1 ☼. 2 disturbances in water management osmolality © department of biochemistry (v.p.), faculty...

50
1

Upload: mavis-houston

Post on 17-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

1

2

Disturbances in water management

Osmolality

copy Department of Biochemistry (VP) Faculty of Medicine MU Brno 2009

3

Disturbances in water management

1 ECF is hyperosmolar

2 ECF is isoosmolar

3 ECF is hypoosmolar

4

ECF ICF

extracellularfluid

intracellularfluid

inicial situation(disturbance) advanced situation

Arrange of next schemas

1

2 the name of disturbances is according to changes in ECF( bdquohyper-iso-hypo-TONIC + over-de-HYDRATATIONldquo )

3

5

ECF is hyperosmolar

1 retention supply Na+

2 loss of bdquopureldquo water

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 2: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

2

Disturbances in water management

Osmolality

copy Department of Biochemistry (VP) Faculty of Medicine MU Brno 2009

3

Disturbances in water management

1 ECF is hyperosmolar

2 ECF is isoosmolar

3 ECF is hypoosmolar

4

ECF ICF

extracellularfluid

intracellularfluid

inicial situation(disturbance) advanced situation

Arrange of next schemas

1

2 the name of disturbances is according to changes in ECF( bdquohyper-iso-hypo-TONIC + over-de-HYDRATATIONldquo )

3

5

ECF is hyperosmolar

1 retention supply Na+

2 loss of bdquopureldquo water

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 3: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

3

Disturbances in water management

1 ECF is hyperosmolar

2 ECF is isoosmolar

3 ECF is hypoosmolar

4

ECF ICF

extracellularfluid

intracellularfluid

inicial situation(disturbance) advanced situation

Arrange of next schemas

1

2 the name of disturbances is according to changes in ECF( bdquohyper-iso-hypo-TONIC + over-de-HYDRATATIONldquo )

3

5

ECF is hyperosmolar

1 retention supply Na+

2 loss of bdquopureldquo water

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 4: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

4

ECF ICF

extracellularfluid

intracellularfluid

inicial situation(disturbance) advanced situation

Arrange of next schemas

1

2 the name of disturbances is according to changes in ECF( bdquohyper-iso-hypo-TONIC + over-de-HYDRATATIONldquo )

3

5

ECF is hyperosmolar

1 retention supply Na+

2 loss of bdquopureldquo water

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 5: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

5

ECF is hyperosmolar

1 retention supply Na+

2 loss of bdquopureldquo water

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 6: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

6

[Na+

Retention supply Na+

H2O

is hyperosmolarECF

water to the expansion of edema ndash danger of pulmonary edema deficit of water in disturbances of CNS

ECFECF

ICF

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 7: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

7

Retention supply Na+

causesexcessive administration of saltoveractivity of adrenal cortex (Conn Cushing)administration of steroids cerebral bdquosalt retention syndromeldquodrinking of see-water (after shipwreck)

= hypertonic overhydration

symptomsvomitingdiarrhoaelabile blood pressurechanges in central venous pressure pulmonary oedemarestlessness

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 8: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

8

Loss of bdquopureldquo water

H2O

- H2O

water to the

deficit of water mainly in disturbances of CNS

ECF

ICF

( normal hematocrite )

ECF is hyperosmolar

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 9: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

9

Loss of bdquopureldquo water = hypertonic dehydration

causesinadequate water intake (failing feeling of thirst in old persons)

increased water losses due to sweatingosmotic diureticshyperventilationchronic nephropathypolyuric phase of akute renal failurediabetes insipidus

symptomsthirstfeverdrynessrestlessnessdelirium coma

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 10: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

10

ECF is isoosmolar

1 loss of isotonic fluid ( blood circulation disturbances )

2 isoosmotic expansion of ECF( edema )

because of the same osmolality no transfers of waterbetween ECF and ICF the changes are in the volume of ECF only

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 11: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

11

Isotonic fluid losses = isotonic dehydration

causesvomitingdiarrhoeafistulaediureticsdrainage of ascitesburnssedative and CO intoxicationsunstroke

symptomsthirsttirednessfaitingweaknessrapid puls hypotonia collapsevomitingmuscle cramps

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 12: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

12

Isoosmotic expansion of ECF

= isotonic overhydration

causesexcessive administration of isotonic infuson solutions in oliguric and anuric statescardiac failurenephrotic syndromechronic uraemiaacute glomerulonephritiscirrhosis of liverprotein-losing enteropathy

symptomsoedemaeffusionsdyspnoea

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 13: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

13

ECF is hypoosmolar

1 loss of bdquopureldquo Na+

2 water intoxication

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 14: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

14

[Na+

H2O

Loss of bdquopureldquo Na+

is hypoosmolarECF

leakage of water into intracranial pressure

hypovolemia of blood circulation disturabces

ICF

ECF

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 15: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

15

Loss of bdquopureldquo Na+ = hypotonic dehydration

causesiadequate sodium intake after its losses through vomiting diarrhoea and sweatingincreased sodium losses due to adrenal failurechronic diuretic therapydiarrrhoeafistula losses

symptomstirednessfaitingweaknesshypotoniarapid puls collapsevomitingfevermuscle crampsdepressed conscinous level

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 16: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

16

H2O

Water intoxication

+ H2O

je hypoosmolar

leak of water into intracranial pressureICF

ECT

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 17: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

17

Water intoxication = hypotonic overhydration

přiacuteznakyweaknessnauseavomitingdyspnoeaconfusionloss of consciousness

causesexcessive administration of salt-free solutionsgastric lavage with waterincreased ADH activity

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 18: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

18

O

O

CH

NH

3

2 CHCH

3

CH

2

OH

NH

3

CHCH

CH

HO

HO x

OH CH

NH

3

CHCH

3

CH

x

x

bdquoextaacutezeldquo bdquoecstasyldquo

CH

NH

3

CHCH

3

CH

x

x

2

adrenalin epinephrine

efedrin ephedrine bdquopervitinldquo

hlavniacute strukturniacute rozdiacutely extaacuteze a přiacutebuznyacutech laacutetekthe main structural differences among bdquoecstasyldquo and similar substances

Intoxikace vodouWater intoxication

(= hypotonickaacute hyperhydratacepo požitiacute bdquoextaacutezeldquo)

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 19: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

19

Water ndash losses (1)

Insensible losses normal temperature 550 ml d-1

372 oC 600 378 700 383 800 389 900 394 1000

Sweating mild 300 ml d-1

medium 600 strong 1000 (continual 2 15 L d-1 )

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 20: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

20

Water - losses (2)

Breathing 440 ml d-1 (hyperventilation )

Urine (diuretics )

Stool 100 ml d-1 (diarrhoea )

Suction drains Water ndash metabolic gain

Terminal oxidation 300 - 500 ml d-1

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 21: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

21

Water - losses (3)

Sweat bull at the maximal load till 2 L h-1

bull the loss of water exceedes the loss of salt

bull common composition 58 mmol Na+ L-1 10 mmol K+ L-1

45 mmol Cl- L-1

Excretion of water 60 kidney (urine)20 skin (sweat)15 lungs 5 stool

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 22: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

22

Water ndash intake

intake of water 1 beverages 2 food (solid halfsolid) 3 oxidation of nutrients 1 g fat 107 ml water 1 g sugar 055 ml water 1 g protein 041 ml water

We have to pay close attention to the intake of water in small children and in eldery persons in which the intake of liquids is insufficient because of absentweakened feeling of thirst

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 23: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

23

Management of water

1 adiuretin (antidiuretic hormone vasopressin)

2 RAAS (renin ndash angiotensin ndash aldosterone system)

3 natriuretic peptides

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 24: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

24

Antidiuretic hormone (ADH )vasopressin

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 25: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

25

AngiotensinsAsp Arg Val Tyr Ile His Pro Phe His Leu

The structures of linear peptides are drawn angiotensin I (10 AA) angiotensin II (8 AA two AA were splitoff at the carboxylic end) and angiotensin III (7 AA is withoutone AA at amino end of the chain)Angiotensin I is produced from 2-globulin of blood plasma (angiotensinogen ndash the protein of liver origin) without physiological effect Angiotensins II + III are effective vasopressoric substances (increase blood pressure) they stimulate formation and secretion of aldosterone (the main mineralocorticoid adrenal zona glomerulosa)

Asp Arg Val Tyr Ile His Pro Phe

Arg Val Tyr Ile His Pro Phe

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 26: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

26

CH2OH

O

OHO

11

CO

H

aldosterone

( 1121-dihydroxy-320-dioxo-4-pregnen-18-al )

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 27: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

27

CH2OH

O

O11

CO

H

H

O

aldosterone (hemiacetal)

( 1118-epoxy-1821-dihydroxypregn-4-en-320-dion )

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 28: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

28

Natriuretic peptides

ANP BNP CNP 28 AA 32 AA 22 AA P-[ pmol l-1 ] [traces]

17membered rings ( Cys ndash S ndash S ndash Cys hellip )

bdquoVASODILATATION NATRIURESIS DIURESISldquo

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 29: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

29

Natriuretic peptidesPrecursors 126 AA ANP (28 AA) 108 AA BNP (32 AA) 53 AA CNP (22 AA)

NP split off at the C-terminal end- short biological half-lifes

Inaktiv N-terminal parts - longer biological half-life frequently determinated

NP receptors transmembrane type trasport cGMP

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 30: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

30

Natriuretic peptidesANP = bdquoatrialldquo - mainly from the atrial heart wall - the answer to increased stretch of muscle (due to increased volume of blood)BNP = bdquobrainldquo (first isolated from a pork brain) Despite the name it has origine predominantly in the heart atriaCNP = bdquoC-typeldquo

NP are the protection against a liquid overload anda hypertensionANP + BNP are of hormone properties CNP is close to paracrine factor

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 31: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

31

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 32: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

32

The ratio [Na+] [K+] in urine

U-[Na+] U-[K+] 24 (generally gt 1)

lt 1 bdquohyperaldosteronismusldquo

(accidental sample of urine is sufficient for determination we cannot know the volume)

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 33: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

33

OSMOLALITA

OSMOLALITY

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 34: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

34

Osmotic pressureand osmotic equilibrium

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 35: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

35

osmotic pressure = i c R T (mmol kg)

osmotic concentration = i c (mmol L)

c = molarityi = ionization

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 36: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

36

100 deg C

0 degC

čistaacutevoda

roztokosmotickyaktivniacutechčaacutestic

elevace(zvyacutešeniacute)bodu varu

deprese(sniacuteženiacute)bodu taacuteniacute

212 F

32 F

purewater

boiling-pointelevation

freezing-pointdepression

a solutionof osmoticactive particles

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 37: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

37

Osmometry ndash cryoscopic principle

water

solutionthermistorthermometer~ 0001 degC

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 38: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

38

The osmolality of blood plasma ~ 300 mmol kg ndash1

mosmol kg ndash1

man 290 10 mmol kg ndash1

woman 285 10 mmol kg ndash1

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 39: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

40

The correction formula for compensation of water in hypernatraemia

60 ofbody weight

TBW

140

140 Na litres OH2

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 40: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

41

The blood plasma osmolality Na+ K+ HCO3

- glucose urea

P-osmolality (mmol kg ndash1) 2[Na+] + [glucose] + [urea]

( 2 140 + 5 + 5 = 290 )

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 41: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

42

U-osm S-osm

2 normal kidney function (child and adult)

1 isostenuria 1 effective diuretics 2 renal insufficiency )

3 norm in the newborn

05 water intoxication

02 diabetes insipidus

) insufficiency renal 12 extrarenal

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 42: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

43

The urine osmolality ~ 1200 mmol kg ndash1

~ 500 urea Na+ K+ NH4

+

no calculation possible

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 43: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

44

Osmometr

Osmometer

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 44: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

45

Osmometer (cryoscopic measurement)

The sample cannot be measured repeatedly ndash freezing and unfreezingchange properties of protein

+ 1 mol kg-1 - 186 oC+ 1 mmol kg-1 - 000186 oC

(scheme)

The calibration 9485 g NaCl kg water = 9485 58443 = 0161953 mol NaCl kg water = = 16195 mmol NaCl kg water(16195 2 = 323905 mmol kg ndash at completely dissociation16195 186 = 301227 mmol kg 300 mmol kg water

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 45: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

46

OnkometrOncometer

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 46: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

47

Oncotic pressure ndash principle of measurement

the sample of blood serum plasma

semipermeable membrane(permeability to Mr 20000 )

isotonic saline solution

pressure sensor

The permeability of saline solution into sample through the membrane is given by osmosis The sensor measures the pressure decrease of saline solution (due to decrease its volume bdquounderldquo membrane)

The oncotic pressure is a part of the osmotic pressure of plasma maintained by macromoleculs

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 47: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

48

The oncotic pressure= colloid osmotic pressure = bdquoCOPldquo

COP = 266 ndash 333 kPa (approximately 3 kPa)

COP = 133 ndash 266 kPa danger of edema pulmonum

COP lt 14 kPa no survive without iv administration of albumin

(80 COP of plasma ensures albumin)

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 48: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

49

oncotic pressure

hydrostatic pressure

Capillary ndash the movement of fluid between plasma and ISF

arterial end of capillary

hydrostatic pressure exceedsoncotic pressure filtration

of fluid into ISF

venous end of capillary

oncotic pressure exceedshydrostatic pressure reabsorption

of ISF back to the capillary

length of blood capillary

pressure

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 49: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

50

The oncotic pressure- normal concentrations of blood proteins

P-albumin = 35 ndash 50 g l-1

P-total protein = 62 ndash 82 g l-1

Compare grave swelling and ascites in serious hypoproteinemias of the kwashiorkor type

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
Page 50: 1 ☼. 2 Disturbances in water management Osmolality © Department of Biochemistry (V.P.), Faculty of Medicine, MU Brno 2009

51

  • Slide 1
  • Slide 2
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • Slide 17
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • Slide 22
  • Slide 23
  • Slide 24
  • Slide 25
  • Slide 26
  • Slide 27
  • Slide 28
  • Slide 29
  • Slide 30
  • Slide 31
  • Slide 32
  • Slide 33
  • Slide 34
  • Slide 35
  • Slide 36
  • Slide 37
  • Slide 38
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51