1 transverse momenta of partons in high-energy scattering processes piet mulders international...

86
1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 [email protected]

Upload: josephine-page

Post on 18-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

1

Transverse momenta of partons in high-energy scattering

processesPiet Mulders

International School, Orsay June 2012

[email protected]

Page 2: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

2

Introduction

• What are we after?– Structure of proton (quarks and gluons)– Use of proton as a tool

• What are our means?– QCD as part of the Standard Model

Page 3: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

3

3 colors

Valence structure of hadrons:

global properties of nucleons

duu

proton

• mass• charge• spin• magnetic moment• isospin, strangeness• baryon number

Mp Mn 940 MeV Qp = 1, Qn = 0 s = ½ gp 5.59, gn -3.83 I = ½: (p,n) S = 0 B = 1

Quarks as constituents

Page 4: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

4

A real look at the proton

+ N ….

Nucleon excitation spectrumE ~ 1/R ~ 200 MeVR ~ 1 fm

Page 5: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

5

A (weak) look at the nucleon

n p + e +

= 900 s Axial charge GA(0) = 1.26

Page 6: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

6

A virtual look at the proton

N N + N N_

Page 7: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

7

Local – forward and off-forward m.e.

1.

2( ) (' | ) | )( i x GP O tP e t Gx i

2t

1(0) | ( ) |G P O x P

2 (0) | ( ) |G P x O x P

Local operators (coordinate space densities):

P P’

Static properties:

Form factors

Examples:(axial) chargemassspinmagnetic momentangular momentum

Page 8: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

8

Nucleon densities from virtual look

proton

neutron

• charge density 0• u more central than d?• role of antiquarks?• n = n0 + p+ … ?

( ) ( )i iG t x

Page 9: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

9

Quark and gluon operators

Given the QCD framework, the operators are known quarkic or gluonic currents such as

probed in specific combinationsby photons, Z- or W-bosons

( ) 2 1 13 3 3 ...u d sJ V V V

( ) 21 42 3 sin ...Z u u u

WJ V A V

( ) ' ' ...W ud udJ V A

'5( ) ( ) '( )q qA x q x q x

( ) ( ) ( )qV x q x q x

(axial) vector currents

{ }( ) ~ ( ) ( )qT x q x D q x

( ) ~ ( ) ( )GT x G x G x

energy-momentum currents

probed by gravitons

Page 10: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

10

Towards the quarks themselves

• The current provides the densities but only in specific combinations, e.g. quarks minus antiquarks and only flavor weighted

• No information about their correlations, (effectively) pions, or …

• Can we go beyond these global observables (which correspond to local operators)?

• Yes, in high energy (semi-)inclusive measurements we will have access to non-local operators!

• LQCD (quarks, gluons) known!

Page 11: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

11

Non-local probing

†2 2 2 2, ...y y y y

x x x xO

2 2 2 2| , | | , |y y y yx xP O P P O P

2. †2 2| | | 0 | ( )y yip ydy e P P P p P f p

Nonlocal forward operators (correlators):

Specifically useful: ‘squares’

Momentum space densities of -ons:

Selectivity at high energies: q = p

Page 12: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

12

A hard look at the proton

Hard virtual momenta ( q2 = Q2 ~ many GeV2) can couple to (two) soft momenta

+ N jet jet + jet

Page 13: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

13

Experiments!

Page 14: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

14

QCD & Standard Model

• QCD framework (including electroweak theory) provides the machinery to calculate cross sections, e.g. *q q, qq *, * qq, qq qq, qg qg, etc.

• E.g. qg qg

• Calculations work for plane waves

__

) .( ( )0 , ( , )s ipi ip s u p s e

Page 15: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

15

Soft part: hadronic matrix elements

• For hard scattering process involving electrons and photons the link to external particles is, indeed, the ‘one-particle wave function’

• Confinement, however, implies hadrons as ‘sources’ for quarks

• … and also as ‘source’ for quarks + gluons

• … and also ….

.( )0 , ( , ) ipii p s u p s e

.( ) ii

pX P e

1 1( ). .( ) ( ) i pi

p ipAX P e

PARTON CORRELATORS

Page 16: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

16

Thus, the nonperturbative input for calculating hard processes involves [instead of ui(p)uj(p)] forward matrix elements of the form

Soft part: hadronic matrix elements

3

3( , ) | | | | ( )

(2) 0)

)(

2(0j i

Xij X

X

d Pp P P X X P P P p

E

4 .4

1( , ) | |

(2( (

)0) )i p

i ij jp P d e P P

quarkmomentum

INTRODUCTION

_

(0) ( )| |( )j iP PA

Page 17: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

17

PDFs and PFFs

Basic idea of PDFs is to get a full factorized description of high energy scattering processes

21 2| ( , ,...) |H p p

1 2 1 1 1 2 2

, ... 1 2 1 1

( , ,...) ... ... ( , ; ) ( , ; )

( , ,...; ) ( , ; )....

a b

ab c c

P P dp p P p P

p p k K

calculable

defined (!) &portable

INTRODUCTION

Give a meaning to integration variables!

Page 18: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

18

Example: DIS

Page 19: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

19

• Instead of partons use correlators• Expand parton momenta (for SIDIS take e.g. n=

Ph/Ph.P)

Principle for DIS

q

P

2 2P M

( , ) ( , )

( , ) ~ ( ) ( )su p s u p s

p P p m f p

Tx pp P n 2 2. ~p P xM M

. ~ 1x p p n

~ Q ~ M ~ M2/Q

p

Page 20: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

20

(calculation of) cross section in DIS

Full calculation

+ …

+ +

+LEADING (in 1/Q)

x = xB = q2/P.q

(x)

Page 21: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

Lightcone dominance in DIS

Page 22: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

22

Result for DIS

q

P

212

12

2 ( , ) . [ ( , ) ] ( )

[ ( ) ]

T T B

T B

MW P q g dxdp P d p Tr p P x x

g Tr x

p

Page 23: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

23

Parametrization of lightcone correlator

Jaffe & Ji NP B 375 (1992) 527Jaffe & Ji PRL 71 (1993) 2547

leading part

• M/P+ parts appear as M/Q terms in cross section• T-reversal applies to (x) no T-odd functions

Page 24: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

24

Basis of

partons

‘Good part’ of Dirac space is 2-dimensional

Interpretation of DF’s

unpolarized quarkdistribution

helicity or chiralitydistribution

transverse spin distr.or transversity

Page 25: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

25

Off-diagonal elements (RL or LR) are chiral-odd functions Chiral-odd soft parts must appear with partner in e.g. SIDIS, DY

Matrix representation

for M = [(x)+]T

Quark production matrix, directly related to thehelicity formalism

Anselmino et al.

Bacchetta, Boglione, Henneman & MuldersPRL 85 (2000) 712

Page 26: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

26

Next example: SIDIS

Page 27: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

27

(calculation of) cross section in SIDIS

Full calculation

+

+ …

+

+LEADING (in 1/Q)

Page 28: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

Lightfront dominance in SIDIS

Three external momentaP Ph q

transverse directions relevant

qT = q + xB P – Ph/zh or

qT = -Ph/zh

Page 29: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

29

Result for SIDIS

2 2

2

2 212

2

2 ( , , )

[ ( , ) ( , ) ] ( )

[ ( , ) ] [ ( , ) ] ( )

h T T

B T h T T T T

T T T

B T h T T T T

MW P P q d p d k

Tr x p z k p q k

g d p d k

Tr x p Tr z k p q k

q

P

Ph

pk

hT B

h

Pq q x P

z

Page 30: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

30

Parametrization of (x,pT)

• Also T-odd functions are allowed

• Functions h1 (BM)

and f1T (Sivers)

nonzero!• Similar functions (of course) exist as fragmentation functions (no T-constraints) H1

(Collins) and D1T

Page 31: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

Interpretation

unpolarized quarkdistribution

helicity or chiralitydistribution

transverse spin distr.or transversity

need pT

need pT

need pT

need pT

need pT

T-odd

T-odd

Page 32: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

32

pT-dependent functions

T-odd: g1T g1T – i f1T and h1L

h1L + i h1

(imaginary parts)

Matrix representationfor M = [±]

(x,pT)+]T

Bacchetta, Boglione, Henneman & MuldersPRL 85 (2000) 712

Page 33: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

33

Rather than considering general correlator (p,P,…), one thus integrates over p.P = p (~MR

2, which is of order M2)

and/or pT (which is of order 1)

The integration over p = p.P makes time-ordering automatic. This works for (x) and (x,pT)

This allows the interpretation of soft (squared) matrix elements as forward antiquark-target amplitudes (untruncated!), which satisfy particular analyticity and support properties, etc.

Integrated quark correlators: collinear

and TMD

2.

3 . 0(0) ( )

( . )( , ; )

(2 )q i pT

iij njT

d P dx p n e P P

.

. 0

( . )( (0); )

(2 )( )ij

T

q i pj i n

d Px n e P P

TMD

collinear

(NON-)COLLINEARITY

Jaffe (1984), Diehl & Gousset (1998), …

lightfront

lightcone

Page 34: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

34

Summarizing oppertunities of TMDs

TMD quark correlators (leading part, unpolarized) including T-odd part

Interpretation: quark momentum distribution f1q(x,pT) and

its transverse spin polarization h1q(x,pT) both in an

unpolarized hadronThe function h1

q(x,pT) is T-odd (momentum-spin correlations!)

TMD gluon correlators (leading part, unpolarized)

Interpretation: gluon momentum distribution f1g(x,pT) and

its linear polarization h1g(x,pT) in an unpolarized hadron

(both are T-even)

122 2

1 12

1( , ) ( , )( , )

2

vT T T

g Tg g

T TT

p p gx f x p h x pp g

x M

2 21

]1

[ ( ,( , ) ( , ))2

q q TqT T T

p Px p i

Mf x p h x p

(NON-)COLLINEARITY

Page 35: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

35

Twist expansion of (non-local) correlators

Dimensional analysis to determine importance of matrix elements(just as for local operators)maximize contractions with n to get leading contributions

‘Good’ fermion fields and ‘transverse’ gauge fieldsand in addition any number of n.A() = An(x) fields (dimension zero!)but in color gauge invariant combinations

Transverse momentum involves ‘twist 3’.

dim[ (0) ( )] 2n dim[ (0) ( )] 2n nF F

n n n ni iD i gA

T T T Ti iD i gA dim 0:

dim 1:

OPERATOR STRUCTURE

Page 36: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

36

Matrix elements containing (gluon) fields produce gauge link

… essential for color gauge invariant definition

Soft parts: gauge invariant definitions

4[ ] . [ ]

[0, ]4( ; )

(2( )

)(0)C i p C

ij j i

dp P e P U P

[ ][0, ]

0

expCig ds AU

P

OPERATOR STRUCTURE

++ …

Any path yields a (different) definition

Page 37: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

37

Gauge link results from leading gluons

Expand gluon fields and reshuffle a bit:

1 1 1 1 1 11

1( ) . ( ) ( ) ... ( ) ( ) ...

. .n n

T T

PA p n A p iA p A p p iG p

n P p n

OPERATOR STRUCTURE

Coupling only to final state partons, the collinear gluons add up to a U+ gauge

link, (with transverse connection from AT

Gn reshuffling)

A.V. Belitsky, X.Ji, F. Yuan, NPB 656 (2003) 165D. Boer, PJM, F. Pijlman, NPB 667 (2003) 201

Page 38: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

38

Even simplest links for TMD correlators non-trivial:

Gauge-invariant definition of TMDs: which gauge links?

2[ ] . [ ]

[0, ]3 . 0

( . )( , (0) ( ); )

(2 ) jq C i p CTij T i n

d P dx p n e P U P

. [ ][0, ] . 0

( . )( ; )

(2 )(0) ( )ij

T

q i p n

nj i

d Px n e P U P

[] []T

TMD

collinear

OPERATOR STRUCTURE

These merge into a ‘simple’ Wilson line in collinear (pT-integrated) case

Page 39: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

39

TMD correlators: gluons2

[ , '] . [ ] [ '][ ,0] [0, ]3 . 0

( . )( , ; )

(2 )(0) ( )C C i p C CT

g Tn

n

nd P dx p n e P U U F PF

The most general TMD gluon correlator contains two links, which in general can have different paths.Note that standard field displacement involves C = C ’

Basic (simplest) gauge links for gluon TMD correlators:

[ ] [ ][ , ] [ , ]( ) ( )C CF U F U

g[] g

[]

g[] g

[]

C Bomhof, PJM, F Pijlman; EPJ C 47 (2006) 147F Dominguez, B-W Xiao, F Yuan, PRL 106 (2011) 022301

OPERATOR STRUCTURE

Page 40: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

40

Gauge invariance for SIDIS

COLOR ENTANGLEMENT

[0 , ] [ , ] [ , ] [ ,0 ]

[ ] [ ]† [ ] [ ]†[0, ] [0, ] 1 1[ ] [ ]n n n n

U U U U

W W W p W k

2 1[ ] [ ]† *1 1 1 2 2 2

[ ] [ †]1 1 1 1

[ [ ] ( , )] [ ( , ) [ ]]

ˆ( , ) ( , )

p pSIDIS c q T c q T

q T q T q q

d Tr W p x p Tr x p W p

x p k k

Strategy:transverse moments

Problems with double T-odd functions in DY

M.G.A. Buffing, PJM, 1105.4804

Page 41: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

41

Complications (example: qq qq)

[ ](11) [ ](1) [ ](1)1( , ')... ... ( )... ( ') ( ), ( ') ... ... ( )... ( ')

2k k kU p p p p U p U p p p

T.C. Rogers, PJM, PR D81 (2010) 094006

U+[n] [p1,p2,k1]

modifies color flow, spoiling universality(and factorization)

COLOR ENTANGLEMENT

Page 42: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

42

Color entanglement

[ ](21) [ ](2) [ ](1)

[ ](1) [ ](1) [ ](1)

[ ](1) [ ](2)

1( , ') ( ) ( ')

41

( ) ( ') ( )41

( ') ( )4

k k k

k k k

k k

U p p U p U p

U p U p U p

U p U p

COLOR ENTANGLEMENT

Page 43: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

43

Featuring: phases in gauge theories

'

( ) ( ')x

xig ds A

i iP Pe Px x

.

'ie ds A

Pe COLOR ENTANGLEMENT

Page 44: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

44

Conclusions

• TMDs enter in processes with more than one hadron involved (e.g. SIDIS and DY)

• Rich phenomenology (Alessandro Bacchetta)• Relevance for JLab, Compass, RHIC, JParc, GSI,

LHC, EIC and LHeC • Role for models using light-cone wf (Barbara

Pasquini) and lattice gauge theories (Philipp Haegler)

• Link of TMD (non-collinear) and GPDs (off-forward)• Easy cases are collinear and 1-parton un-

integrated (1PU) processes, with in the latter case for the TMD a (complex) gauge link, depending on the color flow in the tree-level hard process

• Finding gauge links is only first step, (dis)proving QCD factorization is next (recent work of Ted Rogers and Mert Aybat)

SUMMARY

Page 45: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

45

Rather than considering general correlator (p,P,…), one integrates over p.P = p (~MR

2, which is of order M2)

and/or pT (which is of order 1)

The integration over p = p.P makes time-ordering automatic. This works for (x) and (x,pT)

This allows the interpretation of soft (squared) matrix elements as forward antiquark-target amplitudes (untruncated!), which satisfy particular analyticity and support properties, etc.

Thus we need integrated correlators

2.

3 . 0(0) ( )

( . )( , ; )

(2 )q i pT

iij njT

d P dx p n e P P

.

. 0

( . )( (0); )

(2 )( )ij

T

q i pj i n

d Px n e P P

TMD

collinear

(NON-)COLLINEARITY

Jaffe (1984), Diehl & Gousset (1998), …

lightfront

lightcone

Page 46: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

46

Large values of momenta

• Calculable!2 2

2 01T p

p

p x Mp

x

2 2( ). 0

2 (1 )p T

p

x p Mp P

x x

2 22 ( ) (1 )

0(1 )

p T pR

p

x x p x x MM

x x

0 0 ( 1)T pp

xp P p x x

x

T Tp 2( , ) ...s

T

p Pp

etc.

Bacchetta, Boer, Diehl, M JHEP 0808:023, 2008 (arXiv:0803.0227)

PARTON CORRELATORS

p0T ~ M

M << pT < Q

hard

Page 47: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

47

T-odd single spin asymmetry

• with time reversal constraint only even-spin asymmetries• the time reversal constraint cannot be applied in DY or in 1-

particle inclusive DIS or ee

• In those cases single spin asymmetries can be used to measure T-odd quantities (such as T-odd distribution or fragmentation functions)

*

*

W(q;P,S;Ph,Sh) = W(q;P,S;Ph,Sh)

W(q;P,S;Ph,Sh) = W(q;P,S;Ph,Sh)

W(q;P,S;Ph,Sh) = W(q;P, S;Ph, Sh)

W(q;P,S;Ph,Sh) = W(q;P,S;Ph,Sh)

_

___

_ ____

__ _time

reversal

symmetrystructure

parity

hermiticity

*

*

Page 48: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

48

Relevance of transverse momenta in hadron-hadron

scatteringAt high energies fractional parton momenta fixed by kinematics (external momenta)

DY

Also possible for transverse momenta of

partons

DY

2-particle inclusive hadron-hadron scattering

K2

K1

pp-scattering

1 11 1Tp Px p

2 22 2Tp Px p 1 2 21 1

1 2 1 2

. ..

. .

p P q Px p n

P P P P

1 1 2 2 1 2T T Tq q x P x P p p

1 11 1 2 2 1 1 2 2

1 2 1 2

T

T T T T

q z K z K x P x P

p p k k

NON-COLLINEARITY

Care is needed: we need more than one hadron and knowledge of hard process(es)!

Boer & Vogelsang

Second scale!

Page 49: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

49

Lepto-production of pions

H1 is T-odd

and chiral-odd

Page 50: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

50

Gauge link in DIS

• In limit of large Q2 the resultof ‘handbag diagram’ survives

• … + contributions from A+ gluonsensuring color gauge invariance

A+ gluons gauge link

Ellis, Furmanski, PetronzioEfremov, Radyushkin

A+

Page 51: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

Distribution

From AT() m.e.

including the gauge link (in SIDIS)

A+

One needs also AT

G+ = +AT

AT()= AT

(∞) + d G+

Belitsky, Ji, Yuan, hep-ph/0208038Boer, M, Pijlman, hep-ph/0303034

Page 52: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

52

Generic hard processes

C. Bomhof, P.J. Mulders and F. Pijlman, PLB 596 (2004) 277 [hep-ph/0406099]; EPJ C 47 (2006) 147 [hep-ph/0601171]

Link structure for fields in correlator 1

• E.g. qq-scattering as hard subprocess

• Matrix elements involving parton 1 and additional gluon(s) A+ = A.n appear at same (leading) order in ‘twist’ expansion

• insertions of gluons collinear with parton 1 are possible at many places

• this leads for correlator involving parton 1 to gauge links to lightcone infinity

Page 53: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

53

SIDIS

SIDIS [U+] = [+]

DY [U-] = []

Page 54: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

54

A 2 2 hard processes: qq qq

• E.g. qq-scattering as hard subprocess

• The correlator (x,pT) enters for each contributing term in squared amplitude with specific link

[Tr(U□)U+](x,pT)

U□ = U+U†

[U□U+](x,pT)

Page 55: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

55

Gluons

2. [ ] [ ']

[ ,0] [0, ]3 . 0

( . )( , ; , ')

((0

)) ( )

2i p C CT n

gn

T n

d P dx p C C e P U PF FU

• Using 3x3 matrix representation for U, one finds in gluon correlator appearance of two links, possibly with different paths.

• Note that standard field displacement involves C = C ’

[ ] [ ][ , ] [ , ]( ) ( )C CF U F U

Page 56: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

56

Integrating [±](x,pT) [±]

(x)

[ ] . †[0, ] . 0

( . )( ) (0) ( )

(2 ) T

i p n

n

d Px e P U P

collinear correlator

2[ ] . †

[0, ] [0 , ] [ , ]3 . 0

( . )( , ) (0) ( )

(2 ) T T

i p n T nTT n

d P dx p e P U U U P

Page 57: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

57

2[ ] 2 . †

[0, ] [0 , ] [ , ]3 . 0

( . )( ) (0) ( )

(2 ) T T

i p n T nTT T n

d P dx d p e P U i U U P

Integrating [±](x,pT) [±]

(x)

[ ] . †[0, ]

( . )( ) (0) ( )

(2 )[i p n

T

d Px e P U iD P

[0, ] [ , ] [ , ](0) ( . ) ( ) ( ) ]n n n nLCP U d P U gG U P

[ ]

1 11

( ) ( ) ( , )D G

i

x ix x dx x x x

[ ] 2 [ ]( ) ( , )T T Tx d p p x p transve

rse moment

G(p,pp1)

T-even T-odd

Page 58: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

58

Gluonic poles

• Thus: [U](x) = (x)

[U](x) =

(x) + CG[U] G

(x,x)

• Universal gluonic pole m.e. (T-odd for distributions)

• G(x) contains the weighted T-odd functions h1(1)(x)

[Boer-Mulders] and (for transversely polarized hadrons) the function f1T

(1)(x) [Sivers]

• (x) contains the T-even functions h1L(1)(x) and g1T

(1)

(x)

• For SIDIS/DY links: CG[U±] = ±1

• In other hard processes one encounters different factors:

CG[U□ U+] = 3, CG

[Tr(U□)U+] = Nc

Efremov and Teryaev 1982; Qiu and Sterman 1991Boer, Mulders, Pijlman, NPB 667 (2003) 201

~

~

Page 59: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

59

A 2 2 hard processes: qq qq

• E.g. qq-scattering as hard subprocess

• The correlator (x,pT) enters for each contributing term in squared amplitude with specific link

[Tr(U□)U+](x,pT)

U□ = U+U†

[U□U+](x,pT)

Page 60: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

60

examples: qqqq in pp

2 2[( ) ] [ ]

2 2 2

1 52

1 1 1

c cq G

c c c

N N

N N N

2 2 2[( ) ] [ ]

2 2 2

2 1 3

1 1 1

c c cq G

c c c

N N N

N N N

CG [D1]

D1

= CG [D2]

= CG [D4]CG

[D3]

D2

D3

D4

( )

c

Tr U

NU

U U

Bacchetta, Bomhof, Pijlman, Mulders, PRD 72 (2005) 034030; hep-ph/0505268

Page 61: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

61

examples: qqqq in pp

†2 2

[( ) ] [ ]2 2 2

2 31

1 1 1

c cq G

c c c

N N

N N N

†2 2

[( ) ] [ ]2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

D1

For Nc:

CG [D1] 1

(color flow as DY)

Bacchetta, Bomhof, D’Alesio,Bomhof, Mulders, Murgia, hep-ph/0703153

Page 62: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

62

Gluonic pole cross sections

• In order to absorb the factors CG[U], one can define

specific hard cross sections for gluonic poles (which will appear with the functions in transverse moments)

• for pp:

etc.

• for SIDIS:

for DY:

Bomhof, Mulders, JHEP 0702 (2007) 029 [hep-ph/0609206]

[ ]

[ ]

ˆ ˆ Dqq qq

D

[ ( )] [ ][ ]

[ ]

ˆ ˆU D Dq q qq G

D

C

[ ]ˆ ˆq q q q

[ ]ˆ ˆq q qq

(gluonic pole cross section)

y

( )ˆ q q qqd

ˆqq qqd

Page 63: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

63

examples: qgqin pp

2 2[( ) ] [ ]

2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

D1

D2

D3

D4

Only one factor, but more DY-like than SIDIS

Note: also etc.

Transverse momentum dependent weigted

Page 64: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

64

examples: qgqg

D1

D2

D3

D4

D5

2 2[( ) ] [ ]

2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

e.g. relevant in Bomhof, Mulders, Vogelsang, Yuan, PRD 75 (2007) 074019

Transverse momentum dependent weighted

Page 65: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

65

examples: qgqg

2 2[( ) ] [ ]

2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

Transverse momentum dependent weighted

Page 66: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

66

examples: qgqg

†2 2

[( )( ) ] [( ) ] [ ]2 2 2 2

1 1

2( 1) 2( 1) 1 1

c cq G

c c c c

N N

N N N N

2 2[( ) ] [ ]

2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

†2 2

[( )( ) ] [( ) ] [ ]2 2 2 2

1 1

2( 1) 2( 1) 1 1

c cq G

c c c c

N N

N N N N

†2

[( )( ) ] [ ]2 2

1

1 1

cq G

c c

N

N N

†4 2 2

[( )( ) ] [( ) ] [ ]2 2 2 2 2 2

11

( 1) ( 1) 1 1

c c cq G

c c c c

N N N

N N N N

Transverse momentum dependent weighted

Page 67: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

67

examples: qgqg

†2 2

[( )( ) ] [( ) ] [ ]2 2 2 2

1 1

2( 1) 2( 1) 1 1

c cq G

c c c c

N N

N N N N

2 2[( ) ] [ ]

2 2 2

11

1 1 1

c cq G

c c c

N N

N N N

†2 2

[( )( ) ] [( ) ] [ ]2 2 2 2

1 1

2( 1) 2( 1) 1 1

c cq G

c c c c

N N

N N N N

†2

[( )( ) ] [ ]2 2

1

1 1

cq G

c c

N

N N

†4 2 2

[( )( ) ] [( ) ] [ ]2 2 2 2 2 2

11

( 1) ( 1) 1 1

c c cq G

c c c c

N N N

N N N N

†2 2

[( )( ) ] [( ) ] [ ]2 2 2

1

2( 1) 2( 1) 1

c c

c c c

N N

N N N

†2

[( )( ) ] [ ]2 2

1

1 1

cG

c c

N

N N

It is also possible to group the TMD functions in a smart way into two!(nontrivial for nine diagrams/four color-flow possibilities)

But still no factorization!

Transverse momentum dependent weighted

Page 68: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

68

‘Residual’ TMDs

• We find that we can work with basic TMD functions [±](x,pT) + ‘junk’

• The ‘junk’ constitutes process-dependent residual TMDs

• The residuals satisfies (x) = 0 and G(x,x) = 0, i.e. cancelling kT contributions; moreover they most likely disappear for large kT

† †

†[( )( ) ]

[( )( ) ] [ ] [( )( ) ] [ ]

( , )

( , ) ( , ) ( , )

T

T T T

x p

x p x p x p

[ ] [ ] [ ] [ ]( , ) 2 ( , ) ( , ) ( , )T T T Tx p x p x p x p

definite T-behavior

no definiteT-behavior

Page 69: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

69

2 21 1( , () , )( , )

2T

T Tq q q

Tf x p hp P

x p iM

x p

5

1 1( , )2

[ , ]

2 2

T

q q TqT

q q q qPnp

T

p Px p i

M

pM i P n

Me h

M

f h

f g

1 (1

( )2

) (2

)q q qf xM

x P e x

1 1

1( ) ( ) ( )

2 2( )q qq qM m

x ef x x f xx Mx

p m

Page 70: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

70

2 21 1( , () , )( , )

2T

T Tq q q

Tf x p hp P

x p iM

x p

1( )2

( )q qf xP

x

2.

3 . 0

( . )( , ()

(2 )0) ( )i pT

T n

d P dx p e P P

2 .

. 0

( . )( ) ( , ) (0) ( )

(2 ) T

i pT T n

d Px d p x p e P P

(1)1

22 2

12( ) ( , )

2 2 2( )q qT

T Tq pP P

x d p h x pM

h x

2 .

. 0

( . )( ) ( , ) ( (0) ( ))

(2 ) T

i pT nTT T

d Pix d p p x p e P P

Page 71: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

71

2 2 2 21 12 ( , ) ( , ) ( , )qq T

Tq

T T

kz z k iD z z k H x k K

Mz

1

5

12 ( , )

[ , ]

2

T

q TT

h

K

q

nkT

hq

h

q q

h

q

q

kz z k i K

M

k i

D H

E D GK n

MM M

H

1

2 [ , ]( ) )

2(qq

hq qD z E

i K nHz K M

z

1

1( ) .( .

2) .qq D z k mz

Page 72: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

72

2 21 1( , ) , ) , )

2( (q Tq

U Tq

T Tf x p hp P

x p iM

x p

1

525

21( , ) ( , ) , )

2(

L

Tqq qT L TLL T LS Sg x p

p Px px p

Mh

Page 73: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

73

1( )2

( )qqU f

Pxx

51( )2

( )qqLL g

PxSx

1 5(2

)) (q TqT

Pxx h S

Page 74: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

74

Page 75: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

75

1-parton unintegrated

• Resummation of all phases spoils universality

• Transverse moments (pT-weighting) feels entanglement

• Special situations for only one transverse momentum, as in single weighted asymmetries

• But: it does produces ‘complex’ gauge links

• Applications of 1PU is looking for gluon h1

g (linear gluon polarization) using jet or heavy quark production in ep scattering (e.g. EIC), D. Boer, S.J. Brodsky, PJM, C. Pisano, PRL 106 (2011) 132001

2 2 2 21 2 1 2

2 2 2 21 1 2 1 2 2

... ... ( )

... ...

T T T T T T T

T T T T T T

d q q d p d p q p p

d p p d p d p d p p

COLOR ENTANGLEMENT

Page 76: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

76

Full color disentanglement? NO!

COLOR ENTANGLEMENT

2 1 2 1 1 1 2 2 1 1 1 1

[ ] [ ] [ ]†[0 , ][0 , ] [ , ][ , ] [ , ] [ ,0 ] [0 , ] [0 , ] [0 , ]

[ ] [ ]2 1[ ] [ ]

n n n

n n

U U U U W W W

W p W p

1 1( ) (0 )

1[ ,0 ]

2[ , ] 2[ ,0 ]

1[ , ]

1 2[ , ][ , ]

[( ) ] * [( ) ]1 1

[( ) ] * [( ) ]2 2

~ [ ( ) ( ) ]

[ ( ) ( ) ]

c b a

b ac

Tr p k

Tr p k

2 2( ) (0 )

Loop 1:

X

a

b*

b*

a

M.G.A. Buffing, PJM; in preparation

1 2[0 , ][0 , ]

Page 77: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

77

Result for integrated cross section

1 2 ... 1ˆ~ ( ) ( ) ( )...a b ab c cabc

x x z

Collinear cross section

[ ] 2 [ ]( ) ( , )C CT Tx d p x p

[ ]... ...ˆ ˆ D

ab c ab cD

(partonic cross section)

APPLICATIONS

Gauge link structure becomes irrelevant!

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

Page 78: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

78

Result for single weighted cross section

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z

Single weighted cross section (azimuthal asymmetry)

[ ] 2 [ ]( ) ( , )C CT T Tx d p p x p

APPLICATIONS

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

Page 79: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

79

Result for single weighted cross section

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z [ ( )] [ ]

1 1 2 ... 1,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z [ ( )] [ ]

1 1 2 ... 1,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z

APPLICATIONS

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

Page 80: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

80

Result for single weighted cross section

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z [ ] [ [ ] [ ])] (( ) ( ) ( , )C C U C C

G Gx x C x x

universal matrix elements

G(x,x) is gluonic pole (x1 = 0) matrix element (color entangled!)

T-even T-odd

(operator structure)

1( , )G x x x APPLICATIONS

Qiu, Sterman; Koike; Brodsky, Hwang, Schmidt, …

G(p,pp1

)

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

Page 81: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

81

Result for single weighted cross section

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z [ ] [ [ ] [ ])] (( ) ( ) ( , )C C U C C

G Gx x C x x

universal matrix elements

Examples are:

CG[U+] = 1, CG

[U] = -1, CG[W U+] = 3, CG

[Tr(W)U+] = Nc

APPLICATIONS

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

Page 82: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

82

Result for single weighted cross section

[ ( )] [ ]1 1 2 ... 1

,

ˆ~ ( ) ( ) ( )...C D DT a b ab c c

D abc

p x x z [ ] [ [ ] [ ])] (( ) ( ) ( , )C C U C C

G Gx x C x x

1 1 2 ... 1

1 1 2 [ ] ... 1

ˆ~ ( ) ( ) ( )...

ˆ( , ) ( ) ( )...

T a b ab c cabc

G a b a b c cabc

p x x z

x x x z

( ([ ] [ ][ ] ... . .

).

)ˆ ˆU C D Da b c G ab c

D

C (gluonic pole cross section)

APPLICATIONS

11 1 2 1

[ ( )] [ ]...2

,1

( , ) ( ) ( )...ˆ~ T

C D Da b ab c c

D abcT

x p x zd

d p

(1PU)

T-odd part

Page 83: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

83

Higher pT moments

• Higher transverse moments

• involve yet more functions

• Important application: there are no complications for fragmentation, since the ‘extra’ functions G, GG, … vanish. using the link to ‘amplitudes’; L. Gamberg, A. Mukherjee, PJM, PRD 83 (2011) 071503 (R)

• In general, by looking at higher transverse moments at tree-level, one concludes that transverse momentum effects from different initial state hadrons cannot simply factorize.

( ), ( , ), ( , , )G GGx x x x x x

SUMMARY

1 1 1[ ] ... 2( ) ( ... ) ( , )NNT T T Tx d p p p traces x p

Page 84: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

84

DIS

q

P

2 2q Q

2 2P M2

2 .B

QP q

x 2 2P M

.Bq x P

nP q

Page 85: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

85

DIS

q

P

n P

.Bq x P

n nP q

Basis 1

ˆq

zQ

2ˆ Bq x Pt

Q

Basis 2

Page 86: 1 Transverse momenta of partons in high-energy scattering processes Piet Mulders International School, Orsay June 2012 mulders@few.vu.nl

86

Principle for DY

1 1

1 1 1 1

( , ) ( , )

( , ) ~ ( ) ( )su p s u p s

p P p m f p

• Instead of partons use correlators

• Expand parton momenta (for DY take e.g. n1= P2/P1.P2)

Tx pp P n 2 2. ~p P xM M

. ~ 1x p p n

~ Q ~ M ~ M2/Q

(NON-)COLLINEARITY