1) status of the muon g-2 experiment 2) edm searches in storage rings

59
1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration HEP03 Athens, 17-20 April 2003 E d B dt s d

Upload: ipo

Post on 06-Feb-2016

36 views

Category:

Documents


0 download

DESCRIPTION

HEP03 Athens, 17-20 April 2003. 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings. Yannis K. Semertzidis Brookhaven National Lab Muon g-2 Collaboration and EDM Collaboration. ‡. †. #. †. Muon g-2 Collaboration. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

1) Status of the Muon g-2 Experiment2) EDM Searches in Storage Rings

Yannis K. SemertzidisBrookhaven National LabMuon g-2 Collaboration and EDM Collaboration

HEP03Athens, 17-20 April 2003

EdBdtsd

Page 2: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

#

Muon g-2 Collaboration

†Spokesperson ‡Project Manager # Resident Spokesperson

Page 3: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Prof. Vernon W. Hughes (1921 2003)

Page 4: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

g-factors:1. Proton (gp=+5.586) and the neutron (gn=-3.826) are

composite particles.

2. The ratio gp/gn=-1.46 close to the predicted -3/2 was the first success of the constituent quark model.

3. The g-2 value of the electrons is non-zero due to quantum field fluctuations involving QED.

4. gµ - 2 is more sensitive than the electron by (mµ/me)2≈40,000.

Page 5: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

g - 2 for the muon

Largest contribution : 800

12

a

Other standard model contributions :

QED hadronic weak

Page 6: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Theory of aµ

• aµ(theo) = aµ(QED)+aµ(had)+aµ(weak)

+ aµ(new physics)

• aµ(QED) = 11 658 470.57(0.29)×10-10

• aµ(had) = 683.3 (7.7) ×10-10 (based on e+e-)

• aµ(weak) = 15.1 (0.4) ×10-10

• aµ(SM) = 11 659 169(7.7)×10-10

Page 7: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Theory of aµ

• aµ(theo) = aµ(QED)+aµ(had)+aµ(weak)

+ aµ(new physics)

• aµ(QED) = 11 658 470.57(0.29)×10-10

• aµ(had) = 683.3 (7.7) ×10-10 (based on e+e-)

• aµ(weak) = 15.1 (0.4) ×10-10

• aµ(SM) = 11 659 169(7.7)×10-10

Page 8: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Spin Precession in g-2 Ring(Top View)

Bmeaa

Momentumvector

Spin vector

Page 9: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Spin Precession in g-2 Ring(Top View)

Bmeaa

Momentumvector

Spin vector

Page 10: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• The Muon Storage Ring: B ≈ 1.45T, Pμ≈3.09 GeV/c

• Inner Ring of Detectors

•High Proton Intensity from AGS

•Muon Injection

Page 11: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

n=0.148

n=0.126

Field Focusing Index: n=0.137

Weak Focusing Ring.Tune Plane:

Page 12: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

4 Billion e+ with E>2GeV

aa

t

tAeNdtdN

cos1/ 0

Page 13: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

5-parameter Function Not Quite Adequate. Fourier Spectrum of the Residuals:

nff Ccbo 11

fg-2 ≈229 KHz fcbo≈466 KHz

Page 14: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Modulation of N0, A, with fcbo:

tttAetNdtdN aa

t

cos1/ 0

a

Page 15: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Modulation of N0, A, with fcbo:

tttAetNdtdN aa

t

cos1/ 0

a

tfeAt cbo

t

aacbo 2cos)(

Ncbo

t

N tfeANtN cbo 2cos1)( 00

Acbo

t

A tfeAAtA cbo 2cos1)(

Page 16: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Amplitudes of AN, AA, A , Consistent with Values from MC Simulations (10-2, 10-3, 10-3 respectively)

Modulation of N0, A, with fcbo:

tttAetNdtdN aa

t

cos1/ 0

a

tfeAt cbo

t

aacbo 2cos)(

Ncbo

t

N tfeANtN cbo 2cos1)( 00

Acbo

t

A tfeAAtA cbo 2cos1)(

Page 17: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Fit dN/dt of each Detector Separately with the 5-parameter (ideal) Function. Then Fit ωa versus Detector:

• Straight line fit: χ2/dof=59/21, ωa/2π=229070.60±0.14 Hz

Page 18: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Fit dN/dt of each Detector Separately with the 5-parameter (ideal) Function. Then Fit ωa versus Detector:

• Straight line fit: χ2/dof=59/21, ωa/2π=229070.60±0.14 Hz

• Sine wave fit: χ2/dof=24/19, ωa/2π=229070.64±0.14 Hz

Page 19: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Fit dN/dt with the 5-parameter Function including the Modulation of N0, A, with fcbo. Fit ωa versus Detector:

• Straight line fit: χ2/dof=24/21, ωa/2π=229070.54±0.16 Hz

a

Page 20: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• Function Modulating N0, A, with fcbo.a

Four Independent Analyses of ωa Using Various Studies:

Page 21: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• Function Modulating N0, A, with fcbo.

• Function Modulating N0, A with fcbo.a

Four Independent Analyses of ωa Using Various Studies:

Page 22: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• Function Modulating N0, A, with fcbo.

• Function Modulating N0, A with fcbo.

• Strobing the data at fcbo; ωa Becomes Independent of fcbo.

a

Four Independent Analyses of ωa Using Various Studies:

Page 23: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• Function Modulating N0, A, with fcbo.

• Function Modulating N0, A with fcbo.

• Strobing the data at fcbo; ωa Becomes Independent of fcbo.

• Ratio Method; ωa Becomes Independent of Slow Effects, e.g. Muon Losses.

a

Four Independent Analyses of ωa Using Various Studies:

Page 24: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• Function Modulating N0, A, with fcbo.

• Function Modulating N0, A with fcbo.

• Strobing the data at fcbo; ωa Becomes Independent of fcbo.

• Ratio Method; ωa Becomes Independent of Slow Effects, e.g. Muon Losses.

a

Four Independent Analyses of ωa Using Various Studies:

Systematic Uncertainties for the ωa Analysis.Source of Errors Size [ppm]Coherent Betatron Oscillations (CBO)PileupGain ChangesLost MuonsBinning & Fitting ProcedureOthersTotal

0.21 0.130.130.100.06 0.060.31

Page 25: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Magnetic Field measurement

The B field azimuthal variation at the center of the storage region. <B>1.45 T

The B field averagedover azimuth.

Page 26: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Magnetic Field Measurement

Systematic Uncertainties for the ωp Analysis.Source of Errors Size [ppm]Absolute Calibration of Standard ProbeCalibration of Trolley ProbeTrolley Measurements of B-fieldInterpolation with Fixed ProbesUncertainty from Muon DistributionOthersTotal

0.050.150.10 0.10 0.030.100.24

Page 27: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Computation of aμ:

• Analyses of ωa and ωp are Separate and Independent (“Blind Analysis”). When Ready, only then, Offsets are Removed and aμ is Computed.

pap

paa

Bme

a

///

Page 28: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Computation of aμ:

pap

paa

Bme

a

///

Data of 2000:aμ(exp)=11 659 204(7)(5)×10-10 (0.7 ppm)

Exp. World Average: aμ(exp)=11 659 203(8)×10-10 (0.7 ppm)

aμ(exp)- aμ(SM)=33.7(11)×10-10, 3σ effect!

Page 29: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Cannot be calculated from pQCD alonebecause it involves low energy scales.

Hadronic contribution (had1)

However, by dispersion theory,this a(had1) can be related to

)(e)(

e

hadronseeR

measured in e+e- collisions.or τ decay.

24 2

2

)()(3

)1,(

m

sRsKsdsm

hada

Page 30: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Cannot be calculated from pQCD alonebecause it involves low energy scales.

Hadronic contribution (had1)

However, by dispersion theory,this a(had1) can be related to

)(e)(

e

hadronseeR

measured in e+e- collisionsor τ decay (assuming CVC).

24 2

2

)()(3

)1,(

m

sRsKsdsm

hada

Page 31: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Evaluation of R

M. Davier et al., hep-ph/0208177.v3

Page 32: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Evaluation of R

M. Davier et al., hep-ph/0208177.v3

Page 33: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Difference between e+e- and

M. Davier et al., hep-ph/0208177.v3

Page 34: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• aμ(had1,e+e-)=(685±7)×10-10

• aμ(had1,τ) =(709±6)×10-10

e+e- based τ basedCorrect Correct τ-data interpr. wrongCorrect WrongWrong* CorrectWrong* Wrong T. Blum, hep-lat/0212018*Other (e+e-) collaborations are looking into it see, e.g., the

KLOE Collaboration, hep-ex/0210013

• aμ(exp)- aμ(SM, e+e-)=33.7(11)×10-10

• aμ(exp) -aμ(SM, τ) = 9.4(11)×10-10

M. Davier et al., hep-ph/0208177.v3

Why?

Page 35: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• aμ(had1,e+e-)=(685±7)×10-10

• aμ(had1,τ) =(709±6)×10-10

e+e- based τ basedCorrect Correct τ-data interpr. wrongCorrect WrongWrong* CorrectWrong* Wrong T. Blum, hep-lat/0212018*Other (e+e-) collaborations are looking into it see, e.g., the

KLOE Collaboration, hep-ex/0210013

• aμ(exp)- aμ(SM, e+e-)=33.7(11)×10-10

• aμ(exp) -aμ(SM, τ) = 9.4(11)×10-10

Page 36: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

• aμ(had1,e+e-)=(685±7)×10-10

• aμ(had1,τ) =(709±6)×10-10

e+e- based τ basedCorrect Correct τ-data interpr. wrongCorrect WrongWrong* CorrectWrong* Wrong T. Blum, hep-lat/0212018*Other (e+e-) collaborations are looking into it see, e.g., the

KLOE Collaboration, hep-ex/0210013

• aμ(exp)- aμ(SM, e+e-)=33.7(11)×10-10

• aμ(exp)- aμ(SM, τ) = 9.4(11)×10-10

Page 37: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Beyond standard model, e.g. SUSY

tanGeV1001013sgn2

susy

10susy

ma

W. Marciano, J. Phys. G29 (2003) 225

Page 38: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

WMAPing out Supersymmetric Dark Matter and PhenomenologyA.B. Lahanas and D.V. Nanopoulos, hep-ph/0303130

Figure 1: Cosmologically allowed regions of the relic density for tanβ=40 in the (M1/2, m0) plane. The mass of the top is taken 175 GeV. In the dark green shaded area 0.094<Ωxh2<0.129. In the light green shaded area 0.129<Ωxh2<0.180. The solid red lines mark the region within which the supersymmetric contribution to the anomalous magnetic moment of the muon is The dashed red line is the boundary of the region of which the lower bound is moved to its 2σ limit. The dashed-dotted blue lines are the boundaries of the region 113.5 GeV mHiggs 117.0 GeV. The cyan shaded region is excluded due to b → s γ constrain.

.10)106361( 11SUSYa

Page 39: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Supersymmetric Dark Matter in Light of WMAPJ. Ellis, K.A. Olive, Y. Santoso, and V.C. Spanos, hep-ph/0303043

Figure 2: The strips display the regions of the (m1/2, m0) plane that are compatible with 0.094<Ωxh2<0.129 and the laboratory constraints for μ>0 and tanβ = 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55. The parts of the strips compatible with gμ-2 at the 2-σ level have darker shading.

Page 40: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Precision measurements and “New Physics” W. Marciano, J. Phys. G29 (2003) 225

Electroweak physics:

α-1=137.035 998 77(40)Gμ=1.16637(1)×10-5 GeV-2

mz=91.1875(21) GeVmw=80.451(33) GeVSin2θw(mz)=0.23085(21)mt≈174.3±5.1 GeVΔαHad=0.02761

Global fits:

CL) (95% GeV 196 or GeV 85 54

34

H

H

mm

Experimentally:GeV 114 Hm

ΔαHad≈0.02752 (new e+e- data)

ΔαHad≈0.02780 (new τ data)

CL) (95% GeV 123 or GeV 51 36

24

H

H

mm

CL) (95% GeV 102 or GeV 42 30

20

H

H

mm

Page 41: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Precision measurements and “New Physics” W. Marciano, J. Phys. G29 (2003) 225

Electroweak physics:

α-1=137.035 998 77(40)Gμ=1.16637(1)×10-5 GeV-2

mz=91.1875(21) GeVmw=80.451(33) GeVSin2θw(mz)=0.23085(21)mt≈174.3±5.1 GeVΔαHad=0.02761

Global fits:

CL) (95% GeV 122 or GeV 23 49

23

H

H

mm

Experimentally:GeV 114 Hm

ΔαHad≈0.02752 (new e+e- data)

ΔαHad≈0.02780 (new τ data)

CL) (95% GeV 123 or GeV 51 36

24

H

H

mm

CL) (95% GeV 102 or GeV 42 30

20

H

H

mm

Page 42: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Precision measurements and “New Physics” W. Marciano, J. Phys. G29 (2003) 225

Electroweak physics:

α-1=137.035 998 77(40)Gμ=1.16637(1)×10-5 GeV-2

mz=91.1875(21) GeVmw=80.451(33) GeVSin2θw(mz)=0.23085(21)mt≈174.3±5.1 GeVΔαHad=0.02761

Global fits:

CL) (95% GeV 122 or GeV 23 49

23

H

H

mm

Experimentally:GeV 114 Hm

ΔαHad≈0.02752 (new e+e- data)

ΔαHad≈0.02780 (new τ data)

CL) (95% GeV 123 or GeV 51 36

24

H

H

mm

CL) (95% GeV 102 or GeV 42 30

20

H

H

mm

Page 43: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Present• In 2001 we have collected 3.7 Billion electrons

with E>1.8GeV from a run with negative muons (μ-). Run at n=0.122 and n=0.142. The analysis is going very well.

Page 44: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Present• In 2001 we have collected 3.7 Billion electrons

with E>1.8GeV from a run with negative muons (μ-). Run at n=0.122 and n=0.142. The analysis is going very well.

n=0.122 n=0.142

fg-2 ≈229 KHz fcbo ≈419 KHz

fg-2 ≈229 KHz fcbo ≈491 KHz

Page 45: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Muon and Deuteron Electric Dipole Moments in Storage Rings

• Revolutionary New Way of Probing EDMs.

What’s next…

EdBdtsd

Page 46: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Muon and Deuteron Electric Dipole Moments in Storage Rings

• Revolutionary New Way of Probing EDMs.

What’s next…

EdBdtsd

Page 47: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Muon and Deuteron Electric Dipole Moments in Storage Rings

• Forefront of SUSY Search

What’s next…

)tan( 10 11

cm•e 10 0.1 10

SUSY22

CP

ad

Page 48: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Muon Electric Dipole Moment at the 10-24e.cm Level

• It is Muon’s other (than g-2) Interesting Parameter

• It Probes SUSY (SM Predicted Value ~10-35e.cm)

• It Violates CP; Could explain the Baryon-Antibaryon Asymmetry in Universe

Page 49: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Spin Precession in g-2 Ring(Top View)

Bmeaa

Page 50: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Spin Precession in EDM Ring(Top View)

0a

Page 51: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

The muon spin precesses vertically (Side View)

BVdEddtsd

B

Page 52: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

The muon spin precesses vertically (Side View)

BVdEddtsd

B

Page 53: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Radial E-field to Cancel the g-2 Precession

• Radial E-Field: 2aBcE

The method works well for particles with small a

Page 54: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Radial E-field to Cancel the g-2 Precession

• Radial E-Field: 2aBcE

The method works well for particles with small a

Page 55: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Parameter Values of Muon EDM Experiment

• Radial E-Field:• E=2MV/m• Dipole B-field: B~0.25T

• Muon Momentum:

• Need NP2=1016 for 10-24e.cm. Muon EDM LOI: (http://www.bnl.gov/edm) to J-PARC, <one year of running.

2aBcE

5 MeV/c,500 P

Page 56: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Muon EDM Letter of Intent to JPARC/Japan, 2003

Page 57: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Deuteron EDM to <110-25 e•cm Sensitivity Level

• a=-0.143, B~0.25T, β~0.2

• The Best EDM Limit for T-odd Nuclear Forces (Khriplovich).

• It Improves the Current Proton EDM Limit by a Factor of >1000.

• Statistical Sensitivity ~10-26 e•cm for 107s.

Page 58: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Summary:

• aμ(exp)=11 659 203(8)×10-10 (0.7 ppm) from 2000 run.

• Have 3.7 Billion electrons with E>1.8GeV from the 2001 run (μ-). Run at different n-values: n=0.122 and 0.142. Analysis is going very well.

• There is a lot of effort to reconcile the e+e- and τ data. • Many e+e- collaborations are going to check the aμ(had1) (using

radiative return). • Calculate aμ(had1) on the Lattice.

Page 59: 1) Status of the Muon g-2 Experiment 2) EDM Searches in Storage Rings

Sensitive Muon and Deuteron Electric Dipole Moment Searches in Storage Rings

• Revolutionary New Way of Probing EDMs.

• Exciting Physics

…Summary