13-02-20 pile buck interview

68
Geotechnical Field Investigation Methods

Upload: enrique-lujan

Post on 18-Dec-2015

219 views

Category:

Documents


0 download

DESCRIPTION

Información de Geotecnia

TRANSCRIPT

  • Geotechnical Field Investigation Methods

  • Looking into the Ground

  • Trial pit, trench Disturbed sampling Undisturbed sampling Standard Penetration Test

    Soil Sampling

  • Trial Pits and Trenches

  • Screw Sampler Piston Sampler

  • Auger Sampling with SPT rig

  • Piston Sampler

  • 8

  • Field Investigation Methods

  • Standard Penetration Test (SPT) Cone Penetration Tests (CPT, CPTU) Pressuremeter Test (PMT) Dilatometer Test (DMT) Screw Plate - Plate Load Test (PLT) Vane Test (VST) Drilling Seismic tests

    Field Investigation Methods

  • Swedish Weight Sounding, 1920

  • Field Investigation Methods

  • Standard Penetration Test

  • SPT Adjustment Approach

    NCNN =1where CN = stress adjustment factor

    ' = effective overburden stress (t/ft2) N = SPT N-index (bl/ft) N1 = stress-adjusted N

    and

    20lg'lg1

    '20lg77.0

    =

    =NCPeck et al. (1974)

    =

    r

    vNC

    'log25.11Seed (1976)

    'r = a reference stress = 1 t/ft2 (100 KPa)

  • Friction Angle from SPT

  • CPT Test Equipment

  • Cone Penetration Test - CPT

  • CPT Point and Pore Pressure Cone

  • Comparison between CPT and SPT

    0,00

    0,25

    0,50

    0,75

    1,00

    1,25

    0,001 0,01 0,1 1

    PARTICLE SIZE, D50

    q c/ N

    Dry SandWet SandDry GravelRobertson & Campanella (1983)

  • Determining SPT Index

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.001 0.010 0.100 1.000

    Mean Particle Size (mm)

    qc/N

    (M

    Pa/B

    low

    s)

    Robertson et al. (1983)

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    0.00 0.50 1.00 1.50 2.00

    Mean Particle Size (mm)

    qc/N

    (M

    Pa/B

    low

    s)

    S A N DFine Medium Coarse

  • Results of CPTU Test

  • Soil Classification from CPT Robertson and Campanella,1986

  • EslamiFellenius Profiling Chart

  • 05

    10

    15

    20

    25

    30

    0 10 20 30Cone Stress, qt (MPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    30

    0 100 200

    Sleeve Friction (KPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    30

    0 100 200 300 400

    Pore Pressure (KPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    30

    0.0 1.0 2.0 3.0 4.0

    Friction Ratio (%)

    DEP

    TH (

    m)

    CLAY CLAYCLAY

    SILT SILT SILT

    SAND SAND SAND

    Interpretation of CPTU Sounding

  • ESLAMI-FELLENIUS CHART

    0.1

    1

    10

    100

    1 10 100 1,000

    Sleeve Friction (KPa)

    Con

    e St

    ress

    , qE

    (MPa

    )5

    1 2

    3

    4

    Eslami-Fellenius Chart of Data

  • Vibro-compaction of Soils - CPT

  • tqE =25where E25 = secant modulus for a stress equal to about 25 % of ultimate stress = an empirical coefficient qt = cone stress

    Soil Type Silt and sand 1.5

    Compact sand 2.0

    Dense sand 3.0

    Sand and gravel 4.0

    Determining E-Modulus CFEM, 1992

  • MttM Cqq =

    Massarsch, 1994

    Adjustment of Cone Resistance to Overburden Stress

  • 5.0

    =

    m

    rttM qq

    Massarsch, 1994

    Adjustment of Cone Resistance to Overburden Stress

    ( )321 0Kv

    m

    +=

  • Settlement Calculation Tangent Modulus Method

  • Stress Exponent Modulus Number

    31

  • 5.0)(r

    tMqam

    =

    where m = modulus number for tangent modulus

    a = an empirical modulus modifier,

    which depends on soil type

    qtM = stress-adjusted cone stress *)

    r = reference stress = 100 KPa

    Soil Type Modulus Modifier, a

    Soft clay 3 Firm clay 5 Silt, organic soft 7 Silt, loose 12 Silt, compact 15 Silt, dense 20 Sand, silty loose 20 Sand, loose 22 Sand, compact 28 Sand, dense 35 Gravel, loose 35 Gravel, dense 45

    *) Note, the adjustment requires an estimate of the overconsolidation ratio, OCR, and K0

    Massarsch and Fellenius, 2001

    Modulus Number, m from CPT

  • 05

    10

    15

    20

    25

    0 5 10Cone Stress, qt (MPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    0 10 20 30 40 50

    Sleeve Friction, fs (KPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    0 500 1,000 1,500

    Pore Pressure (KPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    0.0 0.5 1.0 1.5 2.0

    Friction Ratio, fR (%)

    DEP

    TH (

    m)

    FILL

    CLAYoverconsoli-dated due to building load

    SILT and SAND

    Results of CPTU

  • 05

    10

    15

    20

    25

    0 5 10 15 20Modulus Number, m)

    DEP

    TH (

    m)

    Oedometer test

    0

    5

    10

    15

    20

    25

    0 1 2 3 4 5Cone Stress, qt (MPa)

    DEP

    TH (

    m)

    qt filtered

    qt filtered and depth adjusted

    Determination of Modulus Number

  • 05

    10

    15

    20

    25

    0 1 2 3 4 5Cone Stress, qt (MPa)

    DEP

    TH (

    m)

    0

    5

    10

    15

    20

    25

    0 25 50 75 100Modulus Number, m)

    DEP

    TH (

    m)

    qt measured

    qt filtered

    qt filtered and depth adjusted

    0

    5

    10

    15

    20

    25

    0 5 10 15

    Exponent "a"

    From Oedometer Tests

    From Filtered CPTU Data

    Modulus Number, m from CPTU

  • 05

    10

    15

    20

    25

    30

    35

    40

    0 1 2 3 4 5Cone Stress, qt (MPa)D

    EPTH

    (m

    )0

    5

    10

    15

    20

    25

    30

    35

    40

    0 20 40 60 80 100Modulus Number, m)

    DEP

    TH (

    m)

    qt measured

    qt filtered

    qt filtered anddepth adjusted

    Massarsch and Fellenius, 2001

    Modulus Number, m from CPTU

  • Determining Undrained Shear Strength

    u = undrained shear strength qt = cone resistance corrected for pore water pressure on shoulder v = total overburden stress Nkt = a coefficient; 10 < Nkt < 20

    kt

    vtu Nq

    =

  • Determining Density Index (Relative Density)

    ID = density index CI = a coefficient; CI 0.41 KI = a coefficient; KI 2.75 qt = cone resistance corrected for pore

    water pressure on shoulder r = reference stress = 100 KPa v = effective overburden stress

    Ivr

    tID K

    qCI +='

    ln

  • Relative Density from CPT Robertson, 1986

  • Density Index from CPT Baldi et al. , 1986

  • Friction Angle from CPT

    = effective friction angle C = a coefficient; C = 0.37 (= 1/2.68) K = a coefficient; K = 0.1 q t = cone resistance corrected for pore

    water pressure on shoulder v = effective overburden stress

    KqCtg

    v

    t +='

    lg'

  • Friction Angle from CPT

  • Interpretation of CPT and SPT

  • Dilatometer

  • Field Vane Test

  • Pressuremeter Test, PMT

  • Interpretation of PMT

  • Screw Plate Test

  • Plate Load Test

  • Soil-Rock Drilling

  • Rock Drilling

  • Rock Quality Designation, RQD

  • Seismic Refraction Test

  • SASW Falling Weight Test

    54

    !

  • ISSMGE TC 10 - SCPT Procedure to Measure Shear Wave Velocity

  • Seismic Cross-hole Test

  • Seismic Diagonal Testing

    58

  • Seismic Down-hole Test

  • Determination of Wave Travel Time

  • Surface Wave Measurement

    61

    Medium dense sand

    GV

    P-wave: measurement in wave propagation direction S-wave: perpendicular to wave propagation direction

  • Shear Wave Propagation in Sand

    62

    0 0.05 0.1 0.15 0.2 0.25 2

    1.5

    1

    0.5

    0

    0.5

    Time,s

    t = 0,033 s

    Distance: 10 m

    Distance: 15 m

    Distance: 20 m

    Distance: 25 m

    Parti

    cle

    Velo

    city

    , mm

    /s

    f = 53 Hz

    v = 0,5 mm/s

  • Interpretation of Vibration Measurement

    63

    Deformation vs - Time

    Time

    Displacement Amplitude

    t

    s

  • Interpretation of Vibration Measurement

    64

    Deformation, s

    s = v / (2 f ) = 1,5 10-3 mm

    Shear Wave Speed, Cs

    Cs = L /t = 5 m / 0,033 sec = 151 m/s

    Shear Modulus, Gmax (small strain)

    Gmax = Cs2 = 41 MPa (Density, = 1,8 t/m3)

  • Interpretation of Vibration Measurement

    65

    Shear Strain,

    = v /CS = 0,5 x 10-3 / 151= 3,3 x 10- 4 %

    Shear Strain rate at 53 Hz

    = 0,0011 % / min

    Wave Length,

    = Cs / f = 151 / 53 = 2,85 m

  • Modulus Reductions Factor, R for Determination of Static Modulus

    66

  • Relationship Between G-, E- and M-Modulus

    Elastic (Youngs) Modulus:

    Confined Modulus:

    Assuming = 0.3:

  • Samband mellan vgfart och deformationsmodul

    68

    Mmax = CP2

    Gmax = CS2E = 2(1+ )G

    M = 2(1 )(1 2 )G

    M: Kompressionsmodul G: Skjuvmodul

    E: Youngs modul : Poissons tal

    : Totaldensiteten