16.part1.activevibrationcontrolpiezo

Upload: jason-chiang

Post on 03-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    1/71

    116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Topic 16. Active Vibration ControlUsing Piezoelectric Materials

    Part 1. Classical Control Methods

    Dr. G. Song, Associate Professor

    University of Houston

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    2/71

    216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    OutlineOutline1. Introduction

    2. Experimental Set Up3. Modal Analysis and Open Loop Testing

    4. Vibration Suppression Methods

    (a) PPF

    (b) SRF

    (c) Lead Compensator5. Conclusions

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    3/71

    316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    1. INTRODUCTION FRP Shapes(Beams and columns) have shown to provide efficient

    and economical applications for Bridges, Piers, Retaining walls,

    Airport facilities, Storage structures exposed to salt and chemicals.

    FRP are thin walled structured manufactured by pultrusion processand although economical have

    * relatively high deflection low elastic modulus resins.* considerable shear deformation.

    * critical global and local stability.

    * potential material failure.

    External vibrations aggravates these limitations.

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    4/71

    416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Review of control of civil structures using smart materials Huston R D et al(1994) developed and tested numerous fiber-

    optic and conventional sensor techniques and designs for the

    implementation in smart civil structures .

    Krumme R et al(1995) studied passive control of the dynamicresponse of civil structures utilizing shape-memory alloy (SMA)

    damping techniques.

    Aizawa S et al(1998) used piezoelectric stack actuators forresponse control of a four story structural frame.

    Very little Use of Piezoelectric patch actuators for vibration control ofcivil structures has been reported.

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    5/71

    516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Review of control using Piezo patches for SRF and PPF control Positive position feedback (PPF) method was applied by Goh and

    Caughey (1985), Fanson and Caughey(1990), Agrawal and Bang(1994), Song et al(2000) for control of flexible beams.

    Strain rate feedback (SRF) for bonded and embedded piezoceramicsensor and actuator was considered by Hanagud, Won and Obal(1988).

    Hagood and Anderson of MIT studied the possibility of using a singlepiezo element for actuator and sensor.

    Song, Schmidt and Agarwal studied the vibration suppression offlexible structure using modular control patch.

    6

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    6/71

    616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Piezoelectricity Piezo Effect.

    Conversion between mechanical and electrical energy

    - materials that respond to stress by producing a voltage

    - materials that respond to a change in electric field by changing shapes.

    Discovered in 1880 by Pierre and Jacques Curie.

    Electrically neutral solid contains polar bonds and noncentrosymmetric

    units - typically dipoles cancel out in a solid, but not necessarily when

    the solid is distorted

    7

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    7/71

    716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Piezoelectric Action

    Resulting Strain (S)

    +

    -

    Electrodes

    Resulting Strain (S)

    -+

    Polling Axis

    8

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    8/71

    816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Piezoelectric material as an actuator

    -

    +-+

    No Voltage

    Direction

    of Polarity

    Applied Voltage

    opposite polarity

    Applied Voltage

    same as polarity

    Direction

    of PolarityDirection

    of Polarity

    9

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    9/71

    916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Piezoelectric material as a sensor

    -+ - +No voltage generated

    Direction

    of Polarity

    Voltage generated

    same as polarityVoltage generated

    opposite polarity

    Direction

    of PolarityDirection

    of Polarity

    FF

    1016 A i i i C i i i i C i C

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    10/71

    1016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    2. Experimental Set Up

    I-Beam CompositeSignal Generator, Oscilloscope and Power Amplifier

    Fixture to Hold

    the beam PC with Real

    Time Controls

    1116 A ti Vib ti C t l U i Pi l t i M t i l Cl i l C t l M th d

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    11/71

    1116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    EXPERIMENTAL SET UP

    BLOCK DIAGRAM

    Power

    Amplifier

    Oscilloscope

    dSPACE data Acq.

    System

    D/A

    Converter

    PC with

    MATLAB

    Piezoelectric

    actuator

    Composite

    I-beamPZT

    Sensor

    A/D

    Converter

    1216 A ti Vib ti C t l U i Pi l t i M t i l Cl i l C t l M th d

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    12/71

    1216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    EXPERIMENT CONNECTIONSCANTILEVER END

    FIXTURE

    SIGNAL

    GENERATOR ANDOSCILLOSCOPE

    POWER AMPLIFIERS

    ADA

    MATLAB &

    dSPACE

    1316 A ti Vib ti C t l U i Pi l t i M t i l Cl i l C t l M th d

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    13/71

    1316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    ACTUATORS AND SENSORS CONNECTIONS

    Actuators

    Sensors

    Strong

    Weak

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    14/71

    1516 Active Vibration Control Using Piezoelectric Materials Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    15/71

    1516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulink Model for the Modetest of the I-beam

    For Multi-mode excitation

    Free End

    1616 Active Vibration Control Using Piezoelectric Materials Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    16/71

    1616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    MODAL TESTING PROCEDURE

    Ensure beam is tightly clamped on the fixture.

    Manual excitation at the free end in strong, weak and twistingdirections.

    Manual excitation at the center of the beam in all three directions to

    generate multimode results captured by dSPACE and analyzed using

    MATLAB

    Natural Modes evaluated and energy levels are compared.

    Strong

    Weak

    45 DegreesMultimode

    3. Modal Analysis and Open Loop Testing

    1716 Active Vibration Control Using Piezoelectric Materials Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    17/71

    1716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    RESULTS OF MODE TEST

    Amplitude Vs Time Response for Strong and Weak Sides

    0 5 1 0 1 5 2 0 2 5 3 0-1

    -0 .5

    0

    0 .5

    1t im e r e s p o n s e

    t im e (s e c s ) ; M a n u a l E x c i t a t io n i n S t ro n g d i re c t i o n

    amplitude(Volts

    )

    s t r o n g

    0 5 1 0 1 5 2 0 2 5 3 0-0 .1

    -0 .05

    0

    0 . 0 5

    0 .1

    0 . 1 5

    t im e ( s e c s ) ; M a n u a l E x c i ta t io n in W e a k d i re c t i o n

    amplitu

    de(Volts)

    w e a k

    1816 Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    18/71

    16. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Power Spectral Density Plot for Strong direction

    RESULTS OF MODE TEST

    1916 Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    19/71

    16. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Power Spectral Density Plot for Weak direction

    0 1 0 20 30 40 50 6 0 70 80 90 10 0-100

    -9 0

    -8 0

    -7 0

    -6 0

    -5 0

    -4 0

    -3 0

    -2 0

    -1 0

    0

    F re q u e n c y

    PowerSpectrumM

    agnitude(dB)

    P o w e r S p e c t ru m : W e a k

    RESULTS OF MODE TEST

    2016 Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    20/71

    16. Active Vibration Control Using Piezoelectric Materials Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    RESULTS OF MODE TEST

    Experimental Modal Frequencies

    MODE STRONG DIRECTION (Hz) WEAK DIRECTION (Hz)

    FIRST 7.62 4.5

    SECOND 45.5 13.28

    THIRD 80.86 28.47

    FOURTH 45.5

    2116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    21/71

    16. Active Vibration Control Using Piezoelectric Materials Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Drop In Energy Levels Strong and Weak Directions

    0 5 10 15 20 25 30 35 40 45 50-80

    -70

    -60

    -50

    -40

    -30

    -20Power spectral density Comparision plot for 1-2 and 8-10th second: Weak

    Frequency (Hz)

    Ener

    gylevelinDecibels

    0-2 second

    8-10 second

    0 10 20 30 40 50 60 70 80 90 100

    -55

    -50

    -45

    -40

    -35

    -30

    -25

    -20

    -15

    -10

    -5Power spectral density Comparision plot for 0-2 and 10-12th second: Strong

    Frequency (Hz)

    0-2 second

    10-12 second

    RESULTS OF MODE TEST

    2216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    22/71

    16. Active Vibration Control Using Piezoelectric Materials Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    Comparative Energy Drop in 20 seconds in Strong and

    Weak directions

    Serial

    No

    Frequency

    (Hz)

    Energy

    Level

    (dB)

    Energy Drop in

    20 Seconds

    Strongdirection (dB)

    Energy Drop in

    20 Seconds

    Weak direction(dB)

    Remarks

    1 4.5 -49.5 14.00 14Dominant in Weak

    direction

    2 7.62 -7.68 15.25 20.13Most dominantpeak in Strong

    direction

    3 13.28 -58.5 15.00 6.75Dominant at 45

    Degrees

    Torsional Mode

    4 28.47 -63 23.50 8.00Dominant in Weak

    direction

    5 45.5 -34.62 34.50 12.40Dominant in both

    directions

    6 80.86 -46.20 26.40 6.25Dominant in strong

    direction

    2316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    23/71

    16. Active Vibration Control Using Piezoelectric Materials Classical Control Methods

    Instructor: Dr. SongDept. of Mechanical Engineering

    4. VIBRATION SUPRESSIONMETHODS

    PPF CONTROL SRF CONTROL

    LEAD COMPENSATOR- ROOT LOCUS APPROACH

    - BODE PLOTS APPROACH

    2416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    24/71

    g

    Instructor: Dr. SongDept. of Mechanical Engineering

    Block Diagram of PPF Control

    Compensator

    + 2

    +2 = 0

    + 2cc2

    +c2= 0

    G2 c2

    Structure+

    +

    2516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    25/71

    g

    Instructor: Dr. SongDept. of Mechanical Engineering

    PPF Phase Angle Plot

    PhaseAngle

    2

    Active Flexibility

    Active Damping

    Active stiffness

    c =

    2616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    26/71

    g

    Instructor: Dr. SongDept. of Mechanical Engineering

    PPF CONTROL OBJECTIVE Simulation and Modeling

    - Using Sinusoidal Input- Using Impulse Input

    Free Vibration of the Beam-Reference Test Controlled Response

    - Effect of the Damping Ratio 0.5 0.1

    - Changes in the Targeted Frequencies 6 9 Hz

    Result Analysis

    2716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    27/71

    g

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulation and Modeling using sinusoidal

    responsePlant

    Compensator

    Plant

    Compensator

    2816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    28/71

    g

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulated Time Response comparison

    using PPF Control

    2916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    29/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulation and Modeling for an impulse

    response: PPF Control

    3016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    30/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Bode Plot of the Closed Loop System for the

    PPF Simulation

    3116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    31/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Root Locus Plot of the Open Loop System for

    the PPF Simulation

    New Pole Locations

    3216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    32/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    PPF Real Time Control of Composite I-Beam

    3316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    33/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Summary of PPF control data and analysis (Experimental)

    P PF C O N T R O L D A T A A N A L Y SIS D A T A R E M A R K S

    Sl

    N o .

    T E S T

    N O P P F G A INF R E Q

    ( H z )

    Z E T A

    ( )

    E N E R G Y

    D R O P d B5 - 1 0 s e c

    S t r o n g

    E N E R G Y

    D R O P d B1 0 - 1 5 s e c

    S t r o n g

    Z E T AU N -

    C O N T R O L

    Z E T A

    C O N T

    P e r c e n t a g e

    I n c r e a se i nZ e t a fo r c o n t c a s e

    1 2 6 - 0 . 5 6 0 . 5 2 4 . 4 0 . 0 0 3 4 0 . 0 0 4 8 4 1 . 1 8

    2 2 7 - 1 6 0 . 5 3 . 9 6 9 . 5 0 . 0 0 3 4 0 . 0 0 6 4 8 8 . 2 4

    3 2 8 - 1 . 5 6 0 . 5 5 . 9 1 5 . 0 8 0 . 0 0 3 4 0 . 0 0 8 4 1 4 7 . 0 6

    4 2 9 - 2 6 0 . 5 7 . 6 3 2 0 . 2 6 6 0 . 0 0 3 4 0 . 0 1 0 1 1 9 7 . 0 6

    5 3 0 - 2 . 5 6 0 . 5 9 . 1 7 2 5 . 4 5 0 .0 0 3 4 0 . 0 1 2 0 2 5 2 . 9 4

    6 3 1 - 3 6 0 . 5 1 0 . 4 4 3 0 . 2 1 0 . 0 0 3 4 0 . 0 1 3 4 2 9 4 . 1 2

    7 3 2 - 3 . 5 6 0 . 5 1 1 . 4 6 3 4 . 6 0 . 0 0 3 4 0 . 0 1 3 6 3 0 0 . 0 08 3 3 - 5 6 0 . 5 1 3 . 5 5 3 9 . 9 1 0 . 0 0 3 4 0 . 0 1 4 4 3 2 3 . 5 3

    U n s t a b l e a tP P F g a in = - 5 . 5

    9 3 4 0 6 0 . 5 0 . 0 0 3 4 R e f t e s t f o r t e s t s 2 6 - 3 3

    1 0 3 5 0 6 .2 0 . 5 0 . 0 0 3 4 R e f t e s t f o r t e s t s 3 6 - 3 9

    1 1 3 6 - 1 6 .2 0 . 5 4 . 2 9 1 0 . 6 8 0 .0 0 3 4 0 . 0 0 6 9 1 0 2 . 9 4

    1 2 3 7 - 2 6 .2 0 . 5 8 . 3 1 2 2 . 8 7 0 .0 0 3 4 0 . 0 1 1 4 2 3 5 . 2 9

    1 3 3 8 - 3 6 .2 0 . 5 1 1 . 3 7 3 4 . 4 3 0 . 0 0 3 4 0 . 0 1 4 2 3 1 7 . 6 5

    1 4 3 9 - 4 6 .2 0 . 5 1 3 . 1 5 4 1 . 3 7 0 . 0 0 3 4 0 . 0 1 4 5 3 2 6 . 4 7

    U n s t a b l e a tP P F ga in = - 5

    1 5 4 0 0 6 .4 0 . 5 0 . 0 0 3 4 R e f t e s t f o r t e s t s 4 1 - 4 5

    1 6 4 1 - 1 6 .4 0 . 5 4 . 5 6 1 1 . 4 5 0 .0 0 3 4 0 . 0 0 7 2 1 1 1 . 7 6

    1 7 4 2 - 2 6 .4 0 . 5 9 . 1 8 2 6 . 3 2 0 .0 0 3 4 0 . 0 1 2 2 2 5 8 . 8 2

    1 8 4 3 - 3 6 .4 0 . 5 1 2 . 2 7 3 7 . 3 8 0 . 0 0 3 4 0 . 0 1 4 4 3 2 3 . 5 3

    1 9 4 4 - 4 6 .4 0 . 5 1 3 . 9 4 4 . 4 6 0 .0 0 3 4 0 . 0 1 6 4 3 8 2 . 3 5

    2 0 4 5 - 4 . 5 6 .4 0 . 5 1 4 . 8 2 5 0 . 9 6 0 . 0 0 3 4 0 . 0 1 3 8 3 0 5 . 8 8

    U n s t a b l e a t

    P P F g a in = - 5

    2 1 4 6 0 6 .6 0 . 5 0 . 0 0 3 4 R e f t e s t f o r t e s t s 4 7 - 5 0

    2 2 4 7 - 1 6 .6 0 . 5 5 . 1 3 1 3 . 1 9 0 .0 0 3 4 0 . 0 0 7 7 1 2 6 . 4 7

    2 3 4 8 - 2 6 .6 0 . 5 1 0 . 1 8 3 0 . 7 0 . 0 0 3 4 0 . 0 1 3 1 2 8 5 . 2 9

    2 4 4 9 - 3 6 .6 0 . 5 1 3 . 0 1 4 2 . 3 8 0 . 0 0 3 4 0 . 0 1 4 8 3 3 5 . 2 9

    2 5 5 0 - 4 6 .6 0 . 5 1 4 . 7 1 4 9 . 9 0 . 0 0 3 4 0 . 0 1 6 5 3 8 5 . 2 9

    U n s t a b l e a t

    P P F g a in = -

    4 .5

    2 6 5 1 0 6 .8 0 . 5 0 . 0 0 3 2 R e f t e s t f o r t e s t s 5 2 - 5 5

    2 7 5 2 - 1 6 .8 0 . 5 6 . 0 8 1 5 . 8 8 0 .0 0 3 2 0 . 0 0 8 3 1 5 9 . 3 8

    2 8 5 3 - 2 6 .8 0 . 5 1 1 . 2 8 3 5 . 2 0 . 0 0 3 2 0 . 0 1 4 3 3 4 6 . 8 8

    2 9 5 4 - 3 6 .8 0 . 5 1 4 . 0 5 4 6 . 2 3 0 . 0 0 3 2 0 . 0 1 7 0 4 3 1 . 2 5

    3 0 5 5 - 3 . 5 6 .8 0 . 5 1 4 . 9 2 5 2 . 2 6 0 . 0 0 3 2 0 . 0 1 9 8 5 1 8 . 7 5

    U n s t a b l e a t

    P P F ga in = - 4

    Contd

    3416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    34/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Summary of PPF control data and analysis (Experimental)

    Contd

    P P F CO N T RO L D A T A ANALYSIS DAT A

    Sl

    N o.

    TEST

    N O PP F

    GAIN

    FREQ

    Z ET

    A

    ENERGY

    DROP dB

    5-10 secStrong

    ENERGY

    DROP dB

    10-15 secStrong

    Z E T A

    U N -

    CO N T RO L

    Z E T A

    CO N T

    Pe rc e n ta geIncrease in

    Zeta for

    control

    case

    RE MA RK S

    31 56 0 7 0.5 0.0032Ref test for tests 57-

    60

    32 57 -1 7 0.5 6.66 17.57 0.0032 0.0090 181.25

    33 58 -2 7 0.5 12.04 39.87 0.0032 0.0148 362.50

    34 59 -3 7 0.5 14.64 57.28 0.0032 0.0149 365.63

    35 60 -3.5 7 0.5 15.69 54.89 0.0032 0.0150 368.75Unstable at PPF

    gain= -4

    36 61 0 7.2 0.5 0.0032

    Ref test for tests 62-

    64

    37 62 -1 7.2 0.5 7.02 18.56 0.0032 0.0091 184.38

    38 63 -2 7.2 0.5 12.87 43.92 0.0032 0.0157 390.63

    39 64 -3 7.2 0.5 15.24 55.69 0.0032 0.0262 718.75Unstable at PPF

    gain= -3.5

    40 65 0 7.4 0.5 0.0032Ref test for tests 65-

    69

    41 66 -1 7.4 0.5 7.79 21.27 0.0032 0.0099 209.38

    42 67 -2 7.4 0.5 13.41 45.51 0.0032 0.0184 475.00

    43 68 -2.5 7.4 0.5 14.72 52.96 0.0032 0.0246 668.75

    44 69 -3 7.4 0.5 15.78 57.06 0.0032 0.0309 865.63

    Unstable at PPF

    gain= -3.545 3 0 7.62 0.5 0.0030 Ref test for tests 4-8

    46 4 -0.5 7.62 0.5 4.09 9.85 0.0030 0.0062 106.67

    47 5 -1 7.62 0.5 8.88 24.64 0.0030 0.0112 273.33

    48 6 -1.5 7.62 0.5 12.36 41.23 0.0030 0.0197 556.67

    49 7 -2 7.62 0.5 14.37 45.22 0.0030 0.0207 590.00

    50 8 -2.5 7.62 0.5 15.41 51.07 0.0030 0.0383 1176.67Unstable at PPF

    gain= -3

    51 9 0 7.62 0.4 0.0032Ref test for tests 10-

    13

    52 10 -0.5 7.62 0.4 5.03 12.76 0.0032 0.0073 128.13

    53 11 -1 7.62 0.4 10.65 32.87 0.0032 0.0160 400.00

    54 12 -1.5 7.62 0.4 13.8 47.06 0.0032 0.0250 681.25

    55 13 -2 7.62 0.4 15.16 54.91 0.0032 0.0315 884.38Unstable at PPF

    gain= -2.5

    56 14 0 7.62 0.3 0.0028Ref test for tests 15-

    17

    57 15 -0.5 7.62 0.3 7.22 18.89 0.0028 0.0088 214.29

    58 16 -1 7.62 0.3 13.07 45.21 0.0028 0.0142 407.14

    59 17 -1.5 7.62 0.3 15.2 57.3 0.0028 0.0298 964.29Unstable at PPF

    gain= -2

    60 18 0 7.62 0.2 0.0027

    Ref test for tests 19-

    20

    3516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    35/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Summary of PPF control data and analysis (Experimental)

    PPF CONTROL DATA ANALYSIS DATA

    Sl No

    .

    TESTNO

    PP FGAIN

    FR -EQ

    Hz ZETA

    ENERGYDROP dB

    5-10 sec

    Strong

    ENERGYDROP dB

    10-15 sec

    Strong

    ZETAUNCONT

    ZETACON-

    TROL

    Percentage

    IncreaseControl

    case

    REMARKS

    61 19 -0.5 7.62 0.2 11.5 36.62 0.0027 0.0147 444.44

    62 20 -1 7.62 0.2 15.31 55.31 0.0027 0.0322 1092.59

    Unstable at

    PPF gain= -1.5

    6 3 2 1 0 7 .6 2 0 .1 0 .0 02 2

    Ref test for tests 22-

    25

    64 22 -0.5 7.62 0.1 9.71 32.08 0.0022 0.0159 622.73

    65 23 -0.3 7.62 0.1 12.78 57.29 0.0022 0.0251 1040.91

    66 24 -0.2 7.62 0.1 8.73 23.68 0.0022 0.0099 350.00

    67 25 -0.5 7.62 0.1 16.11 38.67 0.0022 0.0163 640.91 With filter added

    68 70 0 7.8 0.5 0.0035

    Ref test for tests 71-74

    69 71 -1 7.8 0.5 8.66 24.9 0.0035 0.0114 225.71

    70 72 -1.5 7.8 0.5 12.12 42.54 0.0035 0.0186 431.43

    71 73 -2 7.8 0.5 13.88 57.26 0.0035 0.0256 631.43

    72 74 -2.5 7 .8 0.5 14.88 57.06 0.0035 0.0386 1002.86

    Unstable atPPF gain= -3

    73 75 0 8 0.5 0.0032

    Ref test for tests 76-

    78

    74 76 -1 8 0.5 9.14 26.57 0.0032 0.0117 265.63

    75 77 -1.5 8 0.5 12.79 50.49 0.0032 0.0177 453.13

    76 78 -2 8 0.5 14.32 54.26 0.0032 0.0239 646.88

    Unstable atPPF gain= -2.5

    77 79 0 8.2 0.5 0.0032

    Ref test for tests 80-

    82

    78 80 -1 8.2 0.5 9.18 28.67 0.0032 0.0135 321.88

    79 81 -1.5 8.2 0.5 12.71 44.52 0.0032 0.0211 559.38

    80 82 -2 8.2 0.5 14.41 44.52 0.0032 0.0268 737.50

    Unstable at

    PPF gain= -2.5

    81 83 0 8.4 0.5 0.0032

    Ref test for tests 84-86

    82 84 -1 8.4 0.5 9.14 31.21 0.0032 0.0123 284.38

    83 85 -1.5 8.4 0.5 12.36 54.93 0.0032 0.0211 559.38

    84 86 -2 8.4 0.5 14.11 55.33 0.0032 0.0279 771.88

    Unstable at

    PPF gain= -2.5

    85 87 0 8.6 0.5 0.0032

    Ref test for tests 88-

    91

    86 88 -0.5 8.6 0.5 4.29 11.26 0.0032 0.0067 109.38

    87 89 -1 8.6 0.5 8.8 32.93 0.0032 0.0142 343.75

    88 90 -1.5 8.6 0.5 11.66 52.03 0.0032 0.0215 571.88

    89 91 -2 8.6 0.5 13.2 57.41 0.0032 0.0348 987.50

    Unstable atPPF gain= -2.5

    90 92 0 8.8 0.5 0.0032

    Ref test for tests 92-

    95

    91 93 -0.5 8.8 0.5 4.2 11.53 0.003 2 0.0067 109.38

    92 94 -1 8.8 0.5 8.31 34.92 0.0032 0.0150 368.75

    93 95 -1.5 8.8 0.5 10.87 59.09 0.0032 0.0319 896.88

    Unstable at

    PPF gain= -2

    3616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    36/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Effect of Gain Change, PPF Damping Ratio = 0.5

    PPF CONTROL DATA ANALYSIS DATA

    Sl No. TEST N

    PPF GAIN

    FREQ

    ZETA

    ENERGY

    DROP dB5-10 sec

    Strong

    ENERG

    DROP dB10-15 sec

    Strong

    ZETA

    UN-CONT

    ZETA

    CONT

    Increase

    inZeta for

    control

    case %

    REM-ARKS

    45 3 0 7.62 0.5 0.0030 Ref testfor tests

    4-8

    46 4 -0.5 7.62 0.5 4.09 9.85 0.0030 0.0062 106.67

    47 5 -1 7.62 0.5 8.88 24.64 0.0030 0.0112 273.33

    48 6 -1.5 7.62 0.5 12.36 41.23 0.0030 0.0197 556.6749 7 -2 7.62 0.5 14.37 45.22 0.0030 0.0207 590.00

    50 8 -2.5 7.62 0.5 15.41 51.07 0.0030 0.0383 1176.67Unstable

    at PPF

    gain= -3

    3716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    37/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Effect of Gain Change, PPF Damping Ratio = 0.4

    PPF CONTROL DATA ANALYSIS DATA REMARKS

    TEST N PPF GAI

    FREQ

    ZETA

    ENERGDROP d

    5-10 secStrong

    ENERGYDROP dB

    10-15 secStrong

    ZETAUNCON

    ZETACONT

    PercentageIncrease in

    Zeta forCONT

    51 9 0 7.62 0.4 0.0032

    Ref test for tests 10

    13

    52 10 -0.5 7.62 0.4 5.03 12.76 0.0032 0.0073 128.1353 11 -1 7.62 0.4 10.65 32.87 0.0032 0.0160 400.00

    54 12 -1.5 7.62 0.4 13.8 47.06 0.0032 0.0250 681.25

    55 13 -2 7.62 0.4 15.16 54.91 0.0032 0.0315 884.38

    Unstable at PPFgain= -2.5

    3816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    38/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Effect of Gain Change, PPF Damping Ratio = 0.1

    PPF CONTROL DATA ANALYSIS DATA REMARKSSl No. TEST NO PPF GAINFREQ ZET ENERGY

    DROP dB

    5-10 secStrong

    ENERGY

    DROP dB

    10-15 secStrong

    ZETA

    UNCON

    T

    ZETA

    CONT

    Percentage

    Increase in

    Zeta forCONT case

    63 21 0 7.62 0.1 0.0022Ref test fortests 22-25

    64 22 -0.5 7.62 0.1 9.71 32.08 0.0022 0.0159 622.73

    65 23 -0.3 7.62 0.1 12.78 57.29 0.0022 0.0251 1040.91

    66 24 -0.2 7.62 0.1 8.73 23.68 0.0022 0.0099 350.00

    67 25 -0.5 7.62 0.1 16.11 38.67 0.0022 0.0163 640.91With filter

    added

    3916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    39/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Effect of Gain Change , frequency varied from 6.2 to 6.8 HzPPF CONTROL DAT A ANALYSIS DAT A REMA RKS

    Sl No. TEST NO PPF GAIN

    FREQ

    ZETA

    ENERGY

    DROP dB

    5-10 sec

    Strong

    ENERGY

    DROP dB

    10-15 sec

    Strong

    ZETA

    U N CO N T

    ZETA

    CONT

    Percentage

    Increase in

    Zeta for

    CONT case

    10 35 0 6.2 0.5 0.0034

    Ref test for

    tests 36-39

    11 36 -1 6.2 0.5 4.29 10.68 0.0034 0.0069 102.94

    12 37 -2 6.2 0.5 8.31 22.87 0.0034 0.0114 235.29

    13 38 -3 6.2 0.5 11.37 34.43 0.0034 0.0142 317.65

    14 39 -4 6.2 0.5 13.15 41.37 0.0034 0.0145 326.47Unstable at

    PP F gain= -5

    15 40 0 6.4 0.5 0.0034Ref test fortests41-45

    16 41 -1 6.4 0.5 4.56 11.45 0.0034 0.0072 111.76

    17 42 -2 6.4 0.5 9.18 26.32 0.0034 0.0122 258.82

    18 43 -3 6.4 0.5 12.27 37.38 0.0034 0.0144 323.53

    19 44 -4 6.4 0.5 13.9 44.46 0.0034 0.0164 382.35

    20 45 -4.5 6.4 0.5 1 4.82 50.96 0.0034 0.0138 305.88

    Unstable at

    PP F gain= -5

    21 46 0 6.6 0.5 0.0034

    Ref test for

    tests 47-50

    22 47 -1 6.6 0.5 5.13 13.19 0.0034 0.0077 126.47

    23 48 -2 6.6 0.5 10.18 30.7 0.0034 0.0131 285.29

    24 49 -3 6.6 0.5 13.01 42.38 0.0034 0.0148 335.29

    25 50 -4 6.6 0.5 14.71 49.9 0.0034 0.0165 385.29

    Unstable at

    PPFgain= -4.5

    26 51 0 6.8 0.5 0.0032

    Ref test for

    tests 52-55

    27 52 -1 6.8 0.5 6.08 15.88 0.0032 0.0083 159.38

    28 53 -2 6.8 0.5 11.28 35.2 0.0032 0.0143 346.88

    29 54 -3 6.8 0.5 14.05 46.23 0.0032 0.0170 431.25

    30 55 -3.5 6.8 0.5 1 4.92 52.26 0.0032 0.0198 518.75Unstable at

    PP F gain= -4

    4016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    40/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Time Response for PPF gain = 2.5 & damping

    ratio=0.5

    4116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    41/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Drop in Energy Level

    0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0- 1 0 0

    -8 0

    -6 0

    -4 0

    -2 0

    0

    2 0

    4 0P o w e r s p e c t r a l d e n s i ty C o m p a r is i o n p l o t (1 0 - 1 5 s e c ) f o r w i t h a n d w / o c o n t r o l: S t ro n g

    F r e q u en c y (H z )

    EnergylevelinDecibels

    w i t h c o n t r o l

    w i t h o u t c o n t ro l

    Drop of 51

    dB

    4216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    42/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Inferences With lower values of damping ratio, the system becomes unstable at lower

    gains. Higher values of damping ratio (0.5) yields a better control of damping ratio

    of 1176.67 percentage.

    At higher values of damping ratio we get a broader range for control

    operation. Lower frequencies than the modal frequency produced lower percentage

    increase in damping ratio for controlled case as compared to the higherfrequencies.

    The highest increase in percentage of controlled damping ratio is effective for

    the modal frequency (1176.67).

    At lower frequencies the drop in energy level is lower as compared to highervalues and varies from 2 dB to 62.35 dB.

    4316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    43/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    SRF CONTROL OBJECTIVE Simulation and Modeling

    - Using Sinusoidal Input- Using Impulse Input

    Free Vibration of the Beam-Reference Test

    Controlled Response

    - Effect of the Damping Ratio

    - Changes in the Targeted Frequencies

    - Effect of SRF Gain Value

    Result Analysis

    4416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    44/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    BLOCK DIAGRAM OF SRF CONTROL

    +

    0)()(2)( 2 =++ ttt

    tc

    0)()(2)(

    2

    =++ ttt ccc

    2G

    Structure

    Compensator

    -

    4516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    45/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    SRF Phase Angle Plot

    = c

    2/

    Active Negative DampingActive Damping

    PhaseAngle

    -/2

    +/2

    Active Stiffness

    0

    4616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    46/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulation and Modeling using sinusoidal

    response : SRFPlant

    Compensator

    Compensator

    Plant

    4716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    47/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulated Time Response comparison

    using SRF Control

    4816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    48/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Simulation and Modeling for an impulse

    response: SRF Control

    4916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    49/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Bode Plot of the Closed Loop System for

    the SRF Simulation

    5016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    50/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Root Locus Plot of the Open Loop System

    for the SRF Simulation

    New pole Locations

    5116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    51/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Real Time Control Using SRF

    5216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    52/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Target Frequencies 8, 9 ,10 &11 Hz andControlled damping ratio evaluated (Experiment)SR F C O N T R O L D A T A A N A LYSIS D A T A

    S

    N o.

    TEST

    N OSR F G A I N F R E Q Z E T A

    E N E R G Y

    D R O P ' D B '5-10 sec

    E N E RG Y

    D R O P ' D B '10-15 sec

    Z E T A

    U N C O N T

    Z E T A

    C O N T

    Percentage

    Increase in

    Zeta for cont case

    R E M A R K S

    1 30 0 8 0 .5 2 4 .4 0 .0031 Ref tes t for tes ts 31-35

    2 31 -0 .01 8 0 .5 3 .96 9 .5 0 .0031 0 .0101 165 .79

    3 32 -0 .02 8 0 .5 5 .9 15 .08 0 .0031 0 .0110 189 .47

    4 33 -0 .03 8 0 .5 7 .63 20 .266 0 .0031 0 .0116 205 .26

    5 34 -0 .04 8 0 .5 9 .17 25 .45 0 .0031 0 .0119 213 .16

    6 35 -0 .05 8 0 .5 10 .44 30 .21 0 .0031 0 .0121 218 .42

    7 36 0 9 0 .5 11.46 24.6 0 .0031 Ref tes t for tes ts 37-41

    8 37 -0 .01 9 0 .5 11 .55 25 .76 0 .0031 0 .0142 330 .30

    9 38 -0 .02 9 0 .5 15 .10 29 .50 0 .0031 0 .0149 351 .52

    10 39 -0 .03 9 0 .5 17 .50 30 .30 0 .0031 0 .0153 363 .64

    11 40 -0 .04 9 0 .5 20 .26 30 .16 0 .0031 0 .0157 375 .76

    12 41 -0 .05 9 0 .5 21 .56 29 .93 0 .0031 0 .0158 378 .79

    13 42 0 10 0.5 11.37 34.43 0.0031 Ref tes t for tes ts 43-45

    14 43 -0 .01 10 0 .5 11 .16 27 .84 0 .0031 0 .0144 362 .16

    15 44 -0 .02 10 0 .5 15 .00 34 .50 0 .0031 0 .0174 461 .29

    16 45 -0 .03 10 0 .5 17 .38 33 .26 0 .0031 0 .0213 587 .10

    17 46 0 11 0.5 9 .18 26.32 0.0031 Ref tes t for tes ts 47-48

    18 47 -0 .01 11 0 .5 12 .27 37 .38 0 .0031 0 .0215 465 .79

    19 48 -0 .02 11 0 .5 13 .9 44 .46 0 .0031 0 .0204 436 .84

    5316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    53/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Time Response Curve for SRF Control: Strong( Experimental )

    5416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    54/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Drop in Energy Levels SRF: Strong( Experimental )

    0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0-8 0

    -6 0

    -4 0

    -2 0

    0

    2 0

    4 0P o w e r s p e c t ra l d e n s i t y C o m p a r i s i o n p lo t (1 0 - 1 5 s e c ) fo r w it h a n d w / o c o n t ro l : S t r o n g

    F r e qu e n c y (H z )

    EnergylevelinDecibels

    w i t h c o n t r o l

    w i t h o u t c o n t r o l

    5516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    55/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    PHASE LEAD COMPENSATOR

    Gc(S) GP(S)C(S)(S)

    5616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    56/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Lead Compensator for the I-beam

    (Root Locus Approach)

    Lead compensator designed for first dominant mode :7.62 Hz.

    Transfer function =

    Block Diagram of Lead Compensator

    22562831.0

    2382 ++ ss

    )(

    )(

    ps

    zsK

    c ++

    PlantLow Pass

    Filter

    Com ensator

    Continued..

    5716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    57/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Lead Compensator for the I-beam

    (Root Locus Approach)

    - 4 . 4 + 5 4 . 8 2 i

    - 9 5 . 6 1 - 3 1 . 6 9 0 , 0

    - 4 . 4 + 5 4 . 8 2 i

    - 9 5 . 6 1 - 3 1 . 6 9 0 , 0

    location of pole and zero for lead compensatorPole Zero

    Compensator = 6.33

    +

    +

    61.95

    69.31

    s

    s

    Transfer function =005157.2228389.95

    004778.4150823 esss

    es

    ++++

    5816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    58/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Root Locus Plot of lead compensator

    (Simulation)Root Locus

    Real Axis

    ImagAxis

    -90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    400

    350

    300

    250

    200

    150

    100

    50

    350

    300

    250

    200

    150

    100

    50

    0.6

    0.36

    0.230.17 0.115 0.08 0.05 0.025

    0.6

    0.36

    0.230.17 0.115 0.08 0.05 0.025 Broken: Uncompensated

    Solid: Compensated

    Dominant new Poles

    5916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    59/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Bode Plot comparison between Plant and System(Root Locus Approach- simulation )

    6016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    60/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Impulse response of the Lead Compensator(Simulation)

    6116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    61/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Block Diagram of lead compensator

    based on Root Locus Approach

    6216. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    62/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    PSD Plot Comparison: Strong

    (Root Locus Approach-Experimental)

    0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0-8 0

    -7 0

    -6 0

    -5 0

    -4 0

    -3 0

    -2 0

    -1 0

    0

    1 0

    2 0P o w e r s p e c t ra l d e n s i t y C o m p a r is i o n p l o t (1 0 - 1 5 s e c ) fo r w i th a n d w / o c o n t ro l : S t ro n g

    F r e q u e n c y ( H z )

    Energyleve

    linDecibels

    w i t h c o n t r o l

    w i t h o u t c o n t ro l

    6316. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    63/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Time Response Curve for Strong direction

    (Root Locus Approach-Experimental)

    6416. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    64/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Lead Compensator Gain Comparison(Root Locus Approach)

    ANALYSIS DATA

    Test

    No

    Lead

    Compen-

    sator

    Gain

    Energy

    drop'dB'

    5-10 sec

    Strong

    Energy

    Drop'dB'

    10-15 sec

    Strong

    dB' drop

    10-15 sec

    overall

    Zeta

    uncont

    zeta cont

    intial

    response

    Zeta

    cont

    %

    increase

    initial

    %

    Increase

    Zeta for

    controlled

    1 0 2.00 4.40 0.0030 Reference Tes t

    2 4 3.96 9.50 18.95 0.0030 0.0073 0.0068 143.3333 126.67

    3 6 5.90 15.08 23.45 0.0030 0.0079 0.0073 163.3333 143.33

    4 8 7.63 20.27 25.55 0.0030 0.0081 0.0076 170.0000 153.33

    5 10 9.17 25.45 26.70 0.0030 0.0082 0.0078 173.3333 160.00

    6 12 10.44 30.21 27.80 0.0030 0.0083 0.0081 176.6667 170.00

    7 14 11.46 24.60 28.21 0.0030 0.0082 0.0081 173.3333 170.00

    8 16 13.55 39.91 27.68 0.0030 0.0081 0.0082 170.0000 173.33

    6516. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    65/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Lead Compensator for the I-Beam(Bode Plot Approach)

    6616. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    66/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Bode Plot comparison between Plant and System(Bode Plot Approach-simulated)

    6716. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

    Ti R C i St

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    67/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Time Response Comparisons: Strong

    (Experimental)

    6816. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    68/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    PSD Plot Comparisons: Strong

    0 10 20 30 40 50 60 70 80 90 100-120

    -100

    -80

    -60

    -40

    -20

    0

    20Power spectral density Comparision plot (10-15sec) for with and w/o control: Strong

    Frequency (Hz)

    Energylevel

    inDecibels

    with control

    without control

    6916. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    69/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Movie

    7016. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    70/71

    Instructor: Dr. SongDept. of Mechanical Engineering

    Frequency Response Comparison of the four Compensators

    100

    101

    102

    103

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    Magnitude(dB)

    Without Control

    With Lead Control

    With Pole Placement Control

    With PPF Control

    With SRF Control

    Bode Diagram

    Frequency (rad/sec)

    7116. Active Vibration Control Using Piezoelectric Materials - Classical Control Methods

  • 7/28/2019 16.Part1.ActiveVibrationControlPiezo

    71/71

    5. CONCLUSION

    Experimental results have shown greatpotential for active control.

    PPF, SRF and Lead Compensatormethods were very successful

    1176% increase in damping in PPF

    control