13 nyquist ad_johns & martin slides

27
slide 1 of 26 University of Toronto © D.A. Johns, K. Martin, 1997 Nyquist-Rate A/D Converters  Dav id Johns and Ken Martin University of Toronto ([email protected]) ([email protected])

Upload: yuvraaj-kumar-singh

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 1/26

slide 1 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Nyquist-Rate A/D Converters

David Johns and Ken MartinUniversity of Toronto

([email protected])([email protected])

Page 2: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 2/26

Page 3: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 3/26

slide 3 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Analog to Digital ConvertersLow-to-Medium

Speed,High Accuracy

Medium Speed,Medium Accuracy

High Speed,Low-to-Medium

Accuracy

Integrating Successiveapproximation

Flash

Oversampling

(not Nyquist-rate)

Algorithmic Two-step

Interpolating

Folding

Pipelined

Time-interleaved

Page 4: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 4/26

slide 4 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Low offset and gain errors for low-speed applications

• Small amount of circuitry

• Conversion speed is 2 N+1 times 1/T clk

(Vin is held constant during conversion.)

Control

logicCounter

b1 b2 b3

b N

Clock

f clk 1

Tclk -----------=

S2

S1Vin –

Vref

S1S2

R 1

C1

Vx

Bout

Comparator

Page 5: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 5/26

slide 5 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Count at end of T 2 is digital output

• Does not depend on RC time-constant

Time

Vx

T1

Phase (I) Phase (II)

Vin1 –

Vin2 –

Vin3 –

T2 (Three values for three inputs)

(Constant slope)

Page 6: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 6/26

slide 6 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Integrating Converters

• Notches the input frequencies which are multiples of 1/T 1

10 100

0

–10

–20

–30

60 120 180 240 300

–20 dB/decade slopeH f ( )

(dB)

Frequency (Hz)

(Log scale)

Page 7: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 7/26

slide 7 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Successive-Approximation Converters

Sample

Start

Stop

No

Yes

No

Yes

b i 1= b i 0=

Signed input

V in V D/A>

V in V D/A, 0 i, 1= =

V D/A V D/A V re f 2 i 1+ ⁄ +→ V D/A V D/A V re f 2 i 1+ ⁄ ( ) – →

i i 1+→

i N≥

• Makes use of binary search algorithm

• /Requires N steps for N-bit converter

• Successively “tunes” a signal untilwithin 1 LSB of input

• Medium speed

• Moderate accuracy

Page 8: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 8/26

slide 8 of 26University of Toronto© D.A. Johns, K. Martin, 1997

DAC Based Successive-Approximation

• Adjust until within 1 LSB of

• Start with MSB and continue until LSB found • D/A mainly determines overall accuracy • Input S/H required

S/H

D/A converter

Successive-approximation register (SAR) and control logic

b1 b2 b N

Bout

V D/A

Vin

Vref

V D/A V in

Page 9: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 9/26

slide 9 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistribution A/D

CC2C4C8C16C

1. Sample mode

CC2C4C8C16C

2. Hold mode

CC2C4C8C16C

3. Bit cycling

SAR

SAR

SAR

b1 b2 b3 b4 b5 s 3

s1

s2

b1 b2 b3 b4 b5 s 3

s1

s2

b1 b2 b3 b4 b5 s 3

s1

s2

Vx 0≅

Vx Vin – =

Vx Vin – Vref

2-----------+=

Vin Vre f

Vin Vref

Vin Vref

Page 10: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 10/26

slide 10 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Charge Redistribution A/D • McCreary, 75 • Combines S/H, D/A converter, and difference circuit

• Sample mode: Caps charged to , compar reset.

• Hold mode: Caps switched to gnd so

• Bit cycling: Cap switched to . If cap left

connected to and bit=1. Otherwise, cap back to gndand bit=0. Repeat times

• Cap bottom plates connected to side to minimize parasitic capacitance at . Parasitic cap does not causeconversion errors but it attenuates .

V in

V x V in – =

V ref V x 0<

V ref

V ref

V x V x

Page 11: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 11/26

slide 11 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Algorithmic (or Cyclic) A/D Converter

Sample V = V in, i = 1

Start

V > 0

V → 2(V – V ref /4) V → 2(V + V ref /4)

i → i + 1

i > N

Stop

No

Yes

No

Yes

b i 1= b i 0=

Signed input• Operates similar to successive-

approx converter

• Successive-approx halves ref voltageeach cycle

• Algorithmic doubles error each cycle(leaving ref voltage unchanged)

Page 12: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 12/26

slide 12 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Converter

• McCharles, 77; Li, 84 • Small amount of circuitry — reuse cyclically in time

• Requires a high-precision multiply by 2 gain stage

S/H

S/HX2

Cmp

Vref /4

–Vref /4

VinShift register

Out

Gain amp

Page 13: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 13/26

slide 13 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Ratio-Independent Algorithmic Converter

• Does not rely on cap matching• Sample input twice using C 1; hold first charge in C 2 and

re-combine with first charge on C 1

CmpVerr

C1

Q1

C2

1. Sample remainder and cancel input-offset voltage.

CmpVerr

C1

Q1

C2

2. Transfer charge Q 1 from C 1 to C 2.

Q1

CmpVerr

C1

Q2

C2

3. Sample input signal with C 1 again

Q1

CmpVerr

C1

Q1+Q2

C2

4. Combine Q 1 and Q 2 on C 1, and connect C 1 to output.

Vout = 2 Verr

after storing charge Q 1 on C 2.

Page 14: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 14/26

slide 14 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash (or Parallel) Converters • Peetz, 86; Yoshii, 87; Hotta, 87; and Gendai, 91

Vref

Vin

(2 N –1) to N

encoder

N digitaloutputs

Over range

Comparators

R

R

R

R

R

R

R

V r1

V r2

V r3

V r4

V r5

V r6

V r7

R 2----

R 2 ⁄

• High-speed

• Large size and power hungry

• 2 N comparators

• Speed bottleneck usually large capload at input

• Thermometer code out of comps• Nands used for simpler decoding

and/or bubble error correction

• Use comp offset cancellation

Page 15: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 15/26

slide 15 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Issues in Designing Flash A/D Converters • Input Capacitive Loading — use interpolating arch. • Resistor-String Bowing — Due to I in of bipolar comps —

force center tap (or more) to be correct.

• Signal and/or Clock Delay — Small arrival diff in clockor input cause errors. (250MHz 8-bit A/D needs 5psmatching for 1LSB) — route clock and V in together withthe delays matched [Gendai, 1991]. Match capacitive

loads • Substrate and Power-Supply Noise — and 8-

bit, 7.8 mV of noise causes 1 LSB error — shield clocksand use on-chip supply cap bypass

• Flashback — Glitch at input due to going from track tolatch mode — use preamps in comparators and matchinput impedances

V ref 2 V=

Page 16: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 16/26

slide 16 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Flash Converters — Bubble Errors • Thermometer code should be 1111110000 • Bubble error (noise, metastability)— 1111110100 • Usually occurs near transition point but can cause gross

errors depending on encoder

• Can allow errors in lower 2 LSB but have MSBs encoderlook at every 4th comp [Gendai, 91]

(2N–1) to Nencoder

N digitaloutputs

Vin

Vri

… …

… …

[Steyaert, 93]

Page 17: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 17/26

slide 17 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Reduced Auto-Zeroing • Tsukamoto et al, ISSCC/96 • Spalding et al, ISSCC/96 • Reduce the auto-zero portion of conversion

— auto zero when not performing conversion — add one more comparator and ripple up auto-zero

Advantages

• Lower power — less current drawn from ref string • More speed — more time for conversion

Disadvantage

• 1/f noise not rejected as much

Page 18: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 18/26

slide 18 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Two-Step A/D Converters

• High-speed, medium accuracy (but 1 sample latency) • Less area and power than flash • Only 32 comparators in above 8-bit two-step

• Gain amp likely sets speed limit • Without digital error correction, many blocks need at least

8-bit accuracy

4-bit

A/D4-bitD/A 16

First 4 bits

Vin

Gain amp

V1

Vin

VqMSB

4-bit

A/DLSB

Lower 4 bits b1 b2 b3 b4, , ,( ) b5 b6 b7 b8, , ,( )

Page 19: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 19/26

slide 19 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Digital Error Correction

• Relaxes requirements on input A/D• Requires a 5-bit 2nd stage since V q increased• Example, see [Petschacher, 1990].

S/H1

4-bit

A/D

S/H2

4-bit

D/A 8 S/H3

Error correctionD

8 bits

Digital delay

4 bits

5 bits

Vin

Gain amp

(4-bit accurate)(8-bit accurate)

(5-bit accurate)

(5-bit accurate)

(8-bit accurate)

(8-bit accurate)

V1

Vin

VqMSB

5-bit

A/DLSB

Page 20: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 20/26

slide 20 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating A/D ConvertersVref 1 V=

Vin

R

R

R

R

0.75 V

0.5 V

0.25 V

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

latch

Digitallogic

b1 b2 b3 b4

(Overflow)

Inputamplifiers

Latchcomparators

V1

V2

V3

V4

V2a

V2b

R R R R

R R R R

V2c

R

R

R

R

R R

R

R

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

• Goodenough, 1989

• Steyaert, 1993

• Kusumoto, 1993

• Use input amps toamplify input aroundreference voltages

• Latch thresholds lesscritical

• Less cap on input (faster than flash)

• Match delays to latches

• Often combined withfolding architecture

Page 21: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 21/26

slide 21 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Interpolating Converters

Vin1.0

(Volts)

(Volts)

0.750.50.2500

5.0

Latch thresholdV1

V2

V2a

V2b V2c

9

I1 I2a I2b I2

9

33

33

33

(Relative width sizing shown)(All lengths same)

current interpolation

Page 22: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 22/26

slide 22 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding A/D Converters

Folding block

Folding block

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b3

b4

V1

V2

V3

V4

Vin

V 1

Vin

V 2

Vin

V3

Vin

V 4

Threshold

Threshold

Threshold

Threshold

Folding block responses

1(Volts)

(Volts)V r

416------ 8

16------ 12

16------ 16

16------, , ,

=

V r 3

16------ 7

16------ 11

16------ 15

16------, , ,

=

V re f 1 V=

Vr 2

16------ 6

16------ 10

16------ 14

16------, , ,

=

V r 1

16------ 5

16------ 9

16------ 13

16------, , ,

=

416------ 8

16------ 12

16------ 10

0

316------

716------

1116------

1516------

216------ 6

16------ 10

16------ 14

16------

116------ 5

16------ 9

16------ 13

16------

1

Folding block

Folding block

• Reduce number of latches using folding

• Save power and area

• Similar concept to 2-step

• Folding rate of 4 shownfor 4 bit converter

Page 23: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 23/26

slide 23 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding Circuit

I b I b I bI b

Vin

V out

R 1 R 1

Vr1Vr2 Vr3 Vr4

V in

V out

VCC

VEE

VCC VBE –

VCC VBE – I b R 1 –

V r1 V r2 V r3 V r4

(b)

(a )

Q1 Q 2VaV b

Page 24: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 24/26

slide 24 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Folding with Interpolation

Folding block

Folding block

2-bitMSB A/Dconverter

Latch

Latch

Latch

Latch

Digitallogic

Vin

b1

b2

b 3

b 4

V1

V2

V3

V4

Vin

V1

Vin

V2

Vin

V3

VinV 4

Threshold

Threshold

Threshold

Threshold

Folding-block responses

1(Volts)

(Volts)

Vr

316------ 7

16------ 11

16------ 15

16------, , ,

=

Vref 1 V=

Vr 1

16------ 5

16------ 9

16------ 13

16------, , ,

=

416------ 8

16------ 12

16------

100

316------ 7

16------ 11

16------ 15

16------

216------ 6

16------ 10

16------ 14

16------

116------ 5

16------ 9

16------ 13

16------

R

R

V4

V4

V4

R R

• Folding usually used

with interpolation• Reduces input cap (

• Without interp, sameinput cap as flash

• [van Valburg, 1992]

• [van de Grift, 1987]

• [Colleran, 1993]

Page 25: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 25/26

slide 25 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Pipelined A/D Converters

D1

Q1

D N-2

Q N-1

D N

Q N

D1

Q1D1

Q1

D N-2

Q N-1

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

1-bitDAPRX

Vin

N –

1 - b

i t s h i f t r e g

i s t e r

Analog pipeline (DAPRX - digital approximator)

b 1

b 2

b N

b N 1 –

S/H

2

Cmp

–V ref/4

Vref/4

Vi–1

Vi

b i

Page 26: 13 Nyquist Ad_Johns & Martin Slides

8/13/2019 13 Nyquist Ad_Johns & Martin Slides

http://slidepdf.com/reader/full/13-nyquist-adjohns-martin-slides 26/26

slide 26 of 26University of Toronto© D.A. Johns, K. Martin, 1997

Time-Interleaved A/D Converters [Black, 80]

• Use parallel A/Ds and multiplex them• Tone occurs at fs/N for N converters if mismatched• Input S/H critical, others not — perhaps different tech for input S/H

S/H

S/H

S/H

S/H

S/H

N-bit A/D

N-bit A/D

N-bit A/D

N-bit A/D

Dig.mux

Digitaloutput

f 2

f 3

f 4

f 1

f 0

Vin