11ibbc - 22.2 - zhu - tappi

26
2011 TAPPI IBBC Atlanta, GA, March 14-16, 2011 J.Y. Zhu US Forest Service, Forest Products Laboratory, Madison, WI US Forest Service, Forest Products Laboratory, Madison, WI

Upload: others

Post on 01-Jun-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 11IBBC - 22.2 - Zhu - TAPPI

2011 TAPPI IBBC

Atlanta, GA, March 14-16, 2011

J.Y. ZhuUS Forest Service, Forest Products Laboratory, Madison, WIUS Forest Service, Forest Products Laboratory, Madison, WI

Page 2: 11IBBC - 22.2 - Zhu - TAPPI

Why is so unique about Why is so unique about woody biomass ?woody biomass ?

Strong structure and large physical sizeStrong structure and large physical sizeHigh energy for size reduction High energy for size reduction 

Strong recalcitrance to deconstruction: Strong recalcitrance to deconstruction: Most pretreatment not efficient Most pretreatment not efficient Especially for softwoods Especially for softwoods 

Page 3: 11IBBC - 22.2 - Zhu - TAPPI

Supply of BiomassSupply of Biomass

~180 softwood~180 softwood

Page 4: 11IBBC - 22.2 - Zhu - TAPPI

Forest BiorefineryForest BiorefineryEnergy for wood size reduction

Remove recalcitrance - Pretreatment

Enzyme adsorption to lignocellulosenonproductive adsorption by lignin washing

Page 5: 11IBBC - 22.2 - Zhu - TAPPI

Feedstock ComparisonFeedstock Comparison

Cornstover

50 Wh/kg50 Wh/kg

500500‐‐1000 Wh/kg1000 Wh/kg

~50 Wh/kg~50 Wh/kg

1.3 cents/liter1.3 cents/liter

Page 6: 11IBBC - 22.2 - Zhu - TAPPI

Energy Consumption for Energy Consumption for Size ReductionSize Reduction

Size reductionSize reductionNonwoody:Nonwoody: 50 Wh/kg =  50 Wh/kg =  0.180.18 GJ/tonGJ/tonWoody:Woody: 200200‐‐600 Wh/kg = 600 Wh/kg = 0.720.72‐‐2.162.16 GJ/ton GJ/ton 

Biomass ethanol Biomass ethanol Energy  Energy  ~80 gallon/ton of ~80 gallon/ton of biomassbiomass (OD) (OD) Ethanol HHV = 90 MJ/gallonEthanol HHV = 90 MJ/gallonBiomass Biomass ethanol energyethanol energy = = 7.2 GJ/ton7.2 GJ/ton

Thermo to electric energy conversion:  Thermo to electric energy conversion:  30%30%Nonwoody:       Nonwoody:       8% 8% of total ethanol energyof total ethanol energyWoody:              Woody:              3030‐‐90%90% of total ethanol energyof total ethanol energy

Page 7: 11IBBC - 22.2 - Zhu - TAPPI

Sulfite, SPORL Technology

Lodgepole pine Wood chips

Steam

SPORLpretreatment

Spent Spent liquorliquor

Separation

Size reduction

WaterSubstrate

Press

HydrolysateHydrolysateFermentationFermentation EthanolEthanol

ChemicalsXAD columndetoxification

Filtration

Filtration water

Applied Microbiology Biotechnology (2010) 86:1355Applied Microbiology Biotechnology (2010) 86:1355

Page 8: 11IBBC - 22.2 - Zhu - TAPPI

SPORL ChemistrySPORL Chemistry

Avoid excessive lignin condensation Avoid excessive lignin condensation 

Sulfonated ligninSulfonated lignin

Hemicellulose degradationHemicellulose degradation

Cellulose depolymerizationCellulose depolymerization

Low delignificationLow degradation hemi.Low depolym. cellulose

Hemi. degradationCellulose depolym.Lignin condensation

Page 9: 11IBBC - 22.2 - Zhu - TAPPI

Energy Savings byEnergy Savings byPostPost--Pretreatment SizePretreatment Size--ReductionReduction

Pretreatment @180oC for

30 mina

Initial liquor

pH

Disk milling energy

(kWh/ton wood)

Size-reduction energy savings

(%)

SED (%)

Untreated 699 12.7Hot-water 5.0 680 2.7 16.0Acid 1.1 412 41.0 41.6SPORL 4.2 594 15.0 75.1SPORL 1.9 153 78.1 91.6

Bioresource Technology (2010) 101:2782Bioresource Technology (2010) 101:2782

Page 10: 11IBBC - 22.2 - Zhu - TAPPI

Effect of Milling DiskEffect of Milling Disk--Plate GapPlate Gap

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.08

16

32

64

128

256

512

Pretreatment pH(t=0) Hot water 5.0 Dilute acid 1.1 SPORL 4.2 SPORL 1.9

D

isk-

mill

ing

ener

gy(W

h/kg

od

untr

eate

d w

ood)

Disk-plate gap (mm)

Bioresource Technology (2010) 101:2782Bioresource Technology (2010) 101:2782

Page 11: 11IBBC - 22.2 - Zhu - TAPPI

Effect of Milling DiskEffect of Milling Disk--Plate GapPlate Gap

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.030

40

50

60

70

80

90

100

Pretreatment pH(t=0) Dilute acid 1.1 y = 42.6 - 1.52x, r2 = 0.72SPORL 1.9 y = 97.2 - 1.68x, r2 = 0.61

SED

(wt%

of s

ubst

rate

glu

can)

Disk plate gap (mm)

Bioresource Technology (2010) 101:2782Bioresource Technology (2010) 101:2782

Page 12: 11IBBC - 22.2 - Zhu - TAPPI

Woody Species StudiedWoody Species Studied

Softwood Softwood Lodgepole pineLodgepole pineRed pineRed pineSpruceSpruce

Hardwoods Hardwoods AspenAspenEucalyptus Eucalyptus Poplar:  NE222, NM6, DN5Poplar:  NE222, NM6, DN5

Page 13: 11IBBC - 22.2 - Zhu - TAPPI

Decayed TreeDecayed Tree

Page 14: 11IBBC - 22.2 - Zhu - TAPPI

High Solids Saccharification and Fermentation

0 20 40 60 80 100 120 140 160 1800

10

20

30

40

50

60

Fermentation Experiments I II-1 II-2 II-3 III

SPORL DA

E

than

ol c

once

ntra

tion

(g/L

)

Fermentation duration (h)

Solids @ 18%

Page 15: 11IBBC - 22.2 - Zhu - TAPPI

High Solids Saccharification and Fermentation

Solids @ 18%

6 8 10 12 14 1620

30

40

50

60

70

80

90

SPORL DA

SSF

effic

ienc

y @

96

h (%

)

Cellulase dosage (FPU/g glucan)

Page 16: 11IBBC - 22.2 - Zhu - TAPPI

Washing of SolublesWashing of Solubles

Enzyme adsorption to lignocellulosenonproductive adsorption by lignin washing

Page 17: 11IBBC - 22.2 - Zhu - TAPPI

Unwashed SPORL Substrate: Unwashed SPORL Substrate: Comparing washing with MgSOComparing washing with MgSO44

5 10 15 20 25 3040

50

60

70

80

90

100

Unwashed Washed @ 25oC Unwashed + Mg(II)

Subs

trat

e en

zym

atic

dig

estib

ility

, SED

(%)

Cellulase loading (FPU/g cellulose)

Bioresource Technology (2010) 101:9120Bioresource Technology (2010) 101:9120

Page 18: 11IBBC - 22.2 - Zhu - TAPPI

Material and Energy Analysis

0.18(50 wh/kg)

0.41(113 Wh/kg)

1.33

NA

NA

NANA

4.55GJ/ton wood

B

603

C397

Glucan: 32Mannan: 86Xylan: 27

D Lignin: 76

Ethanol: 67D Lignin: 76

AGlucan: 385Mannan: 4Xylan: 8

H Lignin: 195 Ethanol: 209H Lignin: 195

1000Glucan: 426Mannan: 110

Xylan: 69Lignin: 271

Ethanol

276 Liters

Dissolved  (D) Ligninin spent liquor

Hydrolysis (H) lignin from solid substrate

Applied Microbiology Biotechnology (2010) 86:1355Applied Microbiology Biotechnology (2010) 86:1355

Page 19: 11IBBC - 22.2 - Zhu - TAPPI

SPORL – Without detoxification

SPORLpretreatment

Steam

Che

mic

als

Separation

Size reduction

Water Press

CombinedCombinedFermentationFermentation

EthanolEthanol

Lignosulfonate

SpentLiquor

Filtration water

Bioresource Technology (2010) 101:8678Bioresource Technology (2010) 101:8678

Page 20: 11IBBC - 22.2 - Zhu - TAPPI

Mass Energy BalanceMass Energy Balance

0.18(50 wh/kg)

0.76(212 Wh/kg)

1.33

NA

NA

NA

1000Glucan: 419Mannan: 117

Xylan: 55Lignin: 286

606

NA Ethanol

270 Liters

394Glucan: 27Mannan: 60Xylan: 22Lignin: 73

Ethanol: 213Lignin: 286

603Glucan: 367Mannan: 3Xylan: 3

Lignin: 213

4.05

Bioresource Technology (2010) 101:8678Bioresource Technology (2010) 101:8678

Page 21: 11IBBC - 22.2 - Zhu - TAPPI

Pilot Scale StudyPilot Scale Study

CDCD‐‐300 Disk refiner with Impregnation  300 Disk refiner with Impregnation  

SemiSemi‐‐continuouscontinuous

20 20 –– 40 kg per run40 kg per run

Page 22: 11IBBC - 22.2 - Zhu - TAPPI

Future PlansFuture Plans

Partner with industry for Jet fuel Production  Partner with industry for Jet fuel Production  

Lignin coLignin co‐‐productsproducts

Page 23: 11IBBC - 22.2 - Zhu - TAPPI

SPORL PublicationsSPORL PublicationsZhu, J.Y., Zhu, J.Y., Pan, X.J., Wang, G.S, Gleisner, R., Pan, X.J., Wang, G.S, Gleisner, R., (2009),(2009), ““Sulfite Pretreatment (SPORL) Sulfite Pretreatment (SPORL)

for Robust Enzymatic Saccharification of Spruce and Red Pinefor Robust Enzymatic Saccharification of Spruce and Red Pine““ Bioresource Technology, Bioresource Technology, 100(8):2411100(8):2411--2418.2418.

Wang, G.S., Pan, X.J., Wang, G.S., Pan, X.J., Zhu, J.Y., Zhu, J.Y., Gleisner, R., Rockwood, D.R., Gleisner, R., Rockwood, D.R., (2009), (2009), ““Sulfite Sulfite Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL)Pretreatment to Overcome Recalcitrance of Lignocellulose (SPORL) for Robust Enzymatic for Robust Enzymatic Saccharification of HardwoodsSaccharification of Hardwoods““ Biotechnology Progress, 25(4):1086Biotechnology Progress, 25(4):1086--1093 1093

Zhu, W., Zhu, W., Zhu, J.Y., Zhu, J.Y., Glesiner, R., Pan, X.J., Glesiner, R., Pan, X.J., (2010), (2010), ““On Energy Consumption for SizeOn Energy Consumption for Size--Reduction and Yield from Subsequent Enzymatic Hydrolysis of LodgReduction and Yield from Subsequent Enzymatic Hydrolysis of Lodgepole Pine,epole Pine,”” Bioresource Bioresource Technology ,101:2782Technology ,101:2782--27922792

Zhu, J.YZhu, J.Y., Zhu, W. OBryan, P., Dien, B.S.,Tian, S., Gleisner, R., Pan, X., Zhu, W. OBryan, P., Dien, B.S.,Tian, S., Gleisner, R., Pan, X.J., .J., (2010), (2010), ““Ethanol Production from SPORLEthanol Production from SPORL--Pretreated Lodgepole Pine: Preliminary Evaluation of Mass Pretreated Lodgepole Pine: Preliminary Evaluation of Mass Balance and Process Energy EfficiencyBalance and Process Energy Efficiency””. . Applied Microbiology and Biotechnology Applied Microbiology and Biotechnology 86:135586:1355--13651365

Tian, S., Luo, X., Yang, X.S., Tian, S., Luo, X., Yang, X.S., Zhu, J.Y., Zhu, J.Y., (2010) (2010) ““Robust Cellulosic Ethanol Production Robust Cellulosic Ethanol Production from SPORLfrom SPORL--Pretreated Lodgepole Pine using an Adapted s. cerevisiae withoutPretreated Lodgepole Pine using an Adapted s. cerevisiae without DetoxificationDetoxification””,,Bioresource Technology 101:8678Bioresource Technology 101:8678--86858685

Liu, H., Liu, H., Zhu, J.Y., Zhu, J.Y., Fu, S.Y., Fu, S.Y., (2010), (2010), ““Effects of LigninEffects of Lignin--Metal Complexation on Enzymatic Metal Complexation on Enzymatic Hydrolysis of CelluloseHydrolysis of Cellulose””. . J. Agricultural and Food Chemistry, 58:7233J. Agricultural and Food Chemistry, 58:7233--72387238

Liu, H., Liu, H., Zhu, J.Y., Zhu, J.Y., (2010)(2010) ““Eliminating Inhibition of Cellulase by Unbound Lignin in Eliminating Inhibition of Cellulase by Unbound Lignin in Unwashed SPORLUnwashed SPORL--Pretreated Lignocellulose Using LigninPretreated Lignocellulose Using Lignin--Metal ComplexationMetal Complexation““ Bioresource Bioresource Technology, 101:9120Technology, 101:9120--91279127

Page 24: 11IBBC - 22.2 - Zhu - TAPPI

SPORL PublicationsSPORL PublicationsLuo, X.L., Gleisner, R., Tian, S., Zhu, W.Y., Negron, J., Horn, Luo, X.L., Gleisner, R., Tian, S., Zhu, W.Y., Negron, J., Horn, E., Pan, X.J, E., Pan, X.J, Zhu, J.Y., Zhu, J.Y., (2010), (2010), 

““Evaluation of Mountain Beetle Killed Lodgepole Pine for CellulosEvaluation of Mountain Beetle Killed Lodgepole Pine for Cellulosic Ethanol Production by ic Ethanol Production by SPORLSPORL”” Ind. Eng. Chem. Res. Ind. Eng. Chem. Res. 49(17):8258‐8266Zhu, J.Y., Zhu, J.Y., Pan, X.J., Zalesny, R.S. Jr., Pan, X.J., Zalesny, R.S. Jr., (2010), (2010), ““Pretreatment of Woody Biomass for Biofuel Pretreatment of Woody Biomass for Biofuel 

Production: Energy Efficiency, Technologies and RecalcitranceProduction: Energy Efficiency, Technologies and Recalcitrance”” Applied Microbiology and Applied Microbiology and Biotechnology, 87:847Biotechnology, 87:847‐‐857857Tian, S. , Zhu, W., Gleisner, R., Pan, X.J., Tian, S. , Zhu, W., Gleisner, R., Pan, X.J., Zhu, J.Y., Zhu, J.Y., (2010) (2010) ””Comparisons of SPORL and Comparisons of SPORL and 

Dilute Acid Pretreatments for Sugar and Ethanol Productions fromDilute Acid Pretreatments for Sugar and Ethanol Productions from AspenAspen”” Biotechnology Biotechnology Progress (accepted)Progress (accepted)Zhu, J.Y., Zhu, J.Y., Wang, G.S., Gleisner, R., Pan, X., Wang, G.S., Gleisner, R., Pan, X., (2009), (2009), ““Specific Surface for Evaluating Wood Specific Surface for Evaluating Wood 

Size Reduction and Pretreatment EfficienciesSize Reduction and Pretreatment Efficiencies”” Chemical Engineering ScienceChemical Engineering Science, , 64(3):47464(3):474‐‐485. 485. Zhu, J.Y. Zhu, J.Y. and Pan, X.J., and Pan, X.J., (2010), (2010), ““Woody Biomass Pretreatment for Cellulosic Ethanol Woody Biomass Pretreatment for Cellulosic Ethanol 

Production: Technology and Energy Consumption EvaluationProduction: Technology and Energy Consumption Evaluation”” Bioresource Technology  Bioresource Technology  101:4992101:4992‐‐50025002

Page 25: 11IBBC - 22.2 - Zhu - TAPPI

EthanolFL: 206 L/ton

FDD: 222 L/ton

NA

FL: 2.62FDD: 3.21

0.18

FDD1000

Glucan: 420Mannan: 95Xylan: 46

K. Lignin: 282

1.33

FL: 0.68

FDD: 0.46

FL:634

Glucan: 351Mannan: 9Xylan: 9

Lignin: 241

FDD:630

Glucan: 380Mannan: 7Xylan: 7

Lignin: 207

FL:Ethanol: 162Lignin: 241

FDD:Ethanol: 175Lignin: 207

FL1000

Glucan: 391Mannan: 100

Xylan: 60K. Lignin: 286

FDD: 370Glucan: 21 Acetic acid: 8Mannan: 45 HMF as hexsan: 4Xylan: 20 Furfural as pentosan: 5Lignin: 75

FL: 366Glucan: 20 Acetic acid: 9Mannan: 46 HMF as hexsan: 4Xylan: 26 Furfural as pentosan: 6Lignin: 51

NA

FL:

Gluc

ose:

264

FDD:

Gluc

ose:

277

Page 26: 11IBBC - 22.2 - Zhu - TAPPI

SPORL SPORL -- Dilute Acid ComparisonsDilute Acid Comparisons

EthanolSPORL: 238 L/ton

DA: 214 L/ton

NA

SPORL: 4.09DA: 3.40

0.18

1000Glucan: 438Mannan: 16Xylan: 164K. Lignin: 208

NA

SPORL/DA:1.25

SPORL: 0.07

DA: 0.17

SPORL:627

Glucan: 432Mannan: 0Xylan: 12Lignin: 161

DA:664

Glucan: 418Mannan: 1Xylan: 13Lignin: 194

DA:336

Glucan: 13 Acetic acid: 50Mannan: 12 HMF as hexsan: 2Xylan: 97 Furfural as pentosan: 16Lignin: 14

SPORL:373

Glucan: 11 Acetic acid: 68Mannan: 12 HMF as hexsan: 2Xylan: 108 Furfural as pentosan: 13Lignin: 47

SPORL:627

Ethanol: 188Lignin: 161

DA:664

Ethanol: 169Lignin: 194

SPORL:H2S04: 11NaHS03: 30

DA:H2S04: 11