16_pll johns & martin slides

Upload: yuvraaj-kumar-singh

Post on 03-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 16_pll Johns & Martin Slides

    1/26

    University of Toronto 1 of 26 D. Johns, K. Martin, 1997

    Phase-Locked Loops

    David Johns, Ken MartinUniversity of Toronto

  • 8/13/2019 16_pll Johns & Martin Slides

    2/26

    University of Toronto 2 of 26 D. Johns, K. Martin, 1997

    Common PLL Applications Clock multiplier

    - input is a fixed frequency clock - output is a higher frequency clock signal that is amultiple of input clock frequency

    Frequency synthesizer- input is a fixed frequency clock - output is a clock signal with arbitrary frequency

    Clock and data recovery- input is a data signal (from a serial link)- output is digital data as well as clock signal- phase detector is different than other applications

    FM demodulation- input is a radio signal- output is demodulated signal

  • 8/13/2019 16_pll Johns & Martin Slides

    3/26

  • 8/13/2019 16_pll Johns & Martin Slides

    4/26

  • 8/13/2019 16_pll Johns & Martin Slides

    5/26

    University of Toronto 5 of 26 D. Johns, K. Martin, 1997

    Example Waveforms

    (3)

    (4)

    Above shows an example of (slightly less)

    0 2 4 6 8 10 12 14 16 18 201

    0.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    V pd

    VoscVin

    V in E in t ( )sin=

    V osc

    E osc

    t d

    90 +( )sin E osc

    t d

    ( )cos= =

    d 90

  • 8/13/2019 16_pll Johns & Martin Slides

    6/26

    University of Toronto 6 of 26 D. Johns, K. Martin, 1997

    PLL Basics Can show

    (5)

    The lowpass filter removes second term and for small...

    (6)

    where we define

    (7)

    V pd K M E in E osc

    2------------------- d( )sin 2 t d ( )sin+[ ]=

    d

    V cntl K lp K M E in E osc

    2------------------- d K lp K pd d =

    K pd K M E in E osc

    2-------------------=

  • 8/13/2019 16_pll Johns & Martin Slides

    7/26

    University of Toronto 7 of 26 D. Johns, K. Martin, 1997

    PLL Basics Oscillator frequency given by

    (8)

    is the free running freq of oscillator is the VCO gain constant

    Feedback forces to equal

    However, if does not equal , and loop filter does NOT have infinite gain at dc, then phase difference whenin lock given by:

    (9)

    osc K osc V cntl fr +=

    fr K osc

    osc in

    in fr

    d V cntl

    K lp K pd ------------------ in fr

    K lp K pd K osc------------------------------= =

  • 8/13/2019 16_pll Johns & Martin Slides

    8/26

    University of Toronto 8 of 26 D. Johns, K. Martin, 1997

    PLL Linear Model

    (10)

    (11)

    in s( )

    osc s( ) 1 s

    KlpHlp s( )

    Kpd

    Kosc

    Vcntl

    V cntl s( ) K pd K lp H lp s( ) in s( ) osc s( ) [ ]=

    osc

    s( ) K osc V cntl s( )

    s------------------------------=

  • 8/13/2019 16_pll Johns & Martin Slides

    9/26

    University of Toronto 9 of 26 D. Johns, K. Martin, 1997

    PLL Equations Combining above 2 equations ...

    (12)

    This is a highpass response from input phase to controlvoltage

    Can also be written as

    (13)

    This is a lowpass response from input phase to output phase

    V cntl s( )

    in s( )-------------------

    sK pd K lp H lp s( )

    s K pd K lp K osc H lp s( )+------------------------------------------------------=

    osc s( )

    in s( )-----------------

    K pd K lp K osc H lp s( )

    s K pd K lp K osc H lp s( )+-----------------------------------------------------=

  • 8/13/2019 16_pll Johns & Martin Slides

    10/26

    University of Toronto 10 of 26 D. Johns, K. Martin, 1997

    Charge Pump PLL

    Sequential

    phase detector

    Vin

    Vosc

    Pu

    Pd

    IchS1

    S2 C1

    R C2

    Low-pass filter Charge-pump phase comparator

    Ich

    Vlp

    (de-glitching cap)

  • 8/13/2019 16_pll Johns & Martin Slides

    11/26

    University of Toronto 11 of 26 D. Johns, K. Martin, 1997

    Sequential Phase Detector

    If leads , (pulse up) goes high for lead time

    If leads , (pulse down) goes high for lead time.

    Vin

    Vosc

    Pu

    Pd

    2

    in

    Time

    V in V osc P u

    V osc V in P d

  • 8/13/2019 16_pll Johns & Martin Slides

    12/26

    University of Toronto 12 of 26 D. Johns, K. Martin, 1997

    Charge Pump PLL Equations Average current flowing into lowpass filter is ...

    (14)

    Lowpass filter is (ignoring )...

    (15)

    which results in

    (16)

    avg

    in2

    ----------- Ich=

    C 2

    lp s( )V lp s( )

    Iavg

    s( )----------------- R 1

    sC 1

    ---------+1 sRC 1+

    sC 1

    ----------------------= = =

    osc s( )

    in s( )-----------------

    1 sRC 1+( )

    1 sRC 1 s 2C 1

    K pd K osc---------------------+ +

    --------------------------------------------------=

  • 8/13/2019 16_pll Johns & Martin Slides

    13/26

    University of Toronto 13 of 26 D. Johns, K. Martin, 1997

    Charge Pump PLL Equations The phase transfer curve is second-order (ignores de-

    glitching cap ) so and can be found as

    (17)

    (18)

    C 2 0 Q

    01

    pll --------

    I ch K osc2 C 1

    ------------------= =

    Q 1 RC 1 0----------------- 1

    R--- 2

    C 1 Ich K osc--------------------------= =

  • 8/13/2019 16_pll Johns & Martin Slides

    14/26

    University of Toronto 14 of 26 D. Johns, K. Martin, 1997

    Charge Pump Example Let and .

    . Desired loop time constant of100 cycles, or . Find loop filter components.

    SOLUTION

    (19)

    (20)

    Let and

    (21)

    Kosc 2 50 M rad V = Ich 10 A=

    fr 2 50 M rad s =

    2 s

    01

    2 s----------- 500 krad s = =

    C 11

    02

    ------Ich2------ K osc 2 nF= =

    C 2 C 1 10 2.5 pF= = Q 0.4=

    R 1Q---- 2

    C 1Ich K osc-------------------------- 31.4 k = =

  • 8/13/2019 16_pll Johns & Martin Slides

    15/26

    University of Toronto 15 of 26 D. Johns, K. Martin, 1997

    Phase Frequency Detector

    Can be used for sequential phase detector but also works

    when large frequency differences between osc freq andinput freq

    Pd

    FF2

    FF4

    Vosc

    Pd-dsbl

    Reset

    FF3

    FF1

    Pu-dsbl

    Vin

    Pu

    Set 1 Set 2

    Set 4Set 3

  • 8/13/2019 16_pll Johns & Martin Slides

    16/26

    University of Toronto 16 of 26 D. Johns, K. Martin, 1997

    Phase Frequency Detector

    Above example is for osc freq much lower than input freq

    Note that is high much longer than

    Vin

    Vosc

    Pu

    Pd

    Pu-dsbl

    Pd-dsbl

    P u P d

  • 8/13/2019 16_pll Johns & Martin Slides

    17/26

    University of Toronto 17 of 26 D. Johns, K. Martin, 1997

    Oscillators

    Two main classes of oscillators

    Most common are LC osc and Ring osc (Crystal osc isgood but difficult to tune away from center freq)

    Oscillators

    Tuned oscillators Nonlinear oscillators

    RC

    osc.

    SC

    osc.

    LC

    osc.

    Crystal

    osc.

    Relaxation

    osc.

    Ring

    osc.

  • 8/13/2019 16_pll Johns & Martin Slides

    18/26

    University of Toronto 18 of 26 D. Johns, K. Martin, 1997

    Ring Oscillators

    (22)

    where is delay of each inverter

    Vout

    Vout (quadrature)

    osc 1T --- 12n inv---------------= =

    inv

  • 8/13/2019 16_pll Johns & Martin Slides

    19/26

    University of Toronto 19 of 26 D. Johns, K. Martin, 1997

    Fully Differential Delay Stage

    IBVcntl

    Vout Vout

    +

    Vin+ Vin

    IB

    V biasl

    Q1 Q2

    Q3 Q4

    2IBVcntl

  • 8/13/2019 16_pll Johns & Martin Slides

    20/26

    University of Toronto 20 of 26 D. Johns, K. Martin, 1997

    V2I Conversion

    +

    IVcntl

    R------------=

    Vcntl

    V bias

    R

    Control circuitryFirst inverter of ring oscillator

    I

    To other

    oscillators

    I

    Q7

    Q9

    Q3

    Q2

    Q4

    Q1

    Q5 Q6Q8

    2I

  • 8/13/2019 16_pll Johns & Martin Slides

    21/26

    University of Toronto 21 of 26 D. Johns, K. Martin, 1997

    Alternative Biasing

    Vcntl

    Vref

    Vref

    Bias stage Delay stage

    To other stages

    From other stages

    Q2Q1

    Q4

    Q3

    R 3 R 4 R 1R 2

    I b I b

  • 8/13/2019 16_pll Johns & Martin Slides

    22/26

    University of Toronto 22 of 26 D. Johns, K. Martin, 1997

    Computer Simulation of PLLs Simulation times can be very long due to large variations

    in time-constants

    Make use of bilinear transform to simulate analog signals

    in discrete timesteps. Loop Filter example

    Impedance looking into loop filter is ... ( )

    (23)

    So voltage to charge relationship is ...

    (24)

    G 1 R =

    Z lp s( ) 1 sC 1--------- 1 sC 2 G+

    --------------------+=

    V lp s( )Q lp s( )---------------- G s C 1 C 2+( )+

    GC 1 sC 1C 2+--------------------------------------=

  • 8/13/2019 16_pll Johns & Martin Slides

    23/26

    University of Toronto 23 of 26 D. Johns, K. Martin, 1997

    Discrete-time loop filter Use bilinear transform

    (25)

    giving

    (26)

    which can be written as

    s 2T --- 1 z

    1 1 z 1 +-----------------

    M z ( )V lp z ( )

    Q lp z ( )---------------

    2 1 z 1 ( ) C 1 C 2+( ) GT 1 z 1 +( )+

    2C 1

    C 2

    1 z 1 ( ) C 1

    GT 1 z 1 +( )+--------------------------------------------------------------------------------------= =

  • 8/13/2019 16_pll Johns & Martin Slides

    24/26

    University of Toronto 24 of 26 D. Johns, K. Martin, 1997

    (27)

    where

    (28)

    (29)

    (30)

    (31)

    P z ( )

    V lp z ( )

    Q lp z ( )-------------------

    m1 m2 z 1 +

    1 z 1 k 2 ( ) z 2 1 k ( )+ +-----------------------------------------------------------------= =

    11 z 1 ---------------- m1 m2 z

    1 +

    1 z 1 kz 1 + ---------------------------------

    =

    k 2GC 1T

    D------------------=

    m12 C 1 C 2+( ) GT +

    D------------------------------------------=

    m22 C 1 C 2+( ) GT +

    D----------------------------------------------=

    D 2C 1C 2 GC 1T +=

  • 8/13/2019 16_pll Johns & Martin Slides

    25/26

    University of Toronto 25 of 26 D. Johns, K. Martin, 1997

    Discrete-time Loop Filter

    Can use Matlab, Simulink, C, etc to simulate

    z 1

    k

    X2(z)

    m2

    m1

    Vlp(z)

    z 1

    X1(z)

    Q(z)

  • 8/13/2019 16_pll Johns & Martin Slides

    26/26

    University of Toronto 26 of 26 D. Johns, K. Martin, 1997

    A Fractional-N Frequency Synthesizer

    Use oversampling within a PLL f xt M -----

    phasedetect

    loopfilter VCO

    N

    M crystal

    osc

    f xt

    Nf xt PM ----------

    N k-1 k k+1, ,{ }= A digital controlled oscillator

    P