1

34

°24

' 42"

H

S

ou

lb

16

1.0

0

D.'

O

6.1

1

34

.9

6.6

V

II

11

.18

(6

7.7

3)

11.1

', (Il.

")

0.4

1

(0.

II)

1760

h

rlb

Orc

bid

Av

enu

t',

1

18

"24

'00

" lJ

IU

l 1

22

.00

10

.10

1.'

1

•(4

1.6

9)

(1.3

4)

(0.2

1 )

Lo.

A

ale

lel

•U

p J1

.20

1.

49

1.1

7

•Q

239

Su

hr"

lDd

o I

Ulb

qu

••••

2

-9-1

1

34

°14

'42

" M

S

ou

tb

119.

00

17.2

0 9.

19

3'.

0

6.6

V

II

H

1)6

.23

(1

29

.27

) 3

].S

I (2

1.3

4)

1.]

1

(0. \)

)91

00

Wih

biu

Io

ul_

urd

. IlS·:~4'

00"

lJ

IU

l 16

1.00

19

.10

11.6

0 H

1

44

.])

(11

0.6

8)

26.2

1 (H

.24

) 0

.11

(0

.1l)

Up

40.1

0 1

.16

2

.11

10_ ""

._h,

H')7

.1

9.2

2

.1.6

6.

6 V

II

n 12

6.91

(1

11

.l4

) ".1

' (4

9.4

6)

I 10

(l

iD)

Q24

1 S

u h

rnlD

do

h

rtb

qu

••e.

2

-9-1

1

]4·:

14

'42

" iii

8

6.S

0

17

.90

so

o W

est

rin

l S

treel,

ll

S·;

!4'O

O"

lJ

• S

]· "

I 11

1.00

1

96

0

9.9

1

n lJ

2.2

2

(12

8.3

])

)0.0

6

(22

.S2

) J

.OS

(0.0

0)

Lo.

""Id

e.

U

p .

sc.s

o S

.7]

5.O

S n

11.24

1.0

S.o

Fe-

nu

nd

o l:.

.fll

tqU

'''4

!.

A O

J

I 2

·9-1

1

)4 A

24

'42

"

iii

)j 5

]· l

J IS

. ]0

1.9

.00

9

.10

.\.

9 6

.6

VII

m

92

.11

(91

.21

) 22

.01

(11

.91

) 0

!0

(0

01)

222

r11

uu

oa S

treet,

II

S·]

.4'0

0"

lJ

S ]7

· W

1

26

.00

1

1.1

0

9.9

1

ro

(9l.

41

l

(1l.

47

1

(0.6

1)

Ln

b

id

e.

Up

.3

.20

1

10

6

.16

m

R

246

San

hrG

t.n

do

[u

lbq

u.k

e.

2-9

-71

]4

A2

4'4

2"

H

So

ulh

11

1.00

16

.10

1.1

9

11

6.6

VII

11

1

03

.06

(9

8.2

1)

29

.58

(2

9.)

")

0.7

1

(0.8

0)

6464

S

un

ul

Bo

uln

ud

,

11

8·2

4'0

0"

lJ

hll

106.

00

10

.40

11.1

0 n

(12

0.6

1)

(lU

I)

(I.4

2)

Lo.

b

lelu

U

p 14

.10

1. 0

7 1

99

n

1l24

S Sa

n h

ro.o

do

lart

bq

u.l

h,

2-9

-71

)4

·24

'42

" iii

S

ou

lb

18

4.0

0

19

.10

7,

1.8

35,1

6

.6

VII

n

102.

11

(91

.96

) 1

6.1

8

(12

.11

) O.I~

(0

" )

64

)0

St.lD

Ul

Iou

hv

ard

,

1\8

"24

'00

" lJ

I ..

l 1

14

.00

1

11

0

10

.10

l8

(1

11

.11

) (2

9.8

!)

(0. I')

Lo.

A

Bae

lea

Up

11

.90

6

.n

2.1

6

l8

(Co

nU

nu

4!d

)

(St\

Hl

7 01

1

1)

I't

ir

Page 36: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Ta

bir

A

i (C

oo

tin

urd

)

~

CIT

ri

It ~

A

eco

rdin

a

SL

uio

n

Sit

e C

lau

ifi­

~

D'le

0

/ h

rth

9.,

u...

.~

f.p

icl!

Dte

r L

ac.

t i~_

Inli

teU

lKn

t C

08p

oDeo

t

A

Pea

k.

Accrlr

ra

Uo

o

~!.~-

v Pt.

" V

l!lo

dty

.s

siss

s:

Pl!

.k

Di.

.ph

ce­

een

t

--"'

--

Ep

icu

tul

Ois

t an

c e

__

ka__

Rt c

hte

r "

·an

itu

de

__

K__

Mo

dif

ied

H

er r

..l l

i In

lrD

lily

D

ura

tion

~

6.61

V

.lu

u

of

I,l

(c.)

0.

1 (u

e H~

=

_

--0

5

-= ,U

49

Sa

n Fe

rn

and

e h

rth

qu

.lk

l'.

1900

A

vcnu

e or

tb

e S

un

, Le

• .\

aJ

tle.

2-9

-71

34

1124

'42"

M

118-

24'0

0" W

III

'4 11

[ S

"'II I

Up

1t.

80

8

4.1

0

57.3

!>

16

.20

1

0.0

0

4.5

6

11

.40

7.3

' 2

.0J

39

.2

6.6

V

II

(14

6.6

7)

(11

2.3

6)

09

.1))

(2

5.2

0)

(0.6

2)

(0.6

8)

RlB

Sa

n Fe

rn

eud

o

[ulb

qu

.lll

e,

234

So

uth

n

luu

o.l

S

t r e

e t

,

Lo.

h

ttl.

1

A o

r I

2-9

-)1

34

°24

'42"

M

11

8°24

10

0"

W

)I

)].

S. 5

3­U

p

19

5.0

0

18

8.0

0

67

.50

16

.70

1

8.1

0

7. 7

8

1.9

3

9.4

9

4.1

5

41.8

6

6

VII

20

20

20

11

.11

(II

1.4

1)

(74

.96

) 13

.95

(JJ

32)

(22

.13

) 0

.07

(0

. 3~)

(J.

201

R2~)

Sa

o h

rn

.od

o

Ea

rtb

qu

ak

e,

:il]

S

ou

th rU

tlO

Dl

Avr

nu

r I

Leu

An

arlc

.

2-9

-11

)~·H·42""

IU'2

4'0

0" W

N

lO

· W

S

60

' W

U

p

24

2.0

0

22

0.0

0

81

.60

19

.20

1

8.0

0

9.81

11

.40

1

2.4

0

5.4

0

42

.0

6.6

V1

1 25

25

21

10

6.6

3

(10

1.2

9)

(l1

9.1

4)

21

.02

(1

1.2

1)

(20

.32

) 0

.41

(0

.35

1

(0.4

4)

5255

SI

D F

ern

aud

o [u

lhq

ud

.r,

62

00

W

ihh

i.cr

B

ou

lev

ard

, to

, A

oae1

u

2-9

-)\

)4·2

4'4

2"

)1

IU'2

4'0

0"

W

}II oa

· I:

M

11

' W

U

p

12

3.0

0

12

8.0

0

46

.10

22

.50

21

. 90

1

.20

15

.80

1

0.9

0

2.6

5

38

.9

6.6

vI

I 21

21

21

18

1.9

2

(22

1.1

9)

(1\ I

37

) 5

4.3

2

(60

.91

) (J

6.

72)

06

1

( 1

.07

) (I

23

)

S2~&

Sa

n Fe

ru

md

c [u

thq

u.k

f J-

'''O

Ua

l".u

il'1

A

ve n

ut

, to

. A

n,.

lea

2-9

-71

3~·24'42"

iii

1

18

'24

'00

" W

N

2

[ S

61

' I:

Up

16

.30

83

. JO

5

4.l

0

17

.20

1

8.5

0

7.1

4

10

.30

10

50

3

.l6

44

.6

6.6

vI

I (1

10

.16

) (1

13

.65

) (\

1.4

9)

(58

34)

( I .3

1)

(1

93)

S26J

S

u

Fern

eed

c h

Clh

qu

.ke.

11

71

8f.

yrd

y

Dri

ve,

L

o. M

ad

u

2-9

-)\

34

-24

'U"

Ii

11

8'2

4'0

0"

W

III ~9°

,[

M

31

' W

U

p

97

.70

1

01

.00

6

4.0

0

18

.30

1

1.2

0

4.9

5

12

.20

l.

92

2

.26

39

.6

6.6

V

ii

H

H

H

14

67

0

(l1

9.0

')

(15

.80

) 4

1.4

J (.

0.1

9)

(7.5

0)

0.6

1

(0.6

1 )

(0

.21

)

52

62

S

U

Pe

r n

an

dc

Elr

-lb

qu

lik

r,

~9QO

W

H.M

r.

Bou

leva

rd,

to.

An

ltlu

2-9

-71

1 )4

1124

'42"

tr

l

IU'2

4'0

0"

W

N 'l-

W

S 0

7'

W

Up

68

.30

9

3.6

0

32

.90

25

.70

27

. 80

6

.11

16

.50

1

).7

0

2.7

4

39

.0

6.6

V

II

n ro

ro

20

8.8

8

20

9.7

2

(28

0.4

4)

(11

0.8

2)

97

.61

74

.31

(12

0.8

8)

(66

.88

) 2

.99

2

80

(2.9

0 )

(0.4

1 )

52

65

Sa

n Fe

r n

end

o

Ea

rth

qu

• ke

, )4

11

Wil

.hiu

8

ou

hv

lCd

. L

en A

llic

In

2-9

-)\

34

11 24

'42"

)i

l1a

·24

'OO

"

W

Sout

h W

eal

Up

10

4.0

0

12

5.0

0

53

.10

17

.80

1

8.2

0

6.7

9

8.6

9

12

.60

3

.56

39

.9

6.6

v

II

2\

2\

21

11

)4l

(l0

9.3

)}

(l3

8.8

5)

29

.41

(2

6.5

0)

(21

.19

) 0

.23

(0

.•

8)

(0.1

))

52

66

S

.n lu

an

da

E

Ulh

qu

.kr,

]~50

W

H.h

icr

Bo

uh

vil

fd,

Lo.

A

a.a

du

2-9

-71

)4

1124

'42"

N

U

a-2

4'O

O"

W

N

oetb

W

elt

Up

Il3

.00

1

29

.00

5

4.2

0

11

.10

2

1.4

0

1.0

8

8.0

4

11

.60

3

.15

40

.0

6.6

V

II

W

W

W

13

3.4

8

(l2

4.3

0)

(18

8.5

0)

45

.19

(2

8.0

2)

(J8

.34

) 0

.56

(0

.18

1

(0.6

0)

5267

S

in

Frr

oUld

o t.

rlh

qu

.ke

I

5260

C

utu

c)'

Bou

leva

rd,

Lo.

M

ad

u

2-9

-71

3

4·2

4'

42"

N

1181

12.4'

00"

W

)I

ortb

tn

t

Up

51

.50

61.~0

25

.40

13

.50

1

3.8

0

5.4

2

8.4

9

9. J

8 3

.64

52

.0

6.6

V

I U

49

U

11

0.9

9

144.

92

(lll

.47

) (2

16

.14

) 3

21

8

38

70

(J8

.74

) (6

2.1

51

0

.49

0

.15

(0

.39

) (0

.30

)

TU

b Il

Cen

t r o

, I_

prr

ill

V.I

hy

l r

r t

•• t

ioo

Dil

lric

t 10

-21-

71

32

'58

'00

" N

11

6-00

' 00

11

W

Mo

rth

ru

t U

p

18

.40

4

6.5

0

25

.10

6.2

2

6.0

5

I. 5

8

4.2

4

J. J

J 0

.79

46

.5

6.5

V

I W

W

W

75.3

2 (1

8.4

8)

(42

.66

) 2

0.0

7

(J.4

41

(l

0.2

3)

0.1

7

(0.0

7)

(0.5

5)

fll7

[I

C

ent r

o ,

l8p

ui.

al

Va

lley

h

dlH

ion

Dte

t r

i c t

1-2)-~1\

'U

D 5

9' O

(]"

iii

liS

·44'

OG

"

W

Nor

tb

tnt

Up

30

.30

2

7.5

0

1).

20

2.9

8

3.0

9

l.2

l

1. 9

5 1

.00

0

.89

21

.5

56

V

I W

W

W

20

.28

(1

5.9

4)

(78

1)

4.9

5

(3.4

1)

(\.4

1)

0.1

7

(0.2

6)

(0.0

1 )

12

U

[1

rem

r o

, Ie

pe

r i e

l V

,lle

-y

lUl,

aU

on

D

i.lr

lCl

6-lJ

-531

]2

"5

1'0

0"

N

J

15°4

3'00

" W

lI

orth

[lit

Up

1.21

J5

.80

1

6.1

0

l. 3

9 6

.32

0

.81

1. 3

1 I.

5\

0.9

8

23

.6

5.5

W

W

W

5

5.8

9

(46

.70

) (1

)5.0

0)

14.6

1 (7

.69

) (2

7.2

2)

0.1

0

(0.

(2)

(0.3

1 )

T28

9 E

l C

ent r

c ,

l_

per

i.1

V

.lh

y

leria

dio

n

Dts

t rf

c t

11-1

2 -1

4 3

1°)

0'0

0"

iii

11

6110

0'00

" W

N

ortb

tu

t

Up

24

.10

27

. 00

6

.74

3.7

6

J .1

1 0

.95

0.9

9

2.6

6

1.0

9

14

9.8

6

.3

IV

w

m

m

16

.07

(J

4. 0

2)

(19

.05

) 1

.61

(l

0.6

7)

(6.5

1)

O.l

l (0

.31

) 10

.31

)

T29

2 [I

C

ent

ro ,

Ie

pe

r i a

l V

.llt

y

lrri&

dic

n D

iltr

ict

12

-16

-15

))

1100

' 00

")1

11

5113

0'00

" W

N

ort

h

tu

t

Up

62

.50

7

1.0

0

56

.40

4.6

0

5.1

6

1.5

4

2.0

6

2.1

9

0.6

2

23

.5

5.4

vt

w

w

w

2

4.9

0

(12

.83

) (1

45

1)

6.0

3

(I.

76)

(J.9

7)

03

4

(0.0

3)

(0.2

1 )

T29

3 E

l cen

t ro

, I_

pu

i.l

V.U

ry

IrriJ

.l.i

cn

D

istr

ict

8-7

-66

31

°48'

00"

N

11

4°)0

'00"

W

N

oeth

[u

t

Up

13

.50

1

4.7

0

4.9

6

43

40

1. 3

6

2.0

2

I. 6

6 1.

72

14

8.1

6

.3

vi

(20

.07

) (1

7.7

8)

(1.6

8 )

(5.1

3)

(0

36)

io.

03)

U29

4 C

ity

H

all

. Fe

rn

dele

7

-6-3

4

ldo4

2'O

O"

N

1

24

°36

'00

"

W

}II 4~0

w

S

4~·

w

· U

p

14

.50

1

4.6

0

5.9

8

1.4

0

1.0

5

0.8

2

I.U

1

26

1.0

3

\21

.9

IV

(14

93)

u i.r

s)

('

.69

) (2

.43

) (0

. 13

) (0

.06

)

U29

5 Fe

de

re I

8

uil

din

l,

Hrlr

n.,

"

on

tan

. ItJ

l 10

-31

-35

4

6°)

7'0

0"

iii

1110

51

'OO

"W

Noe

th

[Ul

Up

29.

JO

25

.20

III

0.5

4

0.3

9

0.5

2

0.3

2

0.1

6

0.6

7

5.8

V

II

12

12

20

(0.0

9 )

(0.0

5)

(0.0

3)

(0.0

\ )

(0.0

00

9 )

(0.0

03

)

U2

9]

Hto

lrna

. H

on t

ene

Fed

e r s

I

Bu

dd

in.

IUl

II-l

A-3

5

46

°31

'00

"

N

Ill0

58

'00

" W

N

orl

h

Eu

t U

p

14

.80

8

3.0

0

31.

70

3.2

2

3.8

8

1. 4

2

0.8

4

0.9

9

0.7

8

5.8

5

.0

vt

21

20

31

12

.06

(J

. 79

) (6

.38

) I.

95

(1.0

3 )

(I

83)

0 02

(0

.02

) (0

.04

1

'Co

nti

nu

rd)

(Sh

eet

8 0

( ll

)

Page 37: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

Al

(Co

nti

nu

ed)

CIT

fi

lr

~

Rtc

ord

iDI.

S

tati

on

5i t

e

Cla

uif

~

Dat

e 'f

E

arth

qu

ake

Ep

icen

ter

Loc

atio

n

lna

t ru

een

t C

Hp

ooen

t

A

Pcd

. A

ceele

uti

on

.~~

V

Puk

V

elo

city

.s

siss

s:

1l'

Pea

ll D

up

hce­

..a

t c.

Ep

ieen

tu 1

D

ilta

nef

__

k8__

Rt c

hte

r !'

Iaan

i tu

de

--~--

!'lOt

H f r

ed

t\t!

rca

111

lolu

lity

D

uU

l ion

~

Val

un

of

u {~A

: ~

U

298

Cit

y

Hal

l,

Fern

de

le

2-6

-)7

40

11

13

0 '0

0"

N

1151

11

15

1 00

" W

"

45

° W

S

4So

W

Up

J8.~0

J~

.90

n.9

0

~ .0

7 2.

71

I. ~9

0.9

0

0.9

9

1.0~

8~

.1

~

~

7~

(0

12)

(0.0

6)

U29

9 S

anta

B

arb

au

C

ourl

hou

u'

6-JO-~1

H

'22

' ns

-is:

N

W

N

~~'

E

S

4~'

E

U

p

2D

.00

1

72

.00

68.~0

21.

70

21

.60

J .6~

r. 7~

).9

1

2.~9

n.9

~.9

V

III

1\

I~

I~

17.~8

01.~2)

(6

2.m

~.~~

(~.86)

( 13

.02

) 0

.8.

(0.

J6)

(1.2

2)

moo

C

ily

H.l

l,

Fe r

ud

e l e

10-J-~1

~O'J6'

12~'J6'

N

W

"~~'

W

S

~~'

W

U

p

118.

00

n r.

oo

)7 .~O

6.9

2

~.H

2.~6

2.9~

2. ~I

1.1

2

29

.8

6 .~

V

II

H

H

H

JI.8

1

(n

.B)

(21

.8J)

8

.11

(8.~2)

(~

.6

8)

0.0

1

(0.2

1 )

(O.I~)

UJO

I P

ub

lic

Lib

ra

ry

, H

ol l

Lat

e r

)-9-~9

31

·06'

12

1-18

' M

W

..

89­

W

5 01

" W

Up

19

J.0

0

11

9.0

0

69 .s

c

II.

70

8.2

6

J.6

J

I.~O

1.71

0

.96

29.

J s.

J V

II

H(M

) (6~)

(6~)

25

.88

0~.2~)

()

1.9

J)

~.96

(8

.")

(12.

21 )

0

.J6

(0.6~

)

(0.6~)

UJO

S P

ub

lic

Ltb

rary

, H

oll

ill

er

~-2~-~~

J6'~8'

12

11

11

48

' N

W

N

89

' W

s

cr-

W

Up

~2.00

~8.

90

2).

10

~.19

~

.~2

I. 9~

2.24

I.

J6

1.06

J6.2

s.

J V

I n n )J

20

.\9

0

9.D

) (J

2.9

6)

6.0~

(6

.")

(l1.1~)

0.1

) (0

. II

) (0

. J6

)

U30

1 P

ub

lic

lib

rar-

y,

Hcl

ki e

t e

r 1

-19

-60

J6'~7'

t2

loU

' N

!lf

N 8

9'

W

SO

l-W

U

p

~~.~O

)~.JO

2).

60

s.2~

L6~

2.1

0

I. 8~

I. 2

1 1

.08

8. s

s.

0 V

I n as

)~

22.~9

(19.~6)

(II.

~9)

6.6

0

(~.66)

(H9

) 0

.09

(0

.19

) (0

.11

)

UJo

A

Cit

y H

all,

fe

rnd

ale

6-~-60

~O'~9'

12~'~J'

N

W

"~6'

W

S

~~,

W

U

p

~ 7.

~O

D.~O

I~

.~O

J .1

1 J

.60

1.0

6

I. 2

1 1.

18

0.81

60

.J

s.7

VI

M

M

M

21.'~

( 1

9.8

9)

(l9.~9)

J.

)J

(J. \6

) (2

.71

) 0

.18

(0

.0))

(o.o

n)

U)0

9 P

ub

lic

Lib

rary

. H

ol l

i at.

er

~-8-61

J6

'JO

' 1

21

·18

' N

\II

N

89

' W

S

Ol·

\II

U

p

16

8.0

0

7~.90

6

0.2

0

10

.80

6

.28

4

.2)

J .0

0 I.

))

I. 9

9

~O

.0

~.

7

VII

JO

H

H

26

.J8

(2~.J6)

(~7

.6~)

~.90

(•

. 86)

(1

7.2

7)

0.0

1

(0

00)

(0. ~2)

U3!

O

Fed

era

l O

ffic

e

8u

ild

inl,

S

eet t

Ie

I W

ub

iall

on

. ~-29-6~

~7'2~'

12

2'1

8'

N

W

S)2

' E

S

~8'

W

U

p

~2.10

)) .~O

J2.1

0

s.~9

9. )~

8 .J~

2. ~~

s.~J

I. 6

2

22.

J 6.

~

VII

I H

H

H

~8.~~

(.

6

18)

(~~

70

) 18

.•9

(".O

J)

(18

.)8

) O.~O

(0

. ))

) (0

68

)

U3l

1 L

inco

ln S

choo

l T

un

nrl

, T

dl

Pa

rlr.

fie

1d

[a

rlh

qu

alr

.r

6-2

7-6

6

3~·~11'1811"

120-

29'5

411

W

M

21­

[ S

69111

£.

U

p

8.1

0

11

.20

~.9~

2.1

0

2.2

1

1.1

0

2. ~J

1.~9

I.

~O

no.~

~.

6

III

~~

~ ~

29

.82

0

9.6

J)

(26

.16

) 7

.98

(1

0.1

2)

(6.~8)

0

.17

(0

. I.

)

(0.0

9)

U)l

2

Cit

y H

all

, fe

rnd

ale

1

2-1

0-6

7

40°3

0 1

..

12

4')

6'

W

N 4

68

W

S 4~'

W

U

p

10

J.0

0

B2

.00

)2

. ~o

II.

80

11

.90

2

.69

I. 7

6 1

.66

1

.00

JO.6

~

.8

VI

n n ~

1~.16

(~0.961

(2~.6J)

1.

22

(8.)

8)

(~.88)

0

.00

(0

. I ~

)

(0.2

9 )

U3

l)

Hol

l t a

te r

12

-18-

67

)7'O

O"J

6'

N

121°

41'1

&"

W

N 8

9'

W

S 0

1111

W

U

p

i r.r

o 1

6.2

0

10

.00

1.6

7

1.7

4

I.I~

2.2

6

1. O

J I.

D

no

~.

2

(~O)

~(~)

(.

0)

22

.10

(~0.6~)

(11

.86

) 6

.16

(8.6~)

(~.89)

0

1.

(0.1

2)

(0.2

2 )

V31

4 L

oa A

na

rlu

S

uh

".y

Trr

-in

al

Subb

..,.

.ut

I,A

r-

ro-.

n n

'H'

N

II 7'~8'

W

N

)9

' E

N

~I'

W

U

p

62

.)0

9~

.60

6J.

60

17.

JO

2J.

60

9

.07

8.21

16

. JO

~.

72

~~.

9

6. J

V

II

W

W

W

J66.~~

(20

6.0

9)

(HJ.I~)

109.~2

(79

.7')

(9

0.J

O)

\.8

8

(0.7

2 )

(0

.99

)

'J)l

S

Pub

l Lc

Ut t

l I

t re

a

Bu

ild

ln.

Lon

a 8

euh

. )-

Io-n

))

.)1

' PI

111°

58'

W

So

uth

W

ell

Up

19

2.0

0

l~~

.00

2

19

.00

29. ~o

16. ~O

JO.I

O

22.

)0

II.

80

26

.)0

27

.1

6. )

V

III

H

--(8

)

JO(H

)

20~.28

(17~.12)

(82

.90

) JO

.61

(~0.87)

(19

.6))

0

.6J

(0.8

1 )

(1

.00

)

VJl

6 P

ub

lic

Uti

liti

es

Bu

lld

in•.

L

ona

Bea

ch

II-I~'~I

))

°41

'"

11

8-15

' W

M

orth

£.

.t

Up

)9.7

0

~J

.60

8.~7

7.61

9.

)2

1.0~

2.~

7

r. ~6

0.~6

6.2

\ ..

VI

10

20

~7

~~.~8

(n

)))

(68

.8))

1~.26

(8.0

2)

(17

.82

) o

n

(0.2

6 )

(1.8

))

Y31

1 L

os

"n

letr

a

Ch•

•be

r of

C~rcr

B••

eeen

t II-H-~l

JJ"7

'00

"

N

1l8'1~'OO"

W

S

~O'

E

S

~O'

W

U

p .

1~

.90

II.

20

6.6

9

III

I. .

1 0

.79

0.8

\ O.•

9 O.~l

18. ~

s.~

VI

~

\7

2~

(D.6

11

(1

1.2

))

(2. )])

(~.H)

(00

))

(0.

II)

V)1

9 C

ity

R

ecre

et

ton

BU

ild

in••

Sa

n L

uis

O

bi.

lpo

11-21-~2

J~'~O'

N

1

21

'\0

' W

N

J6

' W

S

~~'

W

U

p

~2.

90

J~.

~o

26.

JO

J. J~

2.8

9

2.6

J

0.8

0

I. 2

6 1

.20

76.1

6

.0

VI

26

26

26

20

.n

(l9.~1)

(l7.~~)

S.19

('

92

) ('

.18

) O.I~

(0

.10

) (0

.18

)

V]2

0

So

uth

ern

P

IC-d

ie

Bu

ild

ina

B

ur-e

nl.

Sa

n E

r an

c t a

cc

J-22-~

7

37°4

0"

M

12211

1 28

' W

M

45°

M4S

o 2

.02

2 .~2

0.2

8

O. J

J o.

az

O.~l

16.2

J

8

(Fe

r esh

eck}

U

p I.

~2

O

.II

0.~6

V)2

2 S

n

Fr a

nc t

eco

,

Sou

th

Pa

cifi

.c

8u

Ild

ini

J-22-~7

H

'J9

'OO

" N

1

22

'27

'00

" W

N

~~.

S

N

~~'

W

8.~6

24

. ~O

0.8

J 2.

61

O. ~O

1.1

7

17.

J ~.

~

Up

6.0~

0

.88

0

.88

(Co

nlt

nlJ

l'd

)

(Sh ••

' 9

o I

II)

Page 38: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

hb

h

AI

(Co

nti

nu

ed

)

--~~~~~~---n-'-

V)2

)

CIT

fi

l e

No.

R

rco

rdin

J. S

t eti

on

San

Era

nc i

ICO

.

Alu

an

du

B

ud

dln

.

.. S

ilr

(1 ...

l.li

­

~

Dal

e'

01

hrlbqu._~

)-2

2-1

1

[p

icu

tu

Lo

cIl

10

n

)7')

9'0

0"

N

12

2'2

7'0

0"

W

In'lr~nt

COllpon~~

N II'

[

N 0

9'

W

to P

e••

Accele

rati

on

ca/u

.c 2

11

.60

11

.10

V

Pu

k

Velo

cit

y

.ssi

sss:

0

.12

0

.91

Prak

D

l.p

l.cc­

..n

t

--'-

-­0

.26

0

.72

Epi

cen

t r

eI

DU

l.D

CC

_

_u_

_

11

.60

Ric

hle

r K

'ln

ilu

dr

" •••

Kod

i (l

ed

H

cru

lU

IDle

-hail

y

Our

.LiO

D

--!.

!.£

.­0:

02

V.l

utl

of

u (~A

n

Up

1.1

0

o.II

0

.16

V)2

1

So

uth

ern

P

lell

ie

Bu

ild

lRl

)-2

2 -

I7

))')

9 '

N .

1'

[ 2.

07

0.•

2 O

. )1

II. )

0 •.

0

Bau

lKft

l.

Sao

Fra

ncia

co

1

22

'29

' N

loS

· W

9

.00

0

.91

0

.41

20

a.s

o 0

.60

0.

01

(AfL

ltn

bo

cfl

) U

p 2

.79

0

.\0

0

,11

V)2

9 P

orl

NurD~

)-

11-1

'1

)4'0

7' 0

6"

N

So

uth

16

) .0

0 1

7.9

0

•. 0

2 I

.•

..7

VI

10

(1).

16

) (•

. 12

) (0

.80

) 1

19

'1)'

12

" W

W

nl

Up

16

10

2

0.7

0

I.I~

I. 9

) 2.

61

0.08

10

10

(ll

.I')

(1

.)1

) (0

.00

)

V))

O

Fed

e ra

I 8u~ldiD

••

luu

ka

9-.

-62

.0

'11

' 12

/.a-1

2,

N 7

9'

[ S

II'

[ .1

. )0

'7

. )0

).1

2

2.67

1

.70

1

.11

1

9.0

1

.0

VI

70

70

II.1

17

(1.7

2 )

( 7

.\2

) I.

)9

(1.6

.)

(I.)

) )

0.0

9

(0. II

)

(0

17)

Up

12

.90

I.

10

2.0

0

10

V))

I O

ld

Ihd

lf'

Rou

le'

(C\o

ll S

ilo

),

Cu

Ua,

7-11

-6:,

).

'29

'06

" W

1

11

')1

'11

" W

S

ou

th

I.U

l

Dov

a

'0.'

0

)1

90

26

.20

2.12

1

.1)

o II

0.0

7

0.2

0

.11

21.2

•.

0 )O

()\

) ()

\)

()I

)

1.)

7

(11

.12

) (2

0

) O

. )6

(2

.• 9

) (0

.9)

0.0

1

10

.0)

(0.0

1 )

V))

2 S

.c r ..

..ala

I P

tc i

fie

9-12-6~1

)9

'H'O

G"

N

So

uth

I'.

•0

I. I

7

0.7

' I I

I.

I 6.

)

VI

Te

l ep

hen

e ap

d h

hlr

lpb

1

20

·06

'00

" W

lu

t

12

.'0

1

.1.

0.7

1

Up

1.0

7

0.0

) 0

.61

W))

' 6

01

' P

ull

D

riv

e.

WrI

..h

lvo

od

9-

12-)

(1

).'1

6'1

2"

N

11

7')

2'2

." W

S

61

' [

5 2

1'

W

Do"

"

1)9

.00

19

•. 0

0 1

).0

0

1.1

7

9.6

) )

.11

2. 2

1 I.

0)

I. ..

I).•

I .•

V

I 17

17

17

11

.07

(20.

II)

(7

.'1

) ).

02

(1

.09

) (2

.71

) 0

.)9

(0

.)1

)

(0.0

1 )

W)n

C

rdu

S

prl

R,I

, A

lln

R

anch

l1

li 9-

12-

70

).'1

6' 1

2"

SO

l'

69

.10

I.

II

2.•

2 2

0.0

I

.•

VI

II

())9

) ( 1

.\0

) (0

.20

) 1

17

')2

' 2."

S

O~·

Do...

1

'.9

0

19.

)0

1.9

6

2.1

6

2.0

0

1.1

I I I

I I

(2

. I

I)

(G I)

(0.G

6)

W))

6 C

rdar

S

pra

nl.

, PW

8p H

ou

u

9-1

2-7

0

).'1

6' 1

2"

N

5 I.'

[

11

.90

2

.9.

0.1

1

23 .8

I .•

V

I 10

(7

.06

) (2

.•

7)

(0.2

9 )

oa

d•• a

bl.l.

&..e

8111

1

17

')2

'2."

W

5 )6

' W

Do

...

69 .•0

)6

.90

).

96

I.

21

I. 2

1 0

.)6

10

10

(0

.81

) ()

.II

) (0

. II

)

W))

I W

all

of

RH

O rd

••

Sao

kn

urd

loo

9-

12-7

G

)0'1

6' 1

2"

11

7')

2'2

0"

NO

l"lh

I..

.t

11

).0

0

17

.10

•.

71

).1

0

I. 7

1 1

.66

22

.9

I .•

V

I 21

21

1

.42

(9

.)2

) (1

2,21

) 2.

01

(2.'

9)

(2.6

.)

0.1

1

(0

2)

(0.2

) D

ova

12

.10

I.

01

I. I'

)0

W))

9 S

ou

lbtr

l3 C

all

fo

Ull

E

dil

OD

C

oep

any

. C

alL

Do

9-1

2-7

0

)0'1

6'1

2"

N

1Il

')2

'2'"

W

So

ulb

h

ll

.0.2

0

)1. )

0 2.

II

1.17

O

. 9~

0.7

0

)1.1

I .•

V

I )1

(.2

) (4

2)

•. 1

6 (•

. 10

) (1

.9.)

I.

II

(1.1

))

(3.2

1)

0.0

6

(0.1

0)

(0.2

1 )

U

p ))

.60

I.

)G

0

.72

('2

)

W)'2

"1

11

1...

.0

Lib

rary

B

au

eco

l,

CIT

, P.

.ed

na

9-1

2-7

0

).'1

6'

12"

W

11

7')

2'2

0"

W

liIol

"lb

hll

19. )

0 1

1.7

0

I. I

)

I. ..

I. 7

. 1

.1)

16

.0

I .•

2

0(2

3)

(23

) 1

.•2

(12

.01

) (1

.00

) 2.

17

(2

.")

(0.9

.)

0.0

1

(0.0

6)

(0.0

00

) D

ova

12. )

0

0.61

0

.12

(2

)

W)..

J.

P.

L. a..~ot

I p.

..d

ral

9-1

2-1

0

).'1

6'1

2"

N

111-

32 1

24

" W

5

12

' 5

00

' Do

...

....

0 2

0.1

0

I~.'O

1.0

) 2

.00

1

.16

1.0

) 2

.))

I. ..

11

.9

I.'

(16)

2

.(1

6)

(l6

) 16

('

.27

) (2

.72

) 0

.1)

(1

l4)

(O.'

n

0.0

) (0

.0))

(0

00

)

07

0

Scu

tbU

D

C.l

ifo

ni.

Ed

ilo

n

Coe

pID

Y.

CO

ILO

D

.-1

-61

))

'11

'20

" N

1

16

'07

' '2

" W

S

ou

tb

[Ill

Up

21. .

0

28

.10

2

1..

0

r.I)

2.71

1

.00

•. 2

1 2.

11

1.0

7

1.6

.2

6.•

V

I II

~

~

26

,'9

(2

7.0

9)

(20

,16

) •.

)6

(1.1

2)

(•.

20)

0.0

1

(0.

i n

(0.0

0)

07

1

En

lio

rtri

nl

8u

ild

lnl.

S

ap

la

Ad

o.,

O

ran

lr

Co

un

ty

.-1

-61

))

'II'

H"N

1

16

'07

' .2

" W

5

04

' [

5 2

6'

W

1).

10

II

. 70

•.

)1

•. 2

8 ) .•

7 2

.11

1

1).

1

6.•

!2(~)

(~)

19

.71

(0

'.9

))

(17

.1.)

)2

.07

(2

9 12

) (1

7.1

.)

0.1

1

(0. I

I)

(0.2

1 )

Up

1.6

1

2.21

1

.9'

(00

) 0

72

T

rc.i

oal

Illa

nd

, S

cutb

er

n C

.lif

orn

ia

[dil

aD

P

IIO

l,

LoO

I ae

lcb

.-0

-60

))

'11

' 20"

N

1

16

'07

"2"

W

iii 2

'Ii

5 6

9'

W

Up

O.)

) 9.

I I

1.1

.

) .1

9 2

.16

1.

71

•. 9

1 2.

11

1.1

2

201.

1 6

.•

VI

~(~)

(1

0)

(10

)

.0.)

) ()

7.)

0)

()1

.12

) 12

.10

(12

.)1

) (9

.6)

0.6

1

(0.4

6 )

(0

.02

)

on

J.

P.

L

. D

aU

8e

DL

, p.

..d

tnl

A,I

.-

0-6

8

))'1

1'2

'"

N

11

6'0

7'.

2"

W

5 0

2'

[ 5

01

' ~

Do...

1. )

\ 1

.02

.09

I. )1

1

.)2

_0

.99

0.1

) 0

.96

0.

72

220.

)

6.4

VI

)O(~)

(.0

) (.

0)

1).

90

(1

4.9

1)

(II.)

))

•. 0

4 ('

.61

) ()

. I.

) 0

.14

(0

18

) (0

.21

)

07

1

Kil

lifu

n B"~Dl.

C

IT,

p...d

rnl

.-0

-68

))

'11

'2."

N

1

16

'07

' .2

" W

N

ort

h

IlIl

Dov

a

9.0

2

10. )

0 6.

)0

2.2

0

2.20

I.

I.

I. 7

0 I.

O'

0.0

1

212.

9 6

.•

VI

12

12

12

21.9

7 (2

0 8

')

(2].

17

) 0

.0)

(7 ...

) (0

.21

) 0

.20

(0

. Il

) (0

2

7)

Y)7

6 P

au

drn

l. cn

Alb

rou

u.

.-0

-68

]]

'11

'2."

N

S

ou

th

6.9

9

2.1

0

2.02

2

12

.0

6.•

V

I ~

(1

7.)

0)

(21

.00

) (0

17

) 1

16

'07

' '2

" W

w.

.. U

p 1

0.0

0

).1

1

2.41

0

.99

1

62

I.

01

~

~

()0

.07

) (1

0.6

2)

(0.0

1 )

(Co

nll

tu...

d)

(Sh

rrl

ic »

r II

)

Page 39: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

AI

(Coo

c1ud

l!'d

)

Il"A

V

h

.1I.

I'u

kC

IT

Si t

e

Dill

!'

h ..

. Il

t ep

l ece

-[p

iCI!

'DlU

I R

iebl

I!' r

"o

da

£il!

'dA

ccl!

'lcU

lio

DFi

ll!'

Ch

uH

i-o

f [p

i ce

nt.e

r

loll

ru

eear

2

ve l

oc i

ty

..a

t D

i.l.

oce

"'ID

llu

dl!

' K

eec.I

H

[hau

lio

D

Vll

uea

of

u

(ca)

fOI

H/A

I:

__

CB_

_

__

u__

Rec

oed

ioa

St e

r i o

n ~

Enlbqu.~

L

OC

ll1oD

C

u.p

on

cDl

ca/.

cc

lale

D' j

ly

nc

0.0

2

0.1

_

__

!!._

I__

­~

.s

siss

s:

--"-

­Y

lJ1

S

ou

tbu

D C

.IH

oen

i.

Ed

ilo

n

A

4-8

-68

n

-u: 2

4"

H

N 1

2'

W

1.6

6

2.1

1

I.98

6

.4

VI

44

(22

.19

) (9

.6J)

1

0.2

9)

bu

.ild

inl,

L

o.

Anl

t':11

1'1

11

6°0

1'4

2"

W

S 1

8'

W

11

.90

1

.08

2.

]I

H

(J6

.14

) (1

1.6

1)

10

.11

) U

p 4

.12

I.

33

I. 3

6 44

YJ1

8 S

ubw

.y T

ec.i

Dll

B

UeI

Dl!

'Dt,

A,I

4

-8-6

8

))°1

1 '2

4"

H

S 1

2'

E

6.9

1

2.2

3

I. 0

1 21

1 .8

6

.4

VI

(21

) (2

9 II

) ("

.12

) (0

.90

) L

oa M

ac1

u

11

6-0

7'4

2"

If S

18

' W

1

1.4

0

3.0

1

2.3

0

10

(21

) ])

.23

(2

1 16

) 10

, "1

(9

11

) 0

.06

(0

.62

) U

p 1

.41

1

.21

1

.01

(2

1 )

YJ1

9 CI

'fI)

Bu

ild

inl,

V

UD

OD

A

0

-8-6

8

31

"1\'

24"

N

N

81"

W

11

.00

4.2

1

2.1

0

21

2.2

6

.0

VI

(62

) (

1\9

.20

) (J

2 1

0)

(0

19)

11

6'0

1"0

2"

W

SO

l' W

11

.10

0.6

1

2.6

9

60

(62

) 6

1.U

(1

6.1

0)

19

.16

(1

0 1

0)

0.]

2

(0.]

2)

Up

6.9

1

2. 1

8 1.

41

(62

)

Yl8

0 H

olly

woo

d S

tou

le

P.

E.,

Lo

t,

A

0-8

-68

)3

° II

' 24"

N

S

ou

th

10

.90

2

.02

2

.\2

2

21

.3

6.0

V

I 11

(2

9.1

6)

('0

96

) (0

62

) L

OI

An

lelu

1

16

"01

'W'

W

[Ill

1

2.3

0

1.1

1

1.1

8

1\

00

.69

(I

I H

) ll

.12

(2

0 II

) O

. JI

(0.

)J)

Up

0.1

9

1.1

1

1.0

6

II

uro

vt l

Le,

C

all

forn

i.,

Eart

h-

R

1-1

-II

1

9"2

6'2

0"

N

H ~3-

W

81

.10

-1

.00

-1

.60

1

2.0

I

1 V

" 12

6

.21

(1

1 06

) :L

J 1

(0

.21

) o

19

10.

II)

qu

..k

.,

Oro

vil

le

D••

1

21

°31

'''8

'' W

N

J1

" I

90

.90

0

.10

1

.10

12

1

09

(2

12)

0.1

] (0

.10

) 0

.01

(0

.00

) U

p 1

11

.00

-1

.10

-2

.10

12

Hll

a,t

l E

arl

hq

u.k

c,

Pe r

Iec

t u

re

A

6-1

6-6

/,

38-2

10'0

0 11

H

N

5

lJl.

oO

1

2.6

9

2.9

1

12

0.0

1

.1

VI·

11

2

1.1

9

(l'

II

) 1

.98

(1

1.0

1)

o 02

[0

.11

) b

u.d

dh

l,

AIr

.ila

, Jl

plD

lJ

9"1

2'O

O"

E

E W

1

11

.91

11

. II

2

.91

11

II

II

(1

1.0

2 )

0.1

1

(6.0

0)

0.1

0

(0.0

0)

V

41

.11

0

.16

4

.61

11

toy

n.

Ear

-thq

uakl

!',

R

12

-10

-(,1

1

1°2

2' 1

2"

IIIl T

0

41

.66

1

64

2

1.2

8

1.0

b

I V

Hf

11

14

.8"

(11

. 10

) 4

.01

[0

.61

) 0

.29

(0

.11

) to

yn

a D

a.,

Iod

ia

1l"

42

' 00"

I

L 6

19

. ]I

01

.1

2.1

1

II

11

.11

( ll

.O')

0

.01

(l

.II)

0

.01

(0

.00

) V

ll

3.2

0

Gu

l i

Ear

thq

uak

e,

A

I-Il

-H,

'01;1

36

' 00"

IIIl

N S

6

09

. II

9.0

6

21

.31

1

0.0

1.

J(H

S)

IX

lJ .1

2

b'.

21

(2

31

.11

) 63

18

(1

3.0

6 )

I. 61

(2

00

) U

.S.S

.R.

6

3"2

0'0

0"

E

E W

ll

6.6

6

12

.01

1

0.9

9

6.1

("b

) 1

3.0

2

11

.20

(2

60

91)

60

.66

(1

0.1

9)

0.1

9

( 1.9

1)

V

13

21

.01

6

9.6

1

10

.01

11

. I

Bu

ch

uu

t E

arth

quak

l!',

A

3-0

-11

4

1'1

2'1

2"

N

E W

-1

10

.50

1

.31

1

0.6

0

16

6.0

1

.2

vII

' 16

.2

181

76

(181

.3

) b

l.o

O

(10

91)

1.9

1

(0.

JI)

Aoe

liAia

26-"~'OOll

E.

N 5

2

01

.11

2

.69

2

0.0

6

16

.1

30

1.

10

(61

6.1

0)

12

1.0

J (1

10

11

) 1

1.1

3

(21

.11

) U

p 1

01

. 01

12

.10

-3

.01

1

6.1

I.p

eri

al

Val

ley

E

arth

quak

e!'

A

10

-11

-19

) I~a

2

11

.1

-48

.0

-22

.3

6.6

1

11

.11

0

00

.00

) 6

] "0

(1

1.6

1 )

I.88

1

1.1

1)

Hol

rv

rHe

PO

ll O

Uic

c

22

1'

-20

6.2

-0

0.1

'2

1.3

6

.6

21

1.)

] (2

02

.30

) 1

1.

49

(16

.00

) 0

.01

(l

.01

)

El

Ceo

lro

A

rray

11

0 A

1

0-1

1-1

9

10"

-16

8.2

".3

-2

1.

I 6

.6

210

81

(J0

3.3

2)

16

.11

(6

6.8

1)

).8

' (I.

71)

b

y.

t.oee

A

d.

32

-zz i

. )

02

.2

16

1 6

.6

21

l 03

(2

02

.26

) 1

9.1

1

(61

.1I

) 1

.11

(0

.12

)

[}

Cen

trc

Arr

.y '3

A

1

0-1

1-1

' 2

30

· 2

18

.1

36

.8

6.6

2

08

.46

(1

61

.01

) 11

.s1

t n.

00)

0.1

8

(0.1

1)

Pio

c Il

ni o

n S

cbo

ol

1"0

· 2

61

. 1

06

.]2

6

.6

19

0.

, ("

1.1

) 1

1.9

(6

3.3

) 0

.61

(l

.61

)

---------------------------------_

._

--­

(Sh

Ul

11 or

11)

Page 40: 1984 Hynes-Griffin and Franklin - Seismic Coefficient

Tab

le

A2

S

yn

theti

c

Ear

thq

uak

e R

eco

rds

Sim

ula

ted

E

arth

qu

ake

T~

Ap

pro

xim

ate

Mag

nitu

de

A

Max

imum

A

ccele

rati

on

2

em/s

ec

V

Max

imum

V

elo

cit

y

em/s

ec

D

Max

imum

D

isp

lace

­al

ent

em

AD

V2

V2

AD

Ap

pro

xim

ate

Pre

do

min

ant

Per

iod

se

c

To

tal

Du

rati

on

se

c 0

.02

V

alu

es

of

u (e

m)

0.1

fo

r N

/A

0.5

Cl1

'*

A-I

8+

3

82

.77

5

8.9

9

39

.83

4

.38

0

.22

8

0.5

0

120

15

01

.85

(1

57

0.9

5)t

4

53

.64

(4

39

.10

)t

15

.72

(8

.09

)t

A-2

8+

4

41

. 64

55

.05

7

2.9

7

10

.63

0

.09

4

0.3

5

120

14

09

.44

(1

40

9.4

4)

38

9.0

7

(39

1.8

1)

2.5

3

(5.5

5)

B-1

7

36

8.1

2

45

.72

3

3.1

7

5.8

4

0.1

71

0

.20

50

5

95

.09

1

69

.78

3

.57

B-2

7

30

8.7

0

48

.26

2

2.2

2

2.9

4

0.3

39

0

.22

50

4

92

.66

15

9. 1

9 5

.13

C-l

6

66

.93

6

.65

1.

36

2.0

6

0.4

86

0

.15

12

2

2.5

9

9.9

1

0.8

2

C-2

6

57

.23

6

.09

0

.88

1.

36

0.7

36

0

.20

12

2

6.8

9

9.9

1

0.4

6

D-l

5

47

0.4

0

26

.67

4

.88

3

.23

0

.31

0

0.1

5

10

80

.89

2

4.4

9

I. 5

4

D-2

5

49

0.0

0

28

.94

6

.84

4

.00

0

.24

5

0.1

5

10

74

.69

1

7.6

0

0.5

9

See

8-1

/4

41

2.2

1

57

.76

-­-­

0.4

0

73

12

56

.10

(1

26

9.8

6)

45

1.6

1

(42

4.9

0)

8.0

1

(11

.65

) Id

riss

**

NRC

34

3.0

0

51

. 40

34

5.8

4

13

3.2

5

3.6

2

* ** r

Jen

nin

gs,

H

ou

sner

, an

d T

sai

(19

68

).

Seed

an

d ld

riss

(19

69

).

Val

ues

in

p

are

nth

ese

s are

fo

r re

ver

sed

d

irecti

on

o

f sh

akin

g.

}