1 the status of melody: an interferometer simulation program amber bullington stanford university...

12
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G040131-00-D

Upload: evangeline-spencer

Post on 30-Dec-2015

215 views

Category:

Documents


1 download

TRANSCRIPT

1

The Status of Melody: An Interferometer Simulation Program

Amber Bullington

Stanford University

Optics Working Group

March 17, 2004

G040131-00-D

2

Outline

Melody overview» Program functionality» New features

Predicting interferometer behavior under thermal load with Melody» Predictions of Power Recycling Cavity Sideband

Gain» Symmetric/Asymmetric Interferometer losses» Mode Shapes

Ref: Beausoleil et al., Model of Thermal Wave-Front Distortion in Interferometric Gravitational Wave Detectors I: Thermal Focusing, JOSA B, June 2003

3

Melody Overview

Simulate thermally loaded interferometer in Matlab» Any passive interferometer configuration

» Gain (ex. recycling cavity gain)

» Thermal lensing, deformation curvature

» Field profiles

Variable parameters: » Input power

» Modulation frequency, depth

» Number of modes

» Test mass parameters: substrate/coating absorption and scattering, curvature, etc.

» Tilt angle

4

Modal Expansion for Self-Consistent Fields

IFO fields represented as a finite set of Hermite-Gauss Modes» X-arm serves as a reference for the basis

IFO described in matrix form» Operators (matrices) for aperture diffraction, wavefront curvature mismatch,

thermal focusing, thermoelastic surface deformation, tilt

Self-consistent fields1. Compute absorbed power in substrate and coatings, update thermal

operators

2. Maximize recycled powera. Independently move ITMs for maximum carrier power

b. Adjust beamsplitter for dark port condition

c. Adjust recycling mirror for maximum recycled carrier power

3. Recompute the intracavity fields and repeat steps 1 and 2 until the recycled power has stabilized to the desired accuracy

5

New Features

Scripts with relevant interferometer parameters» Test mass curvature and substrate absorption from G. Billingsley’s

website

» Relevant mode cleaner configurations also included

Pre-computed file creation more user friendly Field surface plots and beam cross-sections

» Carrier, sidebands plotted directly

» Phase camera emulator (next release)

Test mass tilt Gravitational wave response

6

LIGO PRC Sideband Characteristics

Melody simulates an optimized IFO

Too little thermal loading predicted for LHO 2k, LLO 4k

Too much thermal loading causes early SB rollover in LHO 4k

» Peak gain at 2.5 W input power

» Melody predicts peak gain at 11 W input power

Possible causes:» Optic curvature

» Asymmetric Losses in each arm

5 10 15

10

20

30

40

50

60

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 1 2 3 4 50

0.05

0.1

0.15

0.2

INPUT POWER IN EACH SB (W)

AS

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF INDIV SB PWR AT AS PORT

upper sblower sb

0 2 4 6 8 100

2

4

6

8x 10

-3

TOTAL INPUT SB POWER (W)

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF TOTAL INPUT SB PWR AT AS PORT

0 2 4 6 8 100

5

10

15

TOTAL INPUT SB POWER (W)

TO

TA

L S

B P

OW

ER

GA

IN

PRC SB GAIN

Data from MelodyUsing LHO 4k

Parameters

Peak Gain ~ 35

Data from LHO 4k

2.5W SB Rollover

Peak Gain ~ 25Expected Gain ~ 35

0 20

0.5 4.5Courtesy A. Gretarsson

7

Symmetric vs. Asymmetric Losses

0 2 4 6 8 100

10

20

30

40

50

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

TOTAL INPUT POWER (W)

DP

PO

WE

R/I

NP

UT

PO

WE

R P

ER

SB DARK PORT TRANSMISSION

carrierupper sblower sb

0 1 2 3 4 50

0.005

0.01

0.015

0.02

TOTAL INPUT SB POWER (W)

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF TOTAL INPUT SB PWR AT AS PORT

0 1 2 3 4 50

2

4

6

8

10

12

TOTAL INPUT SB POWER (W)

TO

TA

L S

B P

OW

ER

GA

IN

PRC SB GAIN

0 2 4 6 8 100

10

20

30

40

50

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 2 4 6 8 100

0.1

0.2

0.3

0.4

0.5

TOTAL INPUT POWER (W)

DP

PO

WE

R/I

NP

UT

PO

WE

R P

ER

SB

DARK PORT TRANSMISSION

carrierupper sblower sb

0 1 2 3 4 50

0.005

0.01

0.015

0.02

TOTAL INPUT SB POWER (W)

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF TOTAL INPUT SB PWR AT AS PORT

0 1 2 3 4 50

2

4

6

8

10

12

TOTAL INPUT SB POWER (W)

TO

TA

L S

B P

OW

ER

GA

IN

PRC SB GAIN

0 5 10 15 200

10

20

30

40

50

60

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 5 10 15 200

0.2

0.4

0.6

0.8

TOTAL INPUT POWER (W)

DP

PO

WE

R/I

NP

UT

PO

WE

R P

ER

SB

DARK PORT TRANSMISSION

carrierupper sblower sb

0 2 4 6 8 100

0.5

1

1.5

2x 10

-3

TOTAL INPUT SB POWER (W)

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF TOTAL INPUT SB PWR AT AS PORT

0 2 4 6 8 100

5

10

15

TOTAL INPUT SB POWER (W)

TO

TA

L S

B P

OW

ER

GA

IN

PRC SB GAIN

0 5 10 15 200

10

20

30

40

50

60

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 5 10 15 200

0.2

0.4

0.6

0.8

TOTAL INPUT POWER (W)

DP

PO

WE

R/I

NP

UT

PO

WE

R P

ER

SB DARK PORT TRANSMISSION

carrierupper sblower sb

0 2 4 6 8 100

0.5

1

1.5

2x 10

-3

TOTAL INPUT SB POWER (W)

SB

PW

R/I

NP

UT

SB

PW

R

FRACTION OF TOTAL INPUT SB PWR AT AS PORT

0 2 4 6 8 100

5

10

15

TOTAL INPUT SB POWER (W)

TO

TA

L S

B P

OW

ER

GA

IN

PRC SB GAIN

0 2 4 6 8 100

10

20

30

40

50

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 2 4 6 8 100

0.2

0.4

0.6

0.8

TOTAL INPUT POWER (W)

DP

PO

WE

R/I

NP

UT

PO

WE

R P

ER

SB DARK PORT TRANSMISSION

carrierupper sblower sb

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0 2 4 6 8 100

10

20

30

40

50

TOTAL INPUT POWER (W)

SB

PO

WE

R G

AIN

PRC INDIVIDUAL SB GAIN

carrierupper sblower sb

0 2 4 6 8 100

0.2

0.4

0.6

0.8

TOTAL INPUT POWER (W)D

P P

OW

ER

/IN

PU

T P

OW

ER

PE

R S

B DARK PORT TRANSMISSION

carrierupper sblower sb

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Symmetric, Low Loss Asymmetric, ITMx AR High Loss Symmetric, ITM High Loss

0 20 0 10 0 10

0 20 0 10 0 10

8

Dark Port Sidebands – LHO 4k

-0.2 -0.1 0 0.1 0.20

0.5

1

1.5

2

2.5

3

beam size, m

fiel

d am

plit

ude

Field Amplitude Cross Section in x

-0.2 -0.1 0 0.1 0.20

0.5

1

1.5

2

2.5

3

beam size, m

fiel

d am

plit

ude

Field Amplitude Cross Section in y

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

phas

e, r

adia

ns

Phase Cross Section of Beam in x

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

phas

e, r

adia

ns

Phase Cross Section of Beam in y

-0.2 -0.1 0 0.1 0.20

5

10

15

20

beam size, m

field

am

pli

tud

e

Field Amplitude Cross Section in x

-0.2 -0.1 0 0.1 0.20

5

10

15

20

beam size, mfi

eld

am

pli

tud

e

Field Amplitude Cross Section in y

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase

, ra

dia

ns

Phase Cross Section of Beam in x

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase

, ra

dia

ns

Phase Cross Section of Beam in y

-0.2 -0.1 0 0.1 0.20

2

4

6

8

10

12

beam size, m

fiel

d a

mp

litu

de

Field Amplitude Cross Section in x

-0.2 -0.1 0 0.1 0.20

2

4

6

8

10

12

beam size, m

fiel

d a

mp

litu

de

Field Amplitude Cross Section in y

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase,

rad

ian

s

Phase Cross Section of Beam in x

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase,

rad

ian

s

Phase Cross Section of Beam in y

LHO 4k parameters 136 HG modes

1W total input power Sidebands show

interesting structure

8W total input power Sidebands have more

TEM00 content, especially the upper SB

Upper SB Lower SB

-0.2 -0.1 0 0.1 0.20

0.5

1

1.5

2

2.5

3

beam size, m

fiel

d a

mp

litu

de

Field Amplitude Cross Section in x

-0.2 -0.1 0 0.1 0.20

0.5

1

1.5

2

2.5

3

beam size, m

fiel

d a

mp

litu

de

Field Amplitude Cross Section in y

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase,

rad

ian

s

Phase Cross Section of Beam in x

-0.2 -0.1 0 0.1 0.2-4

-2

0

2

4

beam size, m

ph

ase,

rad

ian

s

Phase Cross Section of Beam in y

9

LHO 4k Lower Sideband, 1W Input Power

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X-Axis Beam Size, m

Field Amplitude MapY

-Axi

s B

eam

Siz

e, m

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X-Axis Beam Size, m

Field Phase Map

Y-A

xis

Bea

m S

ize,

m

0 50 100 1500

2

4

6

8

x 10-3

Mode Number

|fiel

d co

effi

cien

ts|2

Field Coefficients vs. Mode Index

0 50 100 150-3

-2

-1

0

1

2

3

Mode Number

fiel

d co

effi

cien

t pha

ses

Field Coefficients vs. Mode Index

10

Phase Camera Emulator

Melody Phase Camera Emulator

» Demodulation at 1 and 2

» 153 modes

Power recycling intracavity fields

LHO 4k phase camera

» Demodulation at 1 and 2

» Courtesy J. Betzweiser

2

-0.05 0 0.05

-0.05

0

0.05

X-Axis Beam Size, m

1 w Map

Y-A

xis

Bea

m S

ize,

m

2000

4000

6000

8000

10000

-0.05 0 0.05

-0.05

0

0.05

X-Axis Beam Size, m

2 w Map

Y-A

xis

Bea

m S

ize,

m

0

100

200

300

400

500

600

2 1

QuadratureQ

phaseInI

QIPicture

22

11

Phase Camera Emulator - Tilt

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X-Axis Beam Size, m

1 w Map

Y-A

xis

Bea

m S

ize,

m

0

1000

2000

3000

4000

5000

6000

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X-Axis Beam Size, m

2 w Map

Y-A

xis

Bea

m S

ize,

m

100

200

300

400

ITMx tilted 1 rad 1 W input power 136 modes Power recycling intracavity

fields

-0.1 0 0.1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

X-Axis Beam Size, m

DC Field Map

Y-A

xis

Bea

m S

ize,

m

0

1

2

3

4

5

x 105

1 2

12

Summary

Melody uses Hermite-Gauss modes to represent IFO fields

New features can be used to compare IFO behavior to simulations

Recycling cavity gain, mode shapes, thermal lensing, response to asymmetric loss, etc. can be simulated

Next release …» Phase camera emulator» Cross section plots» Astigmatism» Thermal Compensation

And beyond …» Thermal loading with inhomogeneous absorption