13_time response.pdf

11
Time Response Robert Stengel, Aircraft Flight Dynamics MAE 331, 2010 Time-domain analysis Transient response to initial conditions and inputs Steady-state (equilibrium) response Continuous- and discrete-time models Phase-plane plots Response to sinusoidal input Copyright 2010 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE331.html http://www. princeton . edu/~stengel/FlightDynamics .html Linear, Time-Invariant (LTI) Longitudinal Model ! ! V (t ) ! ! " (t ) ! ! q(t ) ! ! #(t ) $ % & & & & & ( ) ) ) ) ) = *D V *g *D q *D # L V V N 0 L q V N L # V N M V 0 M q M # * L V V N 0 1 * L # V N $ % & & & & & & & & ( ) ) ) ) ) ) ) ) !V (t ) !" (t ) !q(t ) !#(t ) $ % & & & & & ( ) ) ) ) ) + 0 T +T 0 0 0 L +F / V N M +E 0 0 0 0 *L +F / V N $ % & & & & & ( ) ) ) ) ) !+ E(t ) !+T (t ) !+ F(t ) $ % & & & ( ) ) ) Steady, level flight Simplified control effects Neglect disturbance effects What can we do with it? Integrate equations to obtain time histories of initial condition, control, and disturbance effects Determine modes of motion Examine steady-state conditions Identify effects of parameter variations Define frequency response Gain insights about system dynamics Linear, Time-Invariant System Model General model contains Dynamic equation (ordinary differential equation) Output equation (algebraic transformation) ! ˙ x ( t ) = F!x( t ) + G!u( t ) + L!w( t ), !x( t o ) given !y ( t ) = H x !x ( t ) + H u !u( t ) + H w !w( t ) State and output dimensions need not be the same dim !x(t ) [ ] = n " 1 ( ) dim !y(t ) [ ] = r " 1 ( ) System Response to Inputs and Initial Conditions Solution of the linear, time-invariant (LTI) dynamic model ! ! x(t ) = F!x(t ) + G!u(t ) + L!w(t ), !x(t o ) given !x(t ) = !x(t o ) + F!x( " ) + G!u( " ) + L!w( " ) [ ] t o t # d" ... has two parts Unforced (homogeneous) response to initial conditions Forced response to control and disturbance inputs

Upload: anonymous-ry7aem

Post on 09-Nov-2015

18 views

Category:

Documents


1 download

TRANSCRIPT

  • Time ResponseRobert Stengel, Aircraft Flight Dynamics

    MAE 331, 2010

    Time-domain analysis

    Transient response to initial conditions and inputs

    Steady-state (equilibrium) response

    Continuous- and discrete-time models

    Phase-plane plots

    Response to sinusoidal input

    Copyright 2010 by Robert Stengel. All rights reserved. For educational use only.http://www.princeton.edu/~stengel/MAE331.html

    http://www.princeton.edu/~stengel/FlightDynamics.html

    Linear, Time-Invariant (LTI)Longitudinal Model

    ! !V (t)

    ! !" (t)

    ! !q(t)

    ! !#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    =

    *DV

    *g *Dq

    *D#

    LV

    VN

    0Lq

    VN

    L#VN

    MV

    0 Mq

    M#

    * LVVN

    0 1 * L#VN

    $

    %

    &&&&&&&&

    '

    (

    ))))))))

    !V (t)

    !" (t)

    !q(t)

    !#(t)

    $

    %

    &&&&&

    '

    (

    )))))

    +

    0 T+T 0

    0 0 L+F /VN

    M+E 0 0

    0 0 *L+F /VN

    $

    %

    &&&&&

    '

    (

    )))))

    !+E(t)

    !+T (t)

    !+F(t)

    $

    %

    &&&

    '

    (

    )))

    Steady, level flight

    Simplified control effects

    Neglect disturbance effects

    What can we do with it? Integrate equations to obtain time histories of initial condition, control, and

    disturbance effects

    Determine modes of motion

    Examine steady-state conditions

    Identify effects of parameter variations

    Define frequency response

    Gain insights aboutsystem dynamics

    Linear, Time-Invariant

    System Model

    General model contains Dynamic equation (ordinary differential equation)

    Output equation (algebraic transformation)

    ! x (t) = F!x(t) + G!u(t) + L!w(t), !x(to) given

    !y(t) = Hx!x(t) + Hu!u(t) + Hw!w(t)

    State and output dimensions need not be the same

    dim !x(t)[ ] = n "1( )

    dim !y(t)[ ] = r "1( )

    System Response to Inputsand Initial Conditions

    Solution of the linear, time-invariant (LTI) dynamic model

    !!x(t) = F!x(t) +G!u(t) + L!w(t), !x(to ) given

    !x(t) = !x(to ) + F!x(" ) +G!u(" ) + L!w(" )[ ]to

    t

    # d"

    ... has two parts

    Unforced (homogeneous) response to initial conditions

    Forced response to control and disturbance inputs

  • Response toInitial Conditions

    Unforced Response

    to Initial Conditions

    The state transition matrix, !, propagates thestate from to to t by a single multiplication

    !x(t) = !x(to) + F!x(" )[ ]

    to

    t

    # d" = eF t$ to( )!x(t

    o) = % t $ t

    o( )!x(to )

    eF t! to( ) = Matrix Exponential

    = I + F t ! to( ) +1

    2!F t ! to( )"# $%

    2

    +1

    3!F t ! to( )"# $%

    3

    + ...

    = & t ! to( ) = State Transition Matrix

    Neglecting forcing functions

    Initial-Condition Response

    via State Transition

    ! = I + F "t( ) +1

    2!F "t( )#$ %&

    2

    +1

    3!F "t( )#$ %&

    3

    + ...

    !x(t1) = " t

    1# t

    o( )!x(to )

    !x(t2) = " t

    2# t

    1( )!x(t1)

    !x(t3) = " t

    3# t

    2( )!x(t2 )

    If (tk+1 tk) = !t = constant,state transition matrix isconstant

    !x(t1) = " #t( )!x(t

    o) = "!x(t

    o)

    !x(t2) = "!x(t

    1) = "

    2!x(t

    o)

    !x(t3) = "!x(t

    2) = "

    3!x(t

    o)

    Propagation of "x

    Discrete-Time Dynamic Model

    !x(tk+1) = !x(t

    k) + F!x(" ) +G!u(" ) + L!w(" )[ ]

    tk

    tk+1

    # d"

    !x(tk+1) = " #t( )!x(tk ) +" #t( ) e

    $F % $ tk( )&'

    ()

    tk

    tk+1

    * d% G!u(tk ) + L!w(tk )[ ]

    = "!x(tk) + +!u(t

    k) + ,!w(t

    k)

    Response to continuous controls and disturbances

    Response to piecewise-constant controls and disturbances

    ! = eF" t

    # = eF" t$ I( )F$1G

    % = eF" t$ I( )F$1L

    Ordinary Difference Equation

  • Control- and Disturbance-Effect

    Matrices

    ! = eF" t # I( )F#1G

    = I #1

    2!F"t +

    1

    3!F2"t 2 #

    1

    4!F3"t 3 + ...$

    %&'()G"t

    * = eF" t # I( )F#1L

    = I #1

    2!F"t +

    1

    3!F2"t 2 #

    1

    4!F3"t 3 + ...$

    %&'()L"t

    !x(tk) = "!x(t

    k#1) + $!u(t

    k#1) + %!w(t

    k#1)

    As !t becomes very small

    !" t#0

    $ #$$ I + F"t( )

    %" t#0

    $ #$$ G"t

    &" t#0

    $ #$$ L"t

    Discrete-Time Response to Inputs

    !x(t1) = "!x(t

    o) + #!u(t

    o) + $!w(t

    o)

    !x(t2) = "!x(t

    1) + #!u(t

    1) + $!w(t

    1)

    !x(t3) = "!x(t

    2) + #!u(t

    2) + $!w(t

    2)

    !

    Propagation of "x, with constant !, #, and $

    !t = tk+1

    " tk

    Continuous- and Discrete-Time

    Short-Period System Matrices

    !t = 0.1 s

    !t = 0.5 s

    F =!1.2794 !7.9856

    1 !1.2709

    "

    #$

    %

    &'

    G =!9.069

    0

    "

    #$

    %

    &'

    L =!7.9856

    !1.2709

    "

    #$

    %

    &'

    ! =0.845 "0.694

    0.0869 0.846

    #

    $%

    &

    '(

    ) ="0.84

    "0.0414

    #

    $%

    &

    '(

    * ="0.694

    "0.154

    #

    $%

    &

    '(

    ! =0.0823 "1.475

    0.185 0.0839

    #

    $%

    &

    '(

    ) ="2.492

    "0.643

    #

    $%

    &

    '(

    * ="1.475

    "0.916

    #

    $%

    &

    '(

    Continuous-time(analog) system

    Discrete-time (digital) system

    !t has a large effecton the digital model

    !t = tk+1

    " tk

    ! =0.987 "0.079

    0.01 0.987

    #

    $%

    &

    '(

    ) ="0.09

    "0.0004

    #

    $%

    &

    '(

    * ="0.079

    "0.013

    #

    $%

    &

    '(

    !t = 0.01 s

    Example: Aerodynamic

    Angle, Linear Velocity, and

    Angular Rate Perturbations

    Learjet 23

    MN = 0.3, hN = 3,050 m

    VN = 98.4 m/s

    !" ! !wVN

    ; !" = 1# !w = 0.01745 $ 98.4 = 1.7m s

    !% ! !vVN

    ; !% = 1# !v = 0.01745 $ 98.4 = 1.7m s

    !p = 1 / s; !wwingtip = !pb2

    "#

    $% = 0.01745 & 5.25 = 0.09m s

    !q = 1 / s; !wnose = !q xnose ' xcm[ ] = 0.01745 & 6.4 = 0.11m s

    !r = 1 / s; !vnose = !r xnose ' xcm[ ] = 0.01745 & 6.4 = 0.11m s

    Aerodynamic angle and linear velocity perturbations

    Angular rate and linear velocity perturbations

  • Example: Continuous- andDiscrete-Time Models

    ! !q

    ! !"

    #

    $%%

    &

    '((=

    )1.3 )8

    1 )1.3

    #

    $%

    &

    '(

    !q

    !"

    #

    $%%

    &

    '((+

    )9.1

    0

    #

    $%

    &

    '(!*E

    !!p

    ! !"

    #

    $%%

    &

    '(() *1.2 0

    1 0

    #

    $%

    &

    '(

    !p

    !"

    #

    $%%

    &

    '((+

    2.3

    0

    #

    $%

    &

    '(!+A

    !!r

    ! !"

    #

    $%%

    &

    '(() *0.11 1.9

    *1 *0.16

    #

    $%

    &

    '(

    !r!"

    #

    $%%

    &

    '((+

    *1.10

    #

    $%

    &

    '(!+R

    Note individual acceleration and difference sensitivities to state and control perturbations

    Short Period

    Roll-Spiral

    DutchRoll

    !qk+1

    !" k+1

    #

    $

    %%

    &

    '

    ((=

    0.85 )0.7

    0.09 0.85

    #

    $%

    &

    '(

    !qk

    !" k

    #

    $

    %%

    &

    '

    ((+

    )0.84

    )0.04

    #

    $%

    &

    '(!*Ek

    !pk+1!"k+1

    #

    $%%

    &

    '(() 0.89 0

    0.09 1

    #

    $%

    &

    '(

    !pk!"k

    #

    $%%

    &

    '((+

    0.24

    *0.01

    #

    $%

    &

    '(!+Ak

    !rk+1

    !"k+1

    #

    $%%

    &

    '(() 0.98 0.19

    *0.1 0.97

    #

    $%

    &

    '(

    !rk

    !"k

    #

    $%%

    &

    '((+

    *0.110.01

    #

    $%

    &

    '(!+Rk

    Differential Equations Produce

    State Rates of Change

    Difference Equations

    Produce State Increments

    Learjet 23

    MN = 0.3, hN = 3,050 m

    VN = 98.4 m/s !t = 0.1sec

    Initial-Condition Response

    Doubling the initial condition doubles the output

    !!x1

    !!x2

    "

    #

    $$

    %

    &

    ''=

    (1.2794 (7.9856

    1 (1.2709

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    (9.069

    0

    "

    #$

    %

    &'!)E

    !y1

    !y2

    "

    #

    $$

    %

    &

    ''=

    1 0

    0 1

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    0

    0

    "

    #$

    %

    &'!)E

    % Short-Period Linear Model - Initial Condition

    F = [-1.2794 -7.9856;1. -1.2709];

    G = [-9.069;0];

    Hx = [1 0;0 1];

    sys = ss(F, G, Hx,0);

    xo = [1;0];

    [y1,t1,x1] = initial(sys, xo);

    xo = [2;0];

    [y2,t2,x2] = initial(sys, xo);

    plot(t1,y1,t2,y2), grid

    figure

    xo = [0;1];

    initial(sys, xo), grid

    Angle of AttackInitial Condition

    Pitch RateInitial Condition

    Phase Plane Plots

    State (Phase)-Plane Plots

    Cross-plot of one component againstanother

    Time or frequency not shown explicitly

    % 2nd-Order Model - Initial Condition Response

    clear

    z = 0.1; % Damping ratio

    wn = 6.28; % Natural frequency, rad/s

    F = [0 1;-wn^2 -2*z*wn];

    G = [1 -1;0 2];

    Hx = [1 0;0 1];

    sys = ss(F, G, Hx,0);

    t = [0:0.01:10];

    xo = [1;0];

    [y1,t1,x1] = initial(sys, xo, t);

    plot(t1,y1)

    grid on

    figure

    plot(y1(:,1),y1(:,2))

    grid on

    !!x1

    !!x2

    "

    #$$

    %

    &''(

    0 1

    )*n

    2 )2+*n

    "

    #$$

    %

    &''

    !x1

    !x2

    "

    #$$

    %

    &''+

    1 )10 2

    "

    #$

    %

    &'

    !u1

    !u2

    "

    #$$

    %

    &''

  • Dynamic Stability Changesthe State-Plane Spiral

    Damping ratio = 0.1 Damping ratio = 0.3 Damping ratio = 0.1

    Superposition ofLinear Responses

    Step Response

    Stability, speed of response,and damping areindependent of the initialcondition or input

    Doubling the inputdoubles the output

    !!x1

    !!x2

    "

    #

    $$

    %

    &

    ''=

    (1.2794 (7.9856

    1 (1.2709

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    (9.069

    0

    "

    #$

    %

    &'!)E

    !y1

    !y2

    "

    #

    $$

    %

    &

    ''=

    1 0

    0 1

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    0

    0

    "

    #$

    %

    &'!)E

    % Short-Period Linear Model - Step

    F = [-1.2794 -7.9856;1. -1.2709];

    G = [-9.069;0];

    Hx = [1 0;0 1];

    sys = ss(F, -G, Hx,0); % (-1)*Step

    sys2 = ss(F, -2*G, Hx,0); % (-1)*Step

    % Step response

    step(sys, sys2), grid

    !"E t( ) =0, t < 0

    #1, t $ 0

    %&'

    ('

    Superposition of Linear Responses

    Stability, speed of response, and damping areindependent of the initial condition or input

    % Short-Period Linear Model - Superposition

    F = [-1.2794 -7.9856;1. -1.2709];

    G = [-9.069;0];

    Hx = [1 0;0 1];

    sys = ss(F, -G, Hx,0); % (-1)*Step

    xo = [1; 0];

    t = [0:0.2:20];

    u = ones(1,length(t));

    [y1,t1,x1] = lsim(sys,u,t,xo);

    [y2,t2,x2] = lsim(sys,u,t);

    u = zeros(1,length(t));

    [y3,t3,x3] = lsim(sys,u,t,xo);

    plot(t1,y1,t2,y2,t3,y3), grid

    !!x1

    !!x2

    "

    #

    $$

    %

    &

    ''=

    (1.2794 (7.9856

    1 (1.2709

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    (9.069

    0

    "

    #$

    %

    &'!)E

    !y1

    !y2

    "

    #

    $$

    %

    &

    ''=

    1 0

    0 1

    "

    #$

    %

    &'

    !x1

    !x2

    "

    #

    $$

    %

    &

    ''+

    0

    0

    "

    #$

    %

    &'!)E

  • Example: Continuous- andDiscrete-Time LTILongitudinal Models

    Short Period

    Phugoid

    ! !V! !"

    #

    $%%

    &

    '(() *0.02 *9.8

    0.02 0

    #

    $%

    &

    '(

    !V!"

    #

    $%%

    &

    '((+

    4.7

    0

    #

    $%

    &

    '(!+T

    ! !q

    ! !"

    #

    $%%

    &

    '((=

    )1.3 )8

    1 )1.3

    #

    $%

    &

    '(

    !q

    !"

    #

    $%%

    &

    '((+

    )9.1

    0

    #

    $%

    &

    '(!*E

    !qk+1

    !" k+1

    #

    $

    %%

    &

    '

    ((=

    0.85 )0.7

    0.09 0.85

    #

    $%

    &

    '(

    !qk

    !" k

    #

    $

    %%

    &

    '

    ((+

    )0.84

    )0.04

    #

    $%

    &

    '(!*Ek

    !Vk+1

    !"k+1

    #

    $%%

    &

    '((=

    1 )0.980.002 1

    #

    $%

    &

    '(

    !Vk

    !"k

    #

    $%%

    &

    '((+

    0.47

    0.0005

    #

    $%

    &

    '(!*Tk

    Learjet 23MN = 0.3, hN = 3,050 mVN = 98.4 m/s

    Differential Equations Produce

    State Rates of Change

    Difference Equations

    Produce State Increments

    !t = 0.1sec

    Example: Superposition ofContinuous- and Discrete-Time

    Longitudinal Models

    Phugoid and Short Period

    ! !V! !"

    ! !q

    ! !#

    $

    %

    &&&&&

    '

    (

    )))))

    =

    *0.02 *9.8 0 00.02 0 0 1.3

    0 0 *1.3 *8*0.002 0 1 *1.3

    $

    %

    &&&&

    '

    (

    ))))

    !V!"

    !q

    !#

    $

    %

    &&&&&

    '

    (

    )))))

    +

    4.7 0

    0 0

    0 *9.10 0

    $

    %

    &&&&

    '

    (

    ))))

    !+T!+E

    $

    %&

    '

    ()

    !Vk+1!" k+1!qk+1!# k+1

    $

    %

    &&&&&

    '

    (

    )))))

    =

    1 *0.98 *0.002 *0.060.002 1 0.006 0.12

    0.0001 0 0.84 *0.69*0.0002 0.0001 0.09 0.84

    $

    %

    &&&&

    '

    (

    ))))

    !Vk!" k!qk!# k

    $

    %

    &&&&&

    '

    (

    )))))

    +

    0.47 0.0005

    0.0005 *0.0020 *0.840 *0.04

    $

    %

    &&&&

    '

    (

    ))))

    !+Tk!+Ek

    $

    %&&

    '

    ())

    Learjet 23MN = 0.3, hN = 3,050 mVN = 98.4 m/s

    Differential EquationsProduce State Rates ofChange

    DifferenceEquations ProduceState Increments

    !t = 0.1sec

    Equilibrium Response

    Equilibrium Response

    !!x(t) = F!x(t) +G!u(t) + L!w(t)

    0 = F!x(t) +G!u(t) + L!w(t)

    !x* = "F"1G!u *+L!w *( )

    Dynamic equation

    At equilibrium, the state is unchanging

    Denoting constant values by (.)*

  • Steady-State Condition If the system is also stable, an equilibrium point

    is a steady-state point, i.e., Small disturbances decay to the equilibrium condition

    F =f11

    f12

    f21

    f22

    !

    "

    ##

    $

    %

    &&; G =

    g1

    g2

    !

    "

    ##

    $

    %

    &&; L =

    l1

    l2

    !

    "

    ##

    $

    %

    &&

    !x1*

    !x2*

    "

    #$$

    %

    &''= (

    f22

    ( f12

    ( f21

    f11

    "

    #$$

    %

    &''

    f11f22

    ( f12f21( )

    g1

    g2

    )

    *++

    ,

    -..!u *+

    l1

    l2

    )

    *++

    ,

    -..!w *

    "

    #$$

    %

    &''

    2nd-order example

    sI ! F = " s( ) = s2 + f11+ f

    22( )s + f11 f22 ! f12 f21( )

    = s ! #1( ) s ! #2( ) = 0

    Re #i( ) < 0

    System Matrices

    Equilibrium Response

    Requirement forStability

    Equilibrium Response of

    Approximate Phugoid Model

    !xP* = "F

    P

    "1G

    P!u

    P*+L

    P!w

    P*( )

    !V *

    !" *#

    $%%

    &

    '((= )

    0VN

    LV

    )1g

    VNDV

    gLV

    #

    $

    %%%%%

    &

    '

    (((((

    T*T

    L*T

    VN

    #

    $

    %%%

    &

    '

    (((!*T * +

    DV

    )LV

    VN

    #

    $

    %%%

    &

    '

    (((!V

    W

    *

    +

    ,--

    .--

    /

    0--

    1--

    Equilibrium state with constant thrust and wind perturbations

    Steady-State Response of

    Approximate Phugoid Model

    !V * = "L#T

    LV

    !#T * + !VW

    *

    !$ * =1

    gT#T + L#T

    DV

    LV

    %

    &'(

    )*!#T *

    With L!T ~ 0, steady-state velocity depends only on thehorizontal wind

    Constant thrust produces steady climb rate

    Corresponding step response, with L!T = 0

    Equilibrium Response ofApproximate Short-Period Model

    !xSP* = "F

    SP

    "1G

    SP!u

    SP*+L

    SP!w

    SP*( )

    !q*

    !" *#

    $%%

    &

    '((= )

    L"

    VN

    M"

    1 )Mq

    #

    $

    %%%

    &

    '

    (((

    L"

    VN

    Mq+ M"

    *+,

    -./

    M0E

    )L0E

    VN

    #

    $

    %%%

    &

    '

    (((!0E* )

    M"

    )L"VN

    #

    $

    %%%

    &

    '

    (((!"

    W

    *

    1

    233

    433

    5

    633

    733

    Equilibrium state with constant elevator and wind perturbations

  • Steady-State Response ofApproximate Short-Period Model

    Steady pitch rate and angle of attack are not zero

    Vertical wind reorients angle of attack

    !q* = "

    L#

    VN

    M$E%&'

    ()*

    L#

    VN

    Mq+ M#

    %&'

    ()*

    !$E*

    !# * = "M$E( )

    L#

    VN

    Mq+ M#

    %&'

    ()*

    !$E + !#W

    *

    with L!E = 0

    Scalar Frequency Response

    Speed Control ofDirect-Current Motor

    u(t) = Ce(t)

    where

    e(t) = yc (t) ! y(t)

    Control Law (C = Control Gain)

    Angular Rate

    Characteristics

    of the Motor

    Simplified Dynamic Model

    Rotary inertia, J, is the sum of motor and load

    inertias

    Internal damping neglected

    Output speed, y(t), rad/s, is an integral of thecontrol input, u(t)

    Motor control torque is proportional to u(t)

    Desired speed, yc(t), rad/s, is constant

  • Model of Dynamics

    and Speed Control

    Dynamic equation

    y(t) =1

    Ju(t)dt

    0

    t

    ! =C

    Je(t)dt

    0

    t

    ! =C

    Jyc (t) " y(t)[ ]dt

    0

    t

    !

    dy(t)

    dt=u(t)

    J=Ce(t)

    J=C

    Jyc (t) ! y(t)[ ], y 0( ) given

    Integral of the equation, with y(0) = 0

    Direct integration of yc(t)

    Negative feedback of y(t)

    Step Response of

    Speed Controller

    y(t) = yc 1! e!

    C

    J

    "#$

    %&'t(

    )**

    +

    ,--= yc 1! e

    .t() +, = yc 1! e! t /(

    )*+,-

    where " = C/J = eigenvalue or

    root of the system (rad/s)

    # = J/C = time constant ofthe response (sec)

    Step input :

    yC (t) =0, t < 0

    1, t ! 0

    "#$

    %$

    Solution of the integral,

    with step commandyct( ) =

    0, t < 0

    1, t ! 0

    "#$

    %$

    Angle Control of a DC Motor

    Closed-loop dynamic equation, with y(t) = I2 x(t)

    u(t) = c1yc (t) ! y1(t)[ ]! c2y2(t)

    !x1(t)

    !x2(t)

    !

    "

    ##

    $

    %

    &&=

    0 1

    'c1/ J 'c

    2/ J

    !

    "##

    $

    %&&

    x1(t)

    x2(t)

    !

    "

    ##

    $

    %

    &&+

    0

    c1/ J

    !

    "##

    $

    %&&yc

    Control law with angle and angular rate feedback

    !n= c

    1J ; " = c

    2J( ) 2!n

    c1 /J = 1

    c2 /J = 0, 1.414, 2.828% Step Response of Damped

    Angle Control

    F1 = [0 1;-1 0];

    G1 = [0;1];

    F1a = [0 1;-1 -1.414]; F1b = [0 1;-1 -2.828];

    Hx = [1 0;0 1];

    Sys1 = ss(F1,G1,Hx,0); Sys2 = ss(F1a,G1,Hx,0);

    Sys3 = ss(F1b,G1,Hx,0);

    step(Sys1,Sys2,Sys3)

    Step Response of Angle Controller,

    with Angle and Rate Feedback

    Single natural frequency, three damping ratios

  • Angle Response to a Sinusoidal

    Angle Command

    Amplitude Ratio (AR) =ypeak

    yC peak

    Phase Angle = !360"tpeak

    Period, deg

    Output wavelags behind theinput wave

    Input and outputamplitudesdifferent

    Effect of Input Frequency on Output

    Amplitude and Phase Angle

    With low inputfrequency, inputand outputamplitudes areabout the same

    Lag of angleoutput oscillation,compared to input,is small

    Rate oscillationleads angleoscillation by ~90deg

    yc(t) = sin t / 6.28( ), deg !

    n= 1 rad / s

    " = 0.707

    At Higher Input Frequency, Phase

    Angle Lag Increasesyc(t) = sin t( ), deg

    At Even Higher Frequency,

    Amplitude Ratio Decreases and

    Phase Lag Increasesyc(t) = sin 6.28t( ), deg

  • Angle and RateResponse of a

    DC Motor overWide Input-FrequencyRange

    ! Long-term responseof a dynamic systemto sinusoidal inputsover a range offrequencies

    ! Determineexperimentally fromtime response or

    ! Compute the Bodeplot of the system!stransfer functions(TBD)

    Very low damping

    Moderate damping

    High damping

    Next Time:Root Locus Analysis