1 phase transitions in femtosecond laser ablation m. povarnitsyn, k. khishchenko, p. levashov joint...

19
1 Phase transitions in femtosecond laser ablation M. Povarnitsyn , K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia [email protected] E-MRS 2008 Spring Meeting Strasbourg, France 27 May, 2008

Upload: randall-johnson

Post on 03-Jan-2016

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

1

Phase transitions in femtosecond laser ablation

M. Povarnitsyn, K. Khishchenko, P. Levashov

Joint Institute for High Temperatures RAS, Moscow, [email protected]

E-MRS 2008 Spring MeetingStrasbourg, France

27 May, 2008

Page 2: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

2

1. Introduction

2. Setup parameters

3. Mechanisms of ultrashort laser ablation

4. Numerical model• Basic equations• Equation of state (EOS)• Thermal decomposition model (homogeneous nucleation)• Mechanical decomposition model (cavitation)

5. Results• Dynamics of ablation• Analysis of phase states• Sensitivity to EOS

6. Conclusions and future plans

Outline

Page 3: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

3

Setup parameters

laser

targets: Al, Au, Cu, Ni = 0.8 mkm,L = 100 fs, ( FWHM )F = 0.110 J/cm2

Single pulse, Gaussian profile

Actual questions:

• Heat affected zone (melted zone)• Shock wave formation• Parameters of the plume• Cavitation and fragmentation• Generation of nanoclusters• Ablation depth vs. laser fluence

Page 4: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

4

Stages of ultrashort ablation

t = 01. Pulse L ~ 100 fs

~10 nm

t < 1 ps

2. Energy absorption by conduction band electrons

~100 nm

t ~ 5 ps

3. Heat conductivity + electron-lattice collisions

t > 10 ps

4. Thermal decomposition and SW and RW generation

t ~ 100 ps

5. Mechanical fragmentation

V > 10 km/s

V ~ 1 km/s

V < 1 km/s

SWRW

RW

Page 5: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

5

Two-temperature multi-materialEulerian hydrodynamics

Basic equations Mixture model

Page 6: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

6

Two-temperature semi-empirical EOS

“Stable” EOS

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

Al

l+g

Te

mp

era

ture

, kK

s

lg

s+g

s+l

CP

kinetic models

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

Al

s

lg

s+g

s+l

CP

sp

bnbn

unstable

bn

“Metastable” EOS

Page 7: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

7

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

Al

s

lg

s+g

s+l

CP

Thermal decomposition of metastable liquid

Metastable liquid separation into liquid-gas mixture

dP/dt = -(P-Peq)/M

dT/dt = -(T-Teq)/T

unstable

Page 8: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

8

Model of homogeneous nucleation

V.P. Skripov, Metastable Liquids (New York: Wiley, 1974).

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

Al

s

lg

s+g

s+l

CP

0.9Tc<T<Tc

unstable

Page 9: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

9

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

P = 0 GPa P = -2 GPa P = -5 GPa

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

s

lg

s+g

s+l

CP

Mechanical spallation (cavitation)

P

P

P

Time to fracture is governed by the confluence of voids

liquid + voidsunstable

Page 10: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

10

Spallation criteria

Minimal possible pressure

D. Grady, J. Mech. Phys. Solids 36, 353 (1988).

P < -Y0

Energy minimization

Page 11: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

11

Dynamics of ablation of Al target

0

10

20

30

40

50

0

10

20

30

40-200 0 200 400 600

0

1

2

3

4D

ensi

ty (

g/cm

3 )

10 ps

-200 0 200 400 600

20 ps

-200 0 200 400 600

0

1

2

3

4

x (nm)

Den

sity

(g/

cm3 )

30 ps

-200 0 200 400 600

x (nm)

80 ps

Pre

ssur

e (G

Pa)

Pre

ssur

e (G

Pa)

TM

P

P

P

P

F = 5 J/cm2

M. E. Povarnitsyn et al. Phys. Rev. B 75, 235414 (2007).

Page 12: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

12

Results with “stable” and “metastable” EOS

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

Al

l+g

Te

mp

era

ture

, kK

s

lg

s+g

s+l

CP

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

Al

s

lg

s+g

s+l

CP

SW

P ~ 0

P ~ Pmin<0

SW

P ~ 0

(l)

unstable

F = 5 J/cm2

Page 13: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

13

Ablation of Al target

Page 14: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

14

Ablation of Au target

Page 15: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

15

Ablation of Cu target

Page 16: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

16

Ablation of Ni target

Page 17: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

17

Ablation depth vs. fluence

Experiment:

M. Hashida et al. SPIE Proc. 4423, 178 (2001).

J. Hermann et al. Laser Physics 18(4), 374 (2008).

Page 18: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

18

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

Al

l+g

Te

mp

era

ture

, kK

s

lg

s+g

s+l

CP

1

10

1

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Density, g/cm3

l+g

(s)

(g)

(s+l)

(l)

Te

mp

era

ture

, kK

Al

s

lg

s+g

s+l

CP

Mechanisms of ablation

Y. Hirayama, M. Obara Appl. Surf. Science 197-198 (2002)

unstable

Page 19: 1 Phase transitions in femtosecond laser ablation M. Povarnitsyn, K. Khishchenko, P. Levashov Joint Institute for High Temperatures RAS, Moscow, Russia

19

Conclusions and outlook

1. Simulation results are sensitive to the models used: absorption, thermal conductivity, electron-lattice collisions, kinetics of nucleation, fragmentation criteria, EOS, etc…

2. Time-dependent criteria of phase explosion and cavitation in metastable liquid state were introduced into hydrodynamic model

3. Usage of “metastable” and “stable” EOS allows to take into account kinetics of metastable liquid decomposition

4. Observed mechanisms of ablation:• thermal decomposition in the vicinity of critical point• cavitation in liquid phase at high strain rate and negative pressure

5. Ablation depth correlates with the melted depth

6. Kinetics of melting is in sight