010 simmons-smith ho

Upload: erabor

Post on 14-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 010 Simmons-Smith HO

    1/27

    Chemistry 206

    Advanced Organic Chemistry

    Handout09B

    Simmons-Smith Reaction: Enantioselective

    Variants

    D. A. EvansFriday ,October 1, 2001

    Jason S. Tedrow

    Evans Group Seminar, February 13, 1998

    For a recent general review of the Simmons-Smith reaction see:Charette & Beauchemin, Organic Reactions, 58, 1-415 (2001)

    09B-00-Cover page 2/26/02 1:22 PM

  • 7/29/2019 010 Simmons-Smith HO

    2/27

    The Simmons-Smith Reaction: Enantioselective Variants

    Jason S. Tedrow

    Evans group Friday seminar, February 13, 1998

    I. Discovery and Mechanistic Insights

    II. Chiral Auxiliaries

    III. Chiral Promoters

    IV. Catalytic Enantioselective Variants

    Leading ReferenceCharette, A.; Marcoux, J. Synlett 1995, 1197

    Some Cyclopropane Containing Natural Products

    O

    HN

    O

    HO

    OH

    HN

    O

    O

    FR - 900848

    O O

    O

    NH

    O

    Me

    MeO

    Me

    O

    O

    Me

    MeO

    H

    Me

    H OH

    O

    H

    Cl

    Callipeltoside

    Minale, et al, J. Am. Chem. Soc.1996, 118, 6202

    Yoshida, et al. J. Antibiotics, 1990,43, 748

    Barrett, et al. J. Chem. Soc. Chem. Commun., 1995, 649

    09B-01 12/17/99 12:18 PM

  • 7/29/2019 010 Simmons-Smith HO

    3/27

    Methods of Olefin Cyclopropanation

    R

    HCCl3Base

    + R

    Cl

    Cl Dihalocarbene

    O

    O

    O

    O

    H

    N2

    R

    + O

    O

    H

    N2

    RR

    CO2R

    H

    Cu(I), Rh(II) .... Metal Carbenoids

    X-ZnCH2Y Simmons - Smith Reaction(Carbenoid)

    O

    SH2C O

    O

    Ylides+

    First Reports

    R4

    R2R1

    R3

    CH2I2 + Zn(Cu)R4

    R2R1

    R3

    Et2O

    reflux, 48 hPh

    Ph

    Ph

    Ph

    48

    29

    49

    32

    27

    35

    31

    Olefin Product Yield

    OAc

    Cyclopropanation is highly stereoselective : cis-3-hexene gives only ciscyclopropane

    Authors believe that I-Zn-CH2I is present in solutionand is the active reagent or a precursor to a low-energy carbene

    Simmons, H.; Smith, R. J. Am. Chem. Soc., 1958, 80, 5323.

    OAc

    +

    09B-02 3/29/98 12:20 PM

  • 7/29/2019 010 Simmons-Smith HO

    4/27

    R1

    R4

    R2

    R3

    R1

    R4

    R2

    R3

    In all cases investigated, cyclopropanation iscompletely stereoselective.

    Electron-rich olefins give higher yieldsthan electron-deficient ones.

    O-methoxystyrene gave a higher yield ofcyclopropane than m-or p-methoxystyrene.

    First Mechanistic Investigations

    Et2O

    R

    R

    ZnI

    I

    R

    R

    ZnI

    I

    R

    R

    Zn(Cu)

    ZnI

    I

    CH2I2 + "I-Zn-CH2I" A

    + A

    +

    O

    Zn I

    CH3

    reflux, 48 h

    +

    Simmons, H.; Smith, R. J. Am. Chem. Soc.,1959, 81, 4256

    Afilter

    Cu

    A (Cu free)H2O

    CH3I

    I2CH2I2

    R1

    R4

    R2

    R3

    R1

    R4

    R2

    R3

    Zn(Cu) "I-Zn-CH2I" A

    First Mechanistic Investigations

    Zn

    Cl I

    Zn

    Cl I

    Zn

    Cl I

    Y

    Zn

    X

    Zn

    Y

    X

    Zn

    X

    CH2I2 +

    + AEt2O

    reflux, 48h

    Y

    Simmons, H; Smith, R. J. Am. Chem. Soc.,1964, 86, 1337

    No carbene insertion products.

    Both ethylene production (olefin absent) andcyclopropane formation show marked inductionperiod. Addition of ZnI2 shortens the inductionperiod slightly.

    Use of ICH2Cl instead of CH2I2 gives an activecyclopropanating reagent that releases CH3I upon additionof H2O and only sparing amounts of CH3Cl. CH2Cl2and CH2Br2 do not form active cyclopropanation reagents.

    I-Zn-CH2I Zn(CH2I)2 + ZnI2

    09B-03 3/29/98 12:21 PM

  • 7/29/2019 010 Simmons-Smith HO

    5/27

    Improvements on Reaction Logistics

    Furukawa, J.; Kawabata, C.; Nishimura,N. Tet. Lett.,1966, 28, 3353

    Reproducibility of Zn reagent:

    Zn - Ag couple

    CH2I2

    More reactive towards CH2I2 Higher yielding

    Denis, J.; Girard, C.; Conia, J. Synthesis,1972,549

    Reaction Accelerators:

    Zn - Cu couple

    CH2Br2, additive

    TiCl4, acetyl chloride, and TMSCl acceleratecyclopropanation dramatically (1 - 2 mol%)

    Friedrich, E. et al.; J. Org. Chem.,1990, 2491

    New Zinc Source:

    CH2N2, ZnI2Wittig, et al.; Angew. Chem.,1959, 71, 652

    R2Zn

    CH2I2

    Furukawa's Breakthrough

    Furukawa, J.; Kawabata, N.; Nishimura, J. Tetrahedron,1968, 24, 53

    O

    O

    O

    Cl

    Et2Zn, CH2I2

    Solvent

    benzene

    benzene

    benzene

    benzene

    benzene

    ether

    11

    11

    10

    3

    15

    26

    79

    76

    60

    92

    80

    42

    Substrate Solvent Time (h) Yield (%)

    Electron-rich olefins react much faster than electron-poor ones.

    Complete retention of olefin geometry: cis-olefins give cis-cyclopropanes and trans-olefins

    produce transproducts.

    PhEt2Zn, PhCHI2

    ether, rt 69%

    syn : anti94 : 6

    Furukawa, J.; Kawabata, N.; Fujita, T. Tetrahedron,1970, 26, 243

    09B-04 3/29/98 12:22 PM

  • 7/29/2019 010 Simmons-Smith HO

    6/27

    ANTI

    OH OH

    OH

    OH

    OH

    OH

    OH

    OH

    O

    H

    Zn

    I

    X Y

    150:1 cis : trans 75% yieldWinstein, S.; Sonnenberg, J.J. Am. Chem. Soc., 1961, 91,3235

    Authors note that the reaction with cyclopentenol is much faster thanwith the corresponding acetate or cyclopentadiene

    > 99 : 1

    9 : 1

    > 99 : 1

    O

    H

    Simmons-Smith Directed Cyclopropanations

    Substrate

    ZnI

    Product Selectivity

    X

    Y

    Favored

    Poulter, C. D.; Friedrich, E. C.; Winstein, S. J. Am. Chem. Soc.,1969, 91, 6892

    Disfavored

    SYN

    Zn(Cu)

    CH2I2

    1.54 0.1

    OH

    OCH3

    OH

    OH

    OH

    OH OH

    OH OH

    O

    ZnSolvent

    II

    ZnI

    I

    1.00

    0.46 0.05

    0.50 0.05

    H

    Simmons-Smith Directed Cyclopropanations

    0.091 0.012

    All substrates give exclusively ciscyclopropane adducts

    Substrate krel

    Rickborn, B.; Chan, J. J. Am. Chem. Soc.,1968, 90, 6406

    Author's Proposal

    Stereoelectronic effects: (C-O) thus reducing thenucleophilicity of the olefin(Hoveyda, A.; Evans, D. A.; Fu, G.; Chem. Rev. 1993, 93, 1307)

    09B-05 3/29/98 12:23 PM

  • 7/29/2019 010 Simmons-Smith HO

    7/27

    Ph

    CH3

    Ph

    O

    O

    OH

    OBn

    Ph

    O

    O

    na

    100 (70)

    CO2i-Pr

    99 (>99.5)

    CO2i-Pr

    78 (> 99.5)

    94 (12)

    92 (88)

    100 (85)

    89 (41)

    64 (98)

    Denmark: Studies of Zn(CH2Cl)2 and Zn(CH2I)2

    + Zn(CH2X)2 (2 equiv)

    82 (91)

    na

    na

    SubstrateYield X = Cl

    (X = I)d.e. X = Cl

    (X = I)

    (ClCH2)2Zn reactions in benzene were plagued bynumerous side products resulting from reaction withsolvent

    Denmark, S.; Edwards, J. J. Org. Chem.1991, 56, 6974

    2 ICH2Cl + Et2Zn Zn(CH2Cl)2

    2 CH2I2 + Et2Zn Zn(CH2I)2

    DCE

    OBn OBn OBn

    2

    OH

    OBn

    >99 :1

    OH

    9 : 1

    OH

    1 : 1

    OBn OBn

    syn:anti

    syn:anti

    Charette, A.; Marcoux, J. Synlett, 1995, 1197

    Charette: Selective Cyclopropanation Conditions

    Syn Anti

    Et2Zn(equiv) ICH2X(equiv) solvent

    X = I (4) ClCH2CH2Cl

    2 X = Cl (4) "

    2 X = I (4) toluene

    Et2Zn(equiv)

    ICH2X(equiv)

    solvent

    10 X = I (10) toluene 1 : >25

    2 X = Cl (2) toluene 6 : 1

    2 X = Cl (4) ClCH2CH2Cl 1 : >25

    2 X = I (4)

    2 X = I (4)

    Zn(CH2I)2DME (2 equiv)

    toluene (0.35M)

    toluene (0.05M)

    toluene

    1 : >25

    1 : 2

    >25 : 1

    09B-06 3/29/98 12:25 PM

  • 7/29/2019 010 Simmons-Smith HO

    8/27

    Chiral Auxiliary Methods: Acetals

    Arai, I; Mori, A.; Yamamoto, H. J. Am. Chem. Soc.1985, 107, 8254

    R1

    O

    O

    CO2R2

    CO2R2

    R1

    O

    O

    CO2R2

    CO2R2

    O

    O

    CO2i-Pr

    CO2i-Pr

    O

    O

    Et2Zn, CH2I2

    hexane,-20 C to 0 C

    CO2Et

    CO2Et

    There was no mention of stereochemical rationale. However,later publications state that the mechanism of induction isunclear.

    (Mori, A; Arai, I; Yamamoto, H. Tetrahedron, 1986,42, 6458)

    R1 = MeR2 = i-Pr

    R1 = n-PrR2 = i -Pr

    R1 = PhR2 = i-Pr

    90

    91

    92

    94

    91

    91

    81

    61

    89

    88

    Acetal Yield (%) d.e. (%)

    O

    O

    O

    OOBn

    OBn

    OBn

    OBn

    O

    O

    O

    O

    Substrate

    n

    O

    O

    n

    d.e.

    MeO2C

    Yield

    n=1

    n=2

    n=3

    O

    O

    Zn-Cu, CH2I2

    Et2O, reflux

    3

    80

    80

    77

    90

    33

    86

    0

    98

    72

    90

    99

    88

    88

    62

    Ketals formed from correspondingketones in good yields (43-93%)

    No mention of stereochemicalrationale

    Mash, E.; Nelson, K. J. Am. Chem. Soc. 1985, 107, 8256

    Mash: Ketals for Cyclic Olefins

    09B-07 3/29/98 12:26 PM

  • 7/29/2019 010 Simmons-Smith HO

    9/27

    R

    X

    RO2C

    R1

    O

    O

    CO2R2

    CO2R2

    R1

    O

    O

    CO2R2

    CO2R2

    OO

    H

    R

    RO2C

    ZnII

    Zn

    I

    RO2C

    O

    O

    H

    R

    RO2C

    O

    O

    CO2R

    CO2RH

    Zn

    I

    I

    Zn

    I

    MAJOR

    O

    O

    Possible Explanation for Yamamoto's Results

    CO2R

    CO2R

    Et2Zn, CH2I2

    hexane,-20C to 0C

    H

    R

    Sterically favored conformation and stereoelectronicallyalligned: C-I and C-Zn -

    Sterically disfavored and stereoelectronicallymisaligned

    MAJOR

    RX

    RO2C

    OO

    H

    RO2C

    ZnII

    Zn

    I

    RO2C

    OO

    H

    R

    RO2C

    MINOR

    Sterically favored conformation butstereoelectronically misaligned forcyclopropanation

    O

    O

    CO2R

    CO2RH

    R Zn

    I

    I

    Zn

    O

    O

    CO2R

    CO2RH

    R

    Disfavored due to steric interactions with theester group

    MINOR

    O

    O

    O

    OOBn

    OBn

    OBn

    OBn

    MINOR

    O

    O

    O

    CH2OBn

    n

    Bn

    n

    Zn

    I

    I

    Zn-Cu, CH2I2

    Et2O, reflux

    O

    O

    O

    CH2OBn

    Chelation reduces the electrophilicity of the Zn reagentenough to slow cyclopropanation from this face of the olefin

    Bn

    Possible Explanation for Mash's Ketals

    X

    O

    O

    ZnII

    Zn

    I

    BnO

    BnO

    O

    O

    BnO

    BnO

    MAJOR

    Coordinated away from BnO-CH2 group andstereoelectronically aligned: C-I and C-Zn -

    09B-08 3/29/98 12:30 PM

  • 7/29/2019 010 Simmons-Smith HO

    10/27

    OO

    PhPh

    OO

    nn

    Ph Ph

    Zn-Cu, CH2I2

    Et2O, reflux

    n = 1

    n = 2

    n = 3

    OO

    PhPh

    66

    90

    77

    62

    Diastereomerratio

    13:1

    19:1

    15:1

    16:1

    yieldSubstrate

    Ketalization of starting enones proceedin good yields (48 - 87%)

    Most cyclopropane ketal products arehighly crystalline

    No mention of stereochemical rationale

    Mash, E.; Torok, D. J. Org. Chem. 1989, 54, 250

    Mash: New Ketals For Directed Cyclopropanation

    O

    OH

    O

    OH

    OR

    OR

    n n

    Et2Zn, CH2I2

    Et2O, rt

    n = 0

    n = 1

    n = 2

    n = 3

    81

    86

    77

    58

    80

    57

    >99

    >99

    >99

    >99

    O

    >99

    i-Pr OH

    >99

    i-Pr

    Yield d.e.Susbstrate

    OH1. PCC

    2. K2CO3, MeOH

    60%

    Sugimura, T.; Yoshikawa, M.; Futugawa, T.; Tai, A. Tetrahedron1990, 46, 5955

    Chiral Enol Ethers

    Substrates are derived from the appropriateketals by treatment with i-Bu3Al.

    Diastereoselectivity improved with highertemperatures; ZnI2 generally slowed the reactionand had variable effects on d.e.

    09B-09 3/29/98 12:31 PM

  • 7/29/2019 010 Simmons-Smith HO

    11/27

    OHC CO2Me

    CO2Me

    O

    O

    i-PrO2C

    i-PrO2C

    CO2MeO

    Bu3Sn

    OEt

    Chiral Acetals in Synthesis

    1. HC(OEt)3NH4NO3

    2. L-DIPT, TsOHpyr. 78%

    1. CH2I2,Et2Zn

    2. TsOH,MeOH, H2O

    CO2Me

    1. BuLi,

    OHC

    2. TsOH, THF-H2O

    Ph3P

    94% 74%

    41%

    4I

    BuLi, HMPA

    2. NaOH, MeOH-THF-H2O

    CO2H

    1.

    24% yield

    5,6-methanoleukotriene A4

    H

    Mori, A.; Arai, I.; Yamamoto, H. Tetrahedron, 1986, 42, 6447

    X=

    RB

    O

    O

    COX

    COX

    RB

    O

    O

    COX

    COX ROH

    Zn(Cu), CH2I2

    Et2O, reflux

    O

    OB

    H2O2, KHCO3

    THF

    Chiral Auxiliary Methods: Boronic Esters

    n-Butyl

    "

    "

    Benzyl

    "

    Phenyl

    "

    O X

    O

    X

    O-Me

    O-iPr

    N(Me)2

    O- iPr

    N(Me)2

    O- iPr

    N(Me)2

    41

    44

    48

    57

    61

    60

    46

    73

    86

    93

    81

    89

    73

    91

    R=

    R

    Yield(%)

    Zn

    %ee of ROH

    RI

    Imai, T.; Mineta, H.; Nishida, S. J. Org. Chem.. 1990, 55, 4996

    Proposed Model of Stereochemical Induction

    09B-10 3/29/98 12:33 PM

  • 7/29/2019 010 Simmons-Smith HO

    12/27

    I

    OR

    HN

    O

    Ph

    OR

    HN

    O

    Ph

    XcHN

    O

    Ph

    XcHN

    O

    Ph

    O

    NH

    O

    PhZn

    Et

    Zn

    I

    O

    Ph

    O

    NH

    O

    TIPS

    R = H

    16-62% y

    Zn

    X

    R = TIPS

    24 to 56% y

    99 : 1

    99 : 1

    Ph

    Camphor Derived Auxiliaries

    Et2Zn, CH2I2

    CH2Cl2, rt

    Tanaka, K.; et al.; Tet. Asymm.1994, 5, 1175

    Addition of (0.5 equiv) of L(-), D(+) or meso-diethyltartrate to the reaction improved the yield in bothsubstrates without compromising selectivity.

    HN

    R

    O

    PhHNR

    R = H

    R = TIPS

    Davies' Iron Acyl Complexes as Chiral Auxiliaries

    Ambler, P.; Davies, S. Tet. Lett.1988, 29, 6979

    CO

    Fe

    O RCp

    Ph3P

    CO

    Fe

    O RCp

    Ph3PZnCl2 (4 equiv), RnM (1.5 equiv)

    CH2I2 (4 equiv), toluene, r.t.

    Me

    n-Pr

    n-Bu

    i-Pr

    9 : 1

    14 : 116 : 1

    24 : 1

    91

    9195

    93

    R= selectivity Yield(%)

    Using Et2Zn, CH2I2 Using Et3Al, CH2I2

    Me

    n-Pr

    n-Bu

    i-Pr

    16 : 1

    18 : 119 : 1

    24 : 1

    74

    8662

    49

    R= selectivity Yield(%)

    09B-11 3/29/98 12:34 PM

  • 7/29/2019 010 Simmons-Smith HO

    13/27

    Ambler, P.; Davies, S. Tet. Lett.1988, 29, 6979

    CO

    Fe

    O R1

    CpPh3P

    CO

    Fe

    Ph2P

    O

    Fe

    Ph2P

    O

    CpCO

    Fe

    Ph2P

    O

    CpCO

    Davies' Rationale for Selectivity

    "CH2"

    R2

    R1 = HR2 = Me

    63 1.3 : 1 11 1 : 1

    R1 = MeR2 = Me

    89 11 : 1 80 30 : 1

    Yield(%) selectivity Yield(%) selectivity

    "X-Zn-CH2I" Et3Al, CH2I2

    Lewis acid complexation to the carbonyl introducessevere non-bonding interactions with the cis-methylgroup

    The "methylene" approaches the olefin away from COand Ph3P appendages

    L.A.

    LA

    Charette's Chiral Auxilary

    O

    OBn

    BnO

    BnOOH

    OR1

    R2

    R3

    O

    OBn

    BnO

    BnOOH

    OR1

    R2

    R3

    Sugar-O Pr

    Sugar-O Me

    Sugar-O Ph

    Sugar-O Me

    Sugar-O Pr

    Sugar-O

    Sugar-O

    Et2Zn (10 equiv)

    CH2I2 (10 equiv)toluene, >97% y

    Me

    Charette, A.; Ct, B.; Marcoux, J. J. Am. Chem. Soc.1991, 113, 8166

    -35 to 0

    -35 to 0

    -35 to 0

    -35 to 0

    -50 to -20

    -20 to 0

    -35 to 0

    124 : 1

    >50 : 1

    130 : 1

    111 : 1

    114 : 1

    >50 : 1

    100 : 1

    Substrate Temp (C) Diastereoselectivity

    Auxiliary is derived from DMDO epoxidation oftri -O-benzyl-D-glucal followed by reaction withthe desired allylic alcohol

    Enantiomeric cyclopropanes can be formedusing L-rhamnose as the chiral auxiliary withvirtually the same selectivities

    OTBS

    09B-12 3/29/98 12:35 PM

  • 7/29/2019 010 Simmons-Smith HO

    14/27

    O

    O

    O

    OH

    OR

    RO

    HO

    RO

    HO

    O

    OH

    BnOH2CBnO

    BnO

    O

    R1

    R3

    R2

    O

    OH

    BnOH2CBnO

    BnO

    O

    R1

    R3

    R2

    Me

    Pr

    Me

    Ph

    D-series

    D-series (readily available)

    Me

    L-glucopyranoside series(expensive)

    Et2Zn, CH2I2

    t-BuOMe, 0C

    93

    83

    95

    93

    16.5 : 1

    12.3 : 1

    11.0 : 1

    15.0 : 1

    Substrate Yield (%) Selectivity

    D-Glucopyranosides:A Cheaper Alternative to

    L-Rhamnose

    Charette, A.; Turcotte, N.; Marcoux, J. Tet. Lett.1994,35, 513

    Sugar-O

    Sugar-O

    Sugar-O

    Sugar-O

    O

    O

    BnOBnO

    R1

    R3

    R2O

    Zn

    I

    OO

    O

    OBnOBn

    OBnR1

    R2

    R3

    Zn

    I

    R

    R

    O

    O

    BnOBnO

    R1

    R3

    R2O

    Zn

    Zn IEt

    Free hydroxyl group reacts immediatelyto form Zn-alkoxide. This intermediatecomplexes RZn(CH2I), the active reagent.

    O-ZnEt may serve to activate the (CH2I)ZnRmoeity, not only enhancing the electrophilicityof the methylene, but rigidifying the chelatestructure as well

    R

    Unfavorable bonding interations with-series might explain slower reaction andlower selectivites.

    EtZnZnEt

    Stereochemical Rationale for Charette Auxiliary

    Charette, A.; Marcoux, J. Synlett 1995, 1197

    BnO

    BnO

    09B-13 3/29/98 12:37 PM

  • 7/29/2019 010 Simmons-Smith HO

    15/27

    O

    AcO

    BnOBnO

    O

    O

    OH

    BnOBnO

    O

    R1

    R3

    R2

    O

    OH

    BnOBnO

    R1

    R3

    R2

    NH

    CCl3

    O

    O

    OH

    BnOBnO

    O

    R1

    R3

    R2

    O

    OH

    BnOBnO

    R1

    R3

    R2O

    R1

    R3

    R2HO

    O

    CHO

    BnOBnO

    1. BF3OEt2 (1 equiv), ROH

    2. TiCl4 (1 equiv)

    3. MeONa, MeOH

    O

    1. BF3OEt2 (cat), ROH

    2. MeONa, MeOH

    BnO

    BnOBnO

    1. Tf2O, pyr

    2. DMF, pyr,H2O,

    or and

    70-80%

    1. SmI2, THF,EtOH

    2. Ms2O,

    67%

    Installation and Removal of Charette's Auxiliary

    Charette, A.; Marcoux, J. Synlett 1995, 1197

    BnO

    BnO

    BnO

    BnOBnO

    BnO

    OX

    O R

    OX

    O R

    -O Pr

    Pr-O

    -O Ph

    -O Me

    Me

    -O Ph

    -O

    ICH2Cl, Et2Zn

    toluene -20 C

    Me

    "

    "

    "

    "

    3

    5

    5

    5

    5

    3

    3

    3

    3

    3

    -OH

    -OH

    -OMe

    -OAc

    -OTBS

    -OH

    -OH

    -OH

    -OH

    -OH

    >97

    88

    97

    85

    >95

    97

    97

    98

    90

    95

    >20 : 1

    > 15 : 1

    1.6 : 1

    5.3 : 1

    1.3 : 1

    24 : 1

    24 : 1

    23 : 1

    15 : 1

    > 20 : 1

    SubstrateEt

    2Zn,

    ClCH2I(equiv)

    OX = Yield(%) d.s.

    Both enantiomers of the cyclohexane diol areavailable through enzymatic resolution

    Charette, A.; Marcoux, J. Tet. Lett. 1993, 34, 7157.

    Charette: Simplifying the Auxiliary

    OP

    OH 1. RBr

    2. deprotectOH

    OR

    OP

    OR1. Tf2O, Bu4NI

    2. BuLi

    ROH

    (92-97%)

    (ca 80%)

    Installation:

    Removal:

    OTIPS

    09B-14 3/29/98 12:38 PM

  • 7/29/2019 010 Simmons-Smith HO

    16/27

    CO2H

    H2NEt

    Et

    OH O

    OMe

    EtCO2Me

    O-p-NO2Bz

    EtCO2Me

    OH

    EtCO2Me

    OHO

    AcO

    BnOBnO

    OCNHCCl3

    O

    OH

    BnOBnO O

    TIPSO

    Et

    H

    O

    OH

    BnOBnO O

    TIPSO

    H

    Et

    O

    OH

    BnOBnO O

    TIPSO

    Et

    H

    O

    OH

    BnOBnO O

    TIPSO

    H

    Et

    O

    OH

    BnOBnO

    K2CO3

    MeOH87%

    Charette, A.; Ct. B. J. Am. Chem. Soc.1995,117, 12721

    Charette: Synthesis of Coronamic Acids

    Ph3P, DEAD, THF

    p-NO2C6H4CO2H85% yield

    O

    TIPSO

    Et

    H

    A

    1. A, BF3OEt2. DIBAL-H3. TIPSOTf

    1. TIPSOTf2. DIBAL-H

    3. A, BF3OEt4. K2CO3, MeOH

    O

    OH

    BnOBnO

    73% y

    O

    TIPSO

    H

    Et

    78% y

    Et2Zn (7 equiv)CH2I2 (5 equiv)

    CH2Cl2, -30 C

    Et2Zn (4 equiv)ClCH2I (4 equiv)

    CH2Cl2, -60 C

    93% yield> 99 : 1

    98 % yield> 66 : 1

    BnO

    BnO

    BnO

    BnO

    BnO

    BnO

    BnO

    Charette: Synthesis of Coronamic Acids

    HO

    TIPSO

    Et

    H

    HO

    TIPSO

    H

    Et

    75% from auxiliaryremoval

    80% from auxiliaryremoval

    RuCl3, NaIO4(83%) HO2C

    TIPSO

    Et

    H

    Charette, A.; Ct. B. J. Am. Chem. Soc.1995,117, 12721

    BOCNH

    CO2H

    Et

    A

    RuCl3, NaIO4(91%) HO2C

    TIPSO

    H

    Et

    B

    t-BuO2C

    NHBOC

    Et

    BOCNH

    CO2H

    Et

    t-BuO2C

    NHBOC

    Et

    N-BOC-(-)-allo-Coronamic acid

    N-BOC-(+)-Coronamic Acid

    N-BOC-(-)-Coronamicacid t-Bu ester

    N-BOC-(+)-allo-Coronamic acid

    t-Bu ester

    82% Yield

    42% Yield

    64% Yield

    41% Yield

    5 steps

    5 steps

    5 steps

    5 steps

    09B-15 3/29/98 12:39 PM

  • 7/29/2019 010 Simmons-Smith HO

    17/27

    NCH3

    OHH3C

    H3C Ph

    Et2ZnN

    ZnO

    H3C

    H3C Ph

    H3C

    nEt

    PhCH2OH

    Zn(CH2I)2Ph

    CH2OH

    Et2Zn(equiv)

    CH2I2(equiv)

    A(equiv)

    A

    Yield (%) %eeSolvent

    toluene

    THF

    toluene

    THF

    DME

    toluene

    DME

    2

    2

    2

    2

    2

    1

    1

    2

    2

    2

    2

    2

    2

    2

    4

    4

    2

    2

    4

    4

    4

    82

    81

    nd

    nd

    85

    63

    54

    18

    -11

    nd

    nd

    23

    15

    19

    The chiral controller A was shown to dramaticallydecelerate the reaction.

    Denmark: Ephedrine-Derived Chiral Controller

    Denmark, S.; Edwards, J. Synlett1992, 229

    nd = not determined

    R2

    R1 OH

    1. Et2Zn

    2.XOC COX

    HO OH

    3. Et2Zn, CH2I2R2

    R1 OH

    OEt

    OEt

    OMe

    OMe

    Oi-Pr

    On-Bu

    OEt

    OEt

    Ph OH

    Ph CH2OH

    Ph(H2C)3 CH2OH

    "

    "

    "

    "

    "

    CH2Cl2

    Cl(CH2)2Cl*

    CH2Cl2

    Cl(CH2)2Cl

    CH2Cl2

    CH2Cl2

    CH2Cl2

    CH2Cl2

    22

    54

    12

    52

    24

    17

    60

    46

    50

    79

    64

    23

    27

    58

    70

    81

    Substrate X = Solvent Yield(%) %ee

    Reactions are very slow, even at rt.

    Reaction work-up is plagued by difficultpurification

    All enantiomeric excesses were determinedby rotation.

    *Reaction performed at -12 C

    0 C to rt

    Ukaji, Y.; Nishimura, M.; Fujisawa, T. Chem. Lett.1992, 61

    Fujisawa: Tartrate-Controlled Cyclopropanation

    09B-16 3/29/98 12:40 PM

  • 7/29/2019 010 Simmons-Smith HO

    18/27

    R1

    R3Si OH

    1. Et2Zn

    2. (+)-DET, 0 C

    3. Et2Zn, CH2I2

    R1

    R3Si OH

    PhMe2Si OH 42

    Substrate Yield(%) %ee

    Silyl substrates react much fasterthan the all-alkyl substrates (4 - 20 h).

    Ukaji, Y.; Sada, M.; Inomata, K. Chem. Lett.1993, 1227

    Ukaji: Tartrate-Controlled Cyclopropanation of Silated Olefins

    PhMe2Si OH

    Me

    Me3Si OH

    Me

    Ph3Si OH

    Me

    PhMe2Si OH

    Bu

    Me OH

    SiMe3

    Ph OH

    SiMe3

    88

    53

    82

    84

    50

    84

    -22

    -30

    -30

    0

    -30

    0

    0

    Temp (C)

    77

    92

    87

    90

    87

    46

    80

    OHPh

    OO

    B

    Me2NOC CONMe2

    Bu

    (1.1 equiv)1.

    2. Zn(CH2I)2, rt, 2 hOHPh

    OMPh

    Li

    Na

    K

    MgBr

    ZnEt

    H

    H

    H

    H

    H

    M =Zn(CH2I)2

    (equiv) Solventenantioselectivity

    (%ee)

    5

    5

    5

    5

    5

    5

    5

    5

    2.2

    1 *

    CH2Cl2

    CH2Cl2

    CH2Cl2

    CH2Cl2

    CH2Cl2

    CH2Cl2

    toluene

    DME

    CH2Cl2

    CH2Cl2

    (89)

    (58)

    (91)

    (33)

    (85)

    (93)

    (93)

    (81)

    (93)

    (93)

    17.1 : 1

    3.8 : 1

    22 : 1

    2 : 1

    12 : 1

    26 : 1

    26 : 1

    9.7 : 1

    29 : 1

    29 : 1

    Cyclopropanation of the methyl or TIPS etherof cinnamyl alcohol afforded racemic material

    O O

    BO

    R

    O NMe2

    O NMe2Zn

    I X

    Proposed Transition State

    Charette: Chiral Dioxaborolane Chiral Controller

    Charette, A.; Juteau, H. J. Am. Chem. Soc.1994,116, 2651

  • 7/29/2019 010 Simmons-Smith HO

    19/27

    OH

    R3

    R2

    R1OO

    B

    Me2NOC CONMe2

    Bu

    (1.1 equiv)1.

    2. Zn(CH2I)2, rt, 2 hOH

    R3

    R2

    R1

    Charette: Chiral Dioxaborolane Chiral Controler

    Charette, A.; Juteau, H. J. Am. Chem. Soc.1994,116, 2651

    Ph OH

    Pr OH

    OH

    Me OH

    OH

    Et

    Me

    TBDPSO

    >98

    80

    90

    85

    80

    29 : 1 (93)

    27 : 1 (93)

    29 : 1 (93)

    32 : 1 (94)

    21 : 1 (91)

    Substrate Yield (%)enantioselectivity

    (%ee)

    Reaction tends to become less selective orexplodes upon scale-up due to uncontrolledexotherms.

    Charette, A.; Prescott, S.; Brochu, C. J. Org. Chem.1995,60, 1081

    OHPhOO

    B

    Me2NOC CONMe2

    Bu

    (1.1 equiv)

    Zn(MeCHI)2, CH2Cl2 OHPh

    Charette: 1,2,3-Trisubstituted Cyclopropanes

    Charette, A.; Lemay, J. Angew. Chem. Int. Ed. Eng.1997,36, 1090

    Me>50 : 1 d.s.> 95% ee

    OHPh

    OHPh

    OHBnO

    OH

    Et OH

    OHPr

    >50 : 1

    14 : 1

    >50 : 1

    20 : 1

    15 : 1

    10 : 1

    98

    90

    94

    90

    94

    93

    96

    83

    80

    84

    87

    93

    Substrate d.s. %ee %Yield

    A

    A

    OHPh

    Zn(CHICH2CH2OTIPS)2

    (2.2 equiv)

    A (1.1 equiv) OHPh

    TIPSO

    > 95% ee> 95 : 5 d.s.

    OH

    Zn(CHICH2CH2OTIPS)2(2.2 equiv)

    A (1.1 equiv) OH

    TIPSO

    > 95% ee> 95 : 5 d.s.

    Relative stereochemistry of the cyclopropanation wasthe alkyl group (derived from the Zn reagent) is antito the hydroxymethyl group

    Lower diastereoselectivity observed in the absence ofthe chiral promoter

    09B-18 3/29/98 12:43 PM

  • 7/29/2019 010 Simmons-Smith HO

    20/27

    Kitajima, H.; Aoki, Y.; Ito, K.; Katsuki, T. Chem. Lett.1995, 1113

    BINOL-Derived Chiral Promoters

    OH

    OH

    CONR2

    CONR2

    A

    Et2Zn, CH2I2, (3 equiv) CH2Cl2, 0 C, 15 hPh OHPh OH

    A (1 equiv)

    Chiral Auxilary(R =)

    Et2Zn(equiv)

    Yield (%) %ee

    Me

    Me

    Me

    Me

    Et

    Et

    n-Pr

    n-Pr

    n-Bu

    2

    4

    6

    6 + ZnI2 (1 equiv)

    6

    6 + ZnI2 (1 equiv)

    6

    6 + ZnI2 (1 equiv)

    6

    -14

    26

    67

    75

    94

    90

    85

    79

    89

    7

    85

    90

    87

    55

    87

    51

    88

    58

    Chiral controller is derived from the BINOLnucleus in three steps (Me = 37%,Et = 33%, n-Pr = 16%, n-Bu = 30%)

    Kitajima, H.; Ito, K.; Aoki, Y.; Katsuki, T. Bull. Chem. Soc. Jpn.1997, 207

    OH

    OH

    CONEt2

    CONEt2

    A

    Et2Zn (6 equiv), CH2I2, (3 equiv)CH2Cl2, 0 C

    R1 OHR1 OH

    A (1 equiv)

    Yield (%) %ee

    R2 R2

    Ph OH

    p-MeO-Ph OH

    p-Cl-Ph OH

    OHPh

    OHTBDPSO

    OHTrO

    OHTrO

    44

    78

    59

    65

    59

    64

    34

    92

    94

    90

    89

    87

    88

    65

    Substrate

    O

    OZn

    O

    NEt2

    O

    NEt2

    Zn

    Zn

    I

    O

    Zn

    Et

    EtEt

    Author's Proposed Transition State

    BINOL-Derived Chiral Promoters

    09B-19 3/29/98 12:43 PM

  • 7/29/2019 010 Simmons-Smith HO

    21/27

    OH1. Zn(CH2I)2 (-78 C to -20 C)

    2. L.A.

    Ph OHPh

    OHPh

    OHPr

    OHMe

    OH

    "

    "

    "

    "

    "

    "

    "

    none

    BBr3

    TiCl4

    ZnI2

    Zn(OTf)2

    Et2AlCl

    SnCl4

    TiCl2(O-i-Pr)

    TiCl4

    "

    "

    Me

    TBDPSO

  • 7/29/2019 010 Simmons-Smith HO

    22/27

    R1 OH

    R2

    H

    NHSO2Ar

    NHSO2Ar

    R1 OH

    R2

    H

    Ph OH

    OHPh

    OHPh

    Reaction proceeds to approximately 20% in theabsence of the ligand under the reactionconditions

    Cinnamyl methyl ether reacted under similarconditions as cinnamyl alcohol, yet affordedracemic material

    OH

    CH2I2

    TrO

    Et2Zn(2.0 equiv) (3.0 equiv)

    (0.12 equiv)

    bissulfonamide(Ar = )

    Substrate yield (%) %ee

    OHBnO

    C6H5

    o-NO2-C6H4

    m-NO2-C6H4

    p-NO2-C6H4

    "

    "

    "

    "

    "

    "

    OH

    68

    75

    33

    76

    75

    82

    36

    80

    13

    66

    75

    92

    72

    82

    71

    quant.

    70

    86

    36

    79

    OH

    BnO

    TrO

    CH2Cl2, -23 C, 5 h

    Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. Tet. Lett.1992, 2575

    Kobayashi: First Catalytic Asymmetric Simmons-Smith Reaction

    "

    "

    SO2RN

    NSO2R

    "

    Zn

    R1 OH

    R2

    H

    SO2ArN

    NSO2Ar

    Al-R

    R1 OH

    R2

    H

    Ph OH

    OHPh

    OH

    Me

    Me

    Et

    i-Bu

    "

    "

    "

    "

    Ph

    (2 equiv)Et2Zn CH2I2

    bissulfonamide(Ar = )

    OH

    (3 equiv)

    yield (%)

    TrO

    (0.1 equiv)

    "

    "

    "

    "

    Substrate %ee

    CF3

    p-NO2-C6H4

    p-NO2-C6H4

    p-NO2-C6H4

    p-CF3-C6H4

    C6H5

    "

    "

    quant

    "

    "

    "

    "

    "

    "

    92

    14

    70

    66

    7166

    76

    73

    78

    CH2Cl2, -20 C

    Imai, N.; Takahashi, H.; Kobayashi, S. Chem. Lett.1994, 177

    Kobayashi: Aluminum-Catalyzed Asymmetric Simmons-Smith Reaction

    R

    09B-21 3/29/98 12:46 PM

  • 7/29/2019 010 Simmons-Smith HO

    23/27

    R1 OH

    R2

    H

    NHSO2-C6H4-p-NO2

    NHSO2C6H4-p-NO2

    SO2RN

    NSO2R

    Zn

    R1 OH

    R2

    H(2.0 equiv)

    Et2Zn CH2I2(3.0 equiv)

    (0.1 equiv)

    CH2Cl2, -20 C

    Takahashi, H.; Yoshioka, M.; Ohno, M.; Kobayashi, S. Tet. Lett., 1992, 33, 2575

    Chiral Silyl and Stannyl Cyclopropylmethanols

    PhMe2Si OH

    Bu3Sn OH

    OHPhMe2Si

    OHBu3Sn 75

    67

    94

    83 81

    86

    59

    66

    Substrate Yield(%) %ee

    Ph OHR2O2SHN NHSO2R3

    R1

    Et2Zn, CH2I2, CH2Cl2 -23 C, 20 hPh OH

    Ph

    Me

    Ph

    MeMe

    Me

    Me

    Me

    Me

    Ph

    Me

    Ph

    Me

    CF3

    p-MeC6H4

    p-NO2C6H4

    Me

    Me

    Me3C

    Me3C

    PhCH2

    PhCH2

    PhCH2

    PhCH2

    quant

    "

    "

    "

    "

    "

    93

    quant

    58

    61

    42

    4674

    34

    82

    85

    R1 R2 R3 Yield (%) %ee

    Other substrates were examined, but gavelower selectivites (ca. 60% ee).

    (2 equiv)(3 equiv)

    Imai, N.; Sakamoto, K.; Maeda, M.; Kouge, K.; Yoshizane, K.; Nokami, J. Tet. Lett.1997, 38, 1423

    Chiral Sulfonamide Promoters Derived from Amino Acids

    (10 mol%)

    09B-22 3/29/98 12:47 PM

  • 7/29/2019 010 Simmons-Smith HO

    24/27

    Ph OH

    NHSO2R

    NHSO2R

    Ph OHCH2I2Et2Zn

    (1.0 equiv) (2.0 equiv)

    (0.1 equiv)

    CH2Cl2, -23 C

    Denmark, S.; Christenson, B.; O'Connor, S. Tet. Lett.1995, 2219

    Denmark: Optimization of Reaction Protocols SO2RN

    NSO2R

    Zn

    Et2Zn

    (1.1 equiv)

    Bissulfonamide(R = )

    t1/2 (min) %ee

    CH3

    CH3CH2

    i-Pr

    C6H5

    1-naphthyl

    4-NO2 -C6H4

    4-CH3OC6H4

    C6F5

    50

    130

    140

    70

    50

    70

    60

    100

    80

    67

    49

    77

    48

    76

    74

    29

    There is a clear linear relationship betweenthe promoter %ee and the enantioselectivityof the reaction.

    There is a marked induction period early in reactionthat disappears upon addition of ZnI2 (t1/2 = 3 min).Enantioselectivities improved from 80% to 86%with ZnI2

    Denmark, S.; Christenson, B.; Coe, D.; O'Connor, S. Tet. Lett.1995, 2215

    Ph OH Ph OHCH2I2Et2Zn(1.0 equiv) (2.0 equiv)

    (0.1 equiv) CH2Cl2, -23 C, 5 h

    Denmark: Optimization of Chiral Promoter

    Et2Zn

    (1.1 equiv)

    NHSO2CH3

    NHSO2CH3

    Ph

    Ph NHSO2CH3

    NHSO2CH3 H3C

    Ph OCH3

    NHSO2CH3 H3C

    Ph OH

    NHSO2CH3

    NHSO2CH3

    NHSO2CH3

    Promoter

    NH

    SO2

    NHSO2CH3

    NHSO2CH3NHSO2CH3

    NHSO2CH3

    (80 min, 20% ee) (110 min, 14% ee) (150 min, rac) (180 min, 29% ee) (80 min, 5% ee)

    (90 min, 79% ee) (>240 min, nd) (50 min, 80% ee)

    (T1/2, %ee)

    Denmark, S.; Christenson, B.; O'Connor, S. Tet. Lett.1995, 2219

    09B-23 3/29/98 12:48 PM

  • 7/29/2019 010 Simmons-Smith HO

    25/27

    Ph OH

    NHSO2CH3

    NHSO2CH3

    Et2Zn(1.1 equiv)

    MXn(1.0 equiv)

    Ph OH(0.1 equiv)CH2I2

    (2.0 equiv)

    Et2Zn(1.0 equiv)

    none

    ZnI2

    ZnBr2

    ZnCl2

    ZnF2

    Zn(OAc)2

    CdCl2

    CdI2

    MgI2

    PbI2

    MnI2

    HgI2

    GaI3

    8

    >3

    >3

    4

    10

    10

    11

    11

    50

    8

    12

    15

    decomp.

    80

    86

    80

    76

    72

    45

    83

    75

    26

    7235

    39

    n.d.

    additive t1/2(min) %ee

    Using higher chiral ligand loadings resulted in slowerconversions and lower enantioselectivity

    Use of in situprepared ZnI2 (Et2Zn + 2 I2) reproducibly

    give 92% yield and 89% ee with cinnamyl alcohol.

    1

    5

    10

    25

    50

    100

    50%

    80%

    80%

    64%

    41%

    16%

    mol% %ee

    Denmark: Role of ZnI2?

    Denmark, S.; O'Connor, S. J. Org. Chem.1997, 62, 3390

    Zn(CH2I)2 + ZnI2 2 IZn(CH2I)

    Ph OH

    NHSO2CH3

    NHSO2CH3

    Et2Zn(1.1 equiv)

    Ph OH

    Et2Zn + 2CH2I2A

    Denmark: Role of ZnI2?

    Denmark, S.; O'Connor, S. J. Org. Chem.1997, 62, 3390

    NMR studies indicate for A and D clearformation of bis-iodomethylzinc species.

    Route B also showed formation of a singlespecies from I2 and appears to formICH2-Zn-I upon CH2I2 addition.

    C forms multiple species postulated to beEt-Zn-CH2I, Zn(CH2I)2 and Et2Zn indicatinganother Schlenk equilibrium.

    Route D formed ICH2ZnI, but contaminatedwith another Zn species as yet unidentified

    "I-CH2-Zn-I"(0.1 equiv)

    ZnI2 2 ICH2-Zn-I

    Et2Zn + I2 Et-Zn-ICH2I2 ICH2-Zn-I

    Et2Zn + CH2I2 Et-Zn-CH2II2 ICH2-Zn-I

    Et2Zn + 2CH2I2 Zn(CH2I)2I2 ICH2-Zn-I

    Zn(CH2I)2

    B

    C

    D

    A

    B

    C

    D

    >3

    3

    10

    20

    86

    86

    73

    23

    method t1/2(min) %ee

    Zn(CH2I)2 + ZnI2 I-CH2-ZnI

    Author's conclude that the Schlenk equilibrium:

    lies on the side of ICH2-ZnI. This wasindependently confirmed by Charette:(Charette, A.; et al. J. Am. Chem. Soc. 1996, 118,4539).

    09B-24 3/29/98 12:48 PM

  • 7/29/2019 010 Simmons-Smith HO

    26/27

    OCH3

    OCH3 O

    O

    Zn

    I

    I+ Zn(CH2I)2

    Zn(1) - O(1) 2.103(10)Zn(1) - O(2) 2.20(1)Zn(1) - C(13) 1.92(2)Zn(1) - C(14) 1.98(2)I(1) - C(13) 2.21(2)I(2) - C(14) 2.16(2)

    I(1) -C(13) - Zn(1) 116.4(9)I(2) -C(14) - Zn(1) 107.9(8)

    Zn(1) - I(2) 3.513(2)Zn(1) - I(1) 3.350(3)Zn(1) - I(4) 3.929(2)

    Bond Lengths ()

    Bond Angles (deg)

    Non-Bonded Distances ()

    Two molecules in unit cell are virtually identicalwith respect to bond distances and angles. Theyare related by a pseudo-rotational center aboutthe Zn atom.

    Distance between Zn(1) and I(2) is within the sumof their van der Waals radii.

    The endo iodomethylene unit bisects the O-Zn-Oangle, possibly due to a stereoelectronicstablization:

    C-Zn donation into * C-I.

    Denmark: X-Ray Structure of a Bis-Iodomethyl Zinc Complex

    Denmark. S.; Edwards, J.; Wilson, S. J. Am. Chem. Soc.1991. 113, 723

    Denmark: Substrate Generality

    Denmark, S.; O'Connor, S. J. Org. Chem.1997, 62, 584

    R2 OH

    NHSO2CH3

    NHSO2CH

    3 R2 OH

    Et2Zn(1.1 equiv)R1

    R3

    R1

    R3

    ZnI2(1.0 equiv)

    (0.1 equiv) CH2I2(2.0 equiv)

    Et2Zn(1.0 equiv)

    Ph

    H

    Ph(CH2)2

    H

    Ph

    CH3

    Ph

    H

    Ph(CH2)2

    H

    Ph

    CH3

    H

    Ph

    H

    Ph(CH2)2

    CH3

    Ph

    H

    Ph

    H

    Ph(CH2)2

    CH3

    Ph

    H

    "

    "

    "

    "

    "

    CH3

    "

    "

    "

    "

    "

    7

  • 7/29/2019 010 Simmons-Smith HO

    27/27

    I

    N

    N

    ZnS

    H3C O

    O O

    I

    Zn

    Zn

    Et

    I

    PhH

    H

    X

    NNZn

    SO

    R

    O

    S

    O

    ROO

    ZnI

    R3R2

    R1

    Denmark: Working Transition State Hypothesis

    R1 OH

    NHSO2CH3

    NHSO2CH3

    Et2Zn(1.1 equiv)

    ZnI2(1.0 equiv)

    R1 OH(0.1 equiv)CH2I2

    (2.0 equiv)

    Et2Zn(1.0 equiv)

    R2

    R3

    R2

    R3

    Substitution alpha to the CH2OH groupexperiences unfavorable steric interactions

    with the "spectator" sulfonamide group.

    Activation of I-CH2-ZnI moiety occursby I coordination to the chiral promoter-Zncomplex.

    Denmark, S.; O'Connor, S. J. Org. Chem.1997, 62, 584.

    Zn

    Et

    Summary

    What we know:

    Activated zinc metal reacts with CH2I2 to form an active cyclopropanation reagent that shows remarkabledirecting effects with Lewis basic sites on molecules. The Furukawa reagent (Et2Zn, CH2I2) also showsthe same reactivity trends.

    Zinc alkoxides are necessary appendages to most chiral auxiliary-based methods and all enantio-selective methods in order to achieve any selectivity.

    Lewis acids accelerate cyclopropanation of allylic alcohols.

    Various auxiliary methods exist for cyclopropanation of both cyclic and acyclic ketones and aldehydes.

    Glucose-derived auxiliaries give excellent induction in the cyclopropanation of allylic alcohols.

    Several methods for enantioselective cyclopropanation exist; however, most are stoichiometric inchiral reagent.

    So far only the bissulfonamide promoted Simmons-Smith reaction gives high induction in several cases.

    Mechanism of cyclopropanation and the exact nature of the reagents involved is unclear at present.