005 keiji morokuma

Upload: muraleetharan-boopathi

Post on 13-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 005 Keiji Morokuma

    1/43

    1

    Density-Functional Tight-Binding Molecular

    Dynamics Simulation of Growth of Single-WalledCarbon Nanotubes from Metal Cluster

    1Kyoto University 2Nagoya University

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

    The Fourth NASA-Rice-AFOSR Workshop on Nucleation and Growth

    Mechanisms of Single Wall Carbon NanotubesTierra Sagrada, TX April 17-21, 2009

    Yasuhito

    Ohta, Yoshiko Okamoto, Alister J . Page, Ying Wang, Stephan Irle, Keiji Morokuma1Fukui Institute for Fundamental Chemistry, Kyoto University2Institute for Advanced Chemistry and Department of Chemistry, Nagoya University3Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University

    3Emory University

  • 7/27/2019 005 Keiji Morokuma

    2/43

    2

    Outline

    Motivation

    Review: state of the art SWNT growth control and

    theoretical modeling

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

  • 7/27/2019 005 Keiji Morokuma

    3/43

    3

    Outline

    MotivationMotivation

    Review: state of the art SWNT growth control and

    theoretical modeling

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

  • 7/27/2019 005 Keiji Morokuma

    4/43

    Motivation A Nobelists Perspective

    4

    Sir Harry Kroto in D. J. Palmer, Where nano is going,

    Nano Today 3, 46 (2008)

    They [nanotubes andnanowires] have to havereproducible properties, andwe're not in that situation at the

    present time; you can makevarious types of nanotubes andstudy the properties of them but

    at the moment we don't havethe control to produce thenanotubes with accurately

    specified diameter, structure,chirality, you name it.

  • 7/27/2019 005 Keiji Morokuma

    5/43

    5

    Outline

    Motivation

    Review: state of the art SWNT growth control andReview: state of the art SWNT growth control and

    theoretical modelingtheoretical modeling

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

  • 7/27/2019 005 Keiji Morokuma

    6/43

    6

    Review SWNT Growth Control

    Recent advancements in SWNT growth controlDiameter control:

    C. Lu and J. Liu, Controlling the Diameterof Carbon Nanotubes in Chemical VaporDeposition Method by Carbon Feeding, J.

    Phys. Chem. B 110, 20254 (2006)

    H. Shinohara and coworkers: Synthesis ofsingle-wall carbon nanotubes grown fromsize-controlled Rh/Pd nanoparticles by

    catalyst-supported chemical vapordeposition, Chem. Phys. Lett. 458, 346(2008)

    Chirality control:D. E. Resasco, R. B. Weisman, andcoworkers, Narrow (n,m)-Distribution ofSingle-Walled Carbon Nanotubes GrownUsing a Solid Support Catalyst, J. Am. Chem.

    Soc. 125, 11186 (2003)

    Many others ...

    T=800

    C

    C2

    H6

    feedstockRed: 4200 ppmGreen: 14,400 ppm

    CoMoCAT:Co-Mocatalyst

  • 7/27/2019 005 Keiji Morokuma

    7/43

    7

    Review SWNT Growth Control

    Other improvements

    High yield:K. Hata, D. Futaba, et al. Water-AssistedHighly Efficient Synthesis of Impurity-FreeSingle-Walled Carbon Nanotubes, Science

    306, 1362 (2004)

    Defect control:S. Maruyama et al., Low-temperature

    synthesis of

    high-purity single-walled carbonnanotubes from alcohol, Chem. Phys. Lett.360, 229 (2002)

    Length control:L. X. Zheng et al., Ultralong single-wallcarbon nanotubes, Nature Mater. 3, 673(2004)

    Many other groups and improvements

    so-called supergrowth

    Low Raman D/Gratio = high puritywhen usingalcohols asfeedstock(ACCVD)

  • 7/27/2019 005 Keiji Morokuma

    8/43

    8

    Review SWNT Growth Control

    But How to put the puzzle pieces together?

    (5,5) SWNT

    high yield, desired length, defect-free, eventually catalyst-free

    ACCVD etc Selection of

    appropriate

    growth

    conditions

  • 7/27/2019 005 Keiji Morokuma

    9/43

    9

    Review Experimental Growth Studies

    Look here in situ environmental TEM studies of

    SWNT nucleation and growth

    H. Yoshida, et al. Atomic-Scale In-situ

    Observation of Carbon NanotubeGrowth from Solid State CarbideNanoparticles, Nano Lett. 8, 2082 (2008)

    Fe/SiO2

    C2

    H2

    :H2

    T=600

    C

    Fluctuating solid Fe3CS. Hofmann, et al. In-situ Observations of

    Catalyst Dynamics during Surface-BoundCarbon Nanotube Nucleation, Nano Lett. 7,602 (2007)

    Ni/SiO2

    C2

    H2

    :NH3

    T=480 to 700

    C

    Fluctuating solid pure nickel

    F. Ding, et al.Appl. Phys. Lett.88, 133110

    (2006)

    Fe2000

    , T=1007

    C

    REBO/MD

    Lindemann

    inde

    x(a

    .u.)

  • 7/27/2019 005 Keiji Morokuma

    10/43

    10

    Review Experimental Growth Studies

    SWNT Growth N-dimensional Parameter Space

    catalyst size [nm]

    catalyst composition

    T [ C]

    Fe

    CoNi

    Co/Mo

    Rh/Pd

    600

    1000

    1 4 10

    feedstock species

    feeding rate/pressure

    substrateetching agent

    Fill all space with blocks/scan fullparameter spaceEvaluate interdependence relations perfect

    (n,m)-specific synthesis

    Systematic Investigation ofSWNT growth mechanism(s):

    Can only construct ~1 machine/year

    Let Theory Do It!! (computer time ischeap )

    Experimentalist:

  • 7/27/2019 005 Keiji Morokuma

    11/43

    J.-Y. Raty et al, Growth of Carbon Nanotubes on Metal Nanoparticles: A Microscopic

    Mechanism fromAb Initio Molecular Dynamics Simulations, Phys. Rev, Lett. 95, 096103 (2005)

    Nano-diamond: Inappropriate model!

    Change from diamond structure (sp3) tofullerene cap (sp2) immediately!

    simulation time~10 psToo short

    to demonstrate

    self-assembly

    Review Previous CPMD

    11

    Previous Car-Parrinello Molecular Dynamics (CPMD)

    J. Gavillet et al, Root-Growth Mechanism for SWNTs, Phys. Rev, Lett. 87, 275504 (2001)

    Carbon precipitation on Co carbide

    particle, 51 Co & 102 C atoms, 25ps 1 hexagon, 2 pentagons

    C30

    +44C on Co surface at 1500 K, 15

    ps 5 carbon atoms diffused to cap

    Heroic efforts on supercomputers, one-shot simulations!

  • 7/27/2019 005 Keiji Morokuma

    12/43

    12

    F. Ding et al., J. Phys. Chem. B 108, 17369 (2004)

    Bond order potential allows bond breaking

    via potential switching functions, but

    does not include effects of -conjugation or charge transfer

    Y. Shibuta & S.Maruyama, Chem. Phys.Lett. 382, 381 (2003)

    Review Previous REBO MD

    Reactive Empirical Bond Order (REBO) MD

    Feedingcarbonatoms fromcenter of Feclusters:

    Fe50 + nC,T=627

    C

    500 C atoms +nC,

    Ni108

    , T=2227 C(20 nm)

    3

    PBC

    Classical potential, cheaper, many long simulations!

    Y. Shibuta & S. Maruyama, Chem.Phys. Lett. 437, 218 (2003)

    500 C atoms+nC, Ni256

    on

    LJ supportT=2227

    C

    (20 nm)3

    PBC

    F. Ding et al., J. Chem. Phys. 121, 2775(2004)

    Fem

    + nC, T=527

    C to 627

    C

    Many more studies

  • 7/27/2019 005 Keiji Morokuma

    13/43

    Review Previous REBO MD

    13

    Review REBO/MD Simulations

    Specific problems of REBO MD for SWNT growth

    Problem 1: large number of non-hexagon rings!

    REBO does not discriminate betweenaromatic or antiaromatic ringsUnrealistically many 4- and 8-membered rings (formally antiaromatic)

    F. Ding et al., J. Phys. Chem.B, 108, 17369 (2004)

    Amorphous structure formation

    Problem 3: sp3 defects overestimated

    N. A. MarksN. A. Marks et alet al.,., Phys. Rev. BPhys. Rev. B 6565, 075411 (2002), 075411 (2002)SI, G. Zheng, Z. Wang, K. Morokuma,SI, G. Zheng, Z. Wang, K. Morokuma, J. Phys. Chem.J. Phys. Chem.BB 110110, 14531 (2006), 14531 (2006)

    Important for self-healing of graphitic sheetsVery slow transformation processesG.G. ZhengZheng, SI, M., SI, M. ElstnerElstner, K., K. MorokumaMorokuma,, J. Phys. Chem. AJ. Phys. Chem. A108108, 3182 (2004), 3182 (2004)

    Problem 2: polyynes are underrepresented

  • 7/27/2019 005 Keiji Morokuma

    14/43

    14

    Dilemma of theoretical simulations for

    scanning SWNT growth parameter space

    Review MD Problems

    -Conventional quantum chemical MD (like CPMD) is too expensive

    -Classical REBO MD is qualitatively incorrect: too long time scale,

    unrealistic events

    Target MD

    Quantum mechanics

    ??

    Then: scan ofparameter space

  • 7/27/2019 005 Keiji Morokuma

    15/43

    15

    Outline

    Motivation

    Review: state of the art SWNT growth control and

    theoretical modeling

    DensityDensity--functional tightfunctional tight--binding (DFTB) method and itsbinding (DFTB) method and its

    application in molecular dynamics simulationsapplication in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

  • 7/27/2019 005 Keiji Morokuma

    16/43

    16

    Self-consistent-charge density-functional tight-

    binding (SCC-DFTB)

    12

    2

    tot i i rep

    i

    E f E q q

    D. Porezag, Th. Frauenheim, T. Khler, G. Seifert, R. Kaschner, Phys. Rev. B 51, 12947 (1995)M. Elstner et al., Phys. Rev. B 58, 7260 (1998)

    0vi iv

    c H S Second order-expansion of DFT total energy with respect to charge fluctuation

    TB-eigenvalue equation~100 atoms~100s ps

    DFTB Energy, Mermin, gradient

    Single-zetaSTO basis set

    Conjugation explici tFinite temperature approach (Mermin

    free energy EMermin)

    1

    exp / 1i

    i B e

    fk T

    2 ln 1 ln 1e B i i i ii

    S k f f f f

    Te: electronic temperatureSe: electronic entropy

    0 1

    2N

    rep

    i i i i

    i

    EH H SF f c c q q

    SR R R R

    0 1if

    Atomic force

    E

    2fi0 1 2

    M. Weinert, J. W. Davenport, Phys. Rev. B 45, 13709 (1992)

    EMermin = Etot - TeSe

    Openshellnessexplicit

    DFTB P f

  • 7/27/2019 005 Keiji Morokuma

    17/43

    17

    Fullerene Isomer Geometries and Energies vs B3LYP/6-31G(d)

    G. Zheng, SI, M.Elstner, K. Morokuma,Chem. Phys. Lett. 412,210 (2005)

    DFTB Performance

    Vibrational IR and Raman Spectra

    H. A. Witek, SI, G.Zheng, W. A. de Jong,K. Morokuma, J. Chem.Phys. 125, 214706

    (2005)

    RMS [ ] NCC-DFTB SCC-DFTB AM1 PM3C20-C36 0.025 0.019 0.035 0.030

    C60-C86 0.014 0.014 0.016 0.015

    R (lin. reg.) NCC-DFTB SCC-DFTB AM1 PM3C20-C36 0.88 0.93 0.77 0.73C60-C86 0.97 0.98 0.86 0.84

    Geometries

    Energetics

    102 Fullerene Isomers small cage non-IPR C20

    -C36

    (35), large cage IPR C70

    -C86

    (67)

    R2: linear regression coefficient between E(Method) and E(B3LYP)

    Ih-C60 D5h-C70D2-C28

    DFTB P f

  • 7/27/2019 005 Keiji Morokuma

    18/43

    18

    A B C

    DFT:PW91[1]

    -6.24 -5.63 -1.82

    SCC-DFTB[2] -5.17 -4.68 -1.86

    Adhesion energies (eV/atom)

    A B C

    PW91: An ultrasoft pseudopotential with a plane-wave cutoff of 290 eV for the single metal and theprojector augmented wave method with a plane-wave cutoff of 400 eV for the metal cluster

    Fe-Fe and Fe-C DFTB parameters from: G. Zheng et al., J. Chem. Theor. Comput. 3, 1349 (2007)

    [1] Phys. Rev. B 75, 115419 (2007) [2] Fermi broadening=0.13 eV

    H10

    C60

    Fe H10

    C60

    FeH10

    C60

    Fe55

    Fe55

    icosahedron

    (5,5) armchair SWNT (H10C60) + Fe / Fe55

    DFTB Performance

    Y. Ohta, Y. Okamoto, SI, K. Morokuma, Phys. Rev. B, in press

    DFTB DFTB/MD A li ti

  • 7/27/2019 005 Keiji Morokuma

    19/43

    DFTB/MD simulations of carbon nanostructure formation

    SI,G.Zheng,Z.Wang,K.Morokuma,J.Phys.Chem.B110,14531(2006)andothers

    Fullereneformation

    ShrinkingHotGiant

    Road

    2000K

    +108ps

    +SiC

    Si

    SI,Z.Wang,G.Zheng,K.Morokuma,M.

    Kusunoki,J.Chem.Phys.125,044702(2006)

    Z.Wang,

    SI,

    G.

    Zheng,

    M.

    Kusunok,

    K.

    Morokuma,J.Phys.Chem.C111,12960(2007)NoncatalyticCNTgrowth

    19

    DFTB DFTB/MD Applications

    Ar/O2Fullerenes

    in

    benzene

    combustion

    C>~170Giantfullerenes

    Metallofullerene

    formation

    Fe/Co/Ni

    catalyzedCNT

    nucleation

    3000K 3000K

    0.1ps 25.0ps 64.2ps

    NDto

    Spiroid

    to

    Onion

    Transformationupon

    Heating

    B.Saha,S.Shindo,SI,K.Morokuma,submitted

    F u l l e r e n e

    f o r m e d o n l y a f t e r a l l H atoms are gone.

  • 7/27/2019 005 Keiji Morokuma

    20/43

    20

    Outline

    Motivation

    Review: state of the art SWNT growth control and

    theoretical modeling

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTstemperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

    A h i SWNT G th E i t & M d l S t

  • 7/27/2019 005 Keiji Morokuma

    21/43

    Model system and carbon supply

    R.E. Smalley et al. JACS 128, 15824 (2006)

    fcc Fe38

    (5,5) armchair SWNT

    length = 6.2

    diameter = 7.5

    Silicon-oxide

    Diameter: ~1nm

    Fe particle

    Total: 108 atomsY. Ohta, Y. Okamoto, SI, K. Morokuma,

    ACS Nano 2, 1437 (2008)

    Armchair SWNT Growth Experiment & Model System

    21

    A h i SWNT G th M th d l

  • 7/27/2019 005 Keiji Morokuma

    22/43

    Simulation Flow Chart

    Tn

    = 1500 K = 1227

    C

    t=1 fs

    Nose-Hoover chain

    Equilibrated for 10 ps

    10 geometries arerandomly sampledbetween 5 and 10 ps

    One C atom is supplied aroundthe C-Fe interface every 0.5 ps,incident velocity correspondingto Tn

    velocity Verlet

    45 ps, 90 Cs are added

    Y. Ohta, Y. Okamoto, SI, K. Morokuma,ACS Nano 2, 1437 (2008) &

    J. Phys. Chem. C, 113, 159-169, (2009).

    Armchair SWNT Growth Methodology

    22

    catalyst composition

    T [

    C]

    FeCo

    Ni

    feedstockC C2 C2

    H4

    750

    1227

    Smalleys experiment

    DFTB/MDsimulation

    List of theoretical crutches :

    Targeted C atom shooting to Fe/C regionSmall Fe nanoparticle (~0.7 nm)Very fast C atom supply

    Armchair SWNT Gro th DFTB/MD

  • 7/27/2019 005 Keiji Morokuma

    23/43

    Armchair SWNT Growth DFTB/MD

    10 Trajectories after 45 ps C supply

    Tubelengt

    h[]

    Time [ps]23

    Schematic depiction of C atom insertion events Trajectory F

    new 5-, 6-, 7-membered rings

    ACS Nano 2, 1437 (2008)

    Growth rate: ~10 pm/ps

    Armchair SWNT Growth Sidewall Annealing

  • 7/27/2019 005 Keiji Morokuma

    24/43

    24

    Self-healing process of sidewall (annealing)

    Fe-Carbon mobili ty at interface important!Trajectory 6: Tn

    = 1500 K, Te

    = 10k K, Cint

    =1500 K

    24.5 ps -

    27.5 ps

    Armchair SWNT Growth Sidewall Annealing

    Movie

    F. Ding, et al. Appl. Phys.Lett. 88, 133110 (2006)

    Fe2000

    , T=1007

    CREBO/MD

    Lindema

    nn

    index

    (a.u.)

    Armchair SWNT Growth SCC DFTB Charges

  • 7/27/2019 005 Keiji Morokuma

    25/43

    25

    SCC-DFTB Mulliken atomic partial charges

    Carbon

    Iron

    C2

    and C3

    on the surface of Fe

    cluster are negatively charged

    Negatively charged

    C atoms penetrateinto the Fe cluster

    Charge transfer nearmetal-carbon boundary

    Armchair SWNT Growth SCC-DFTB Charges

    Slowcarbideformation

    Armchair SWNT Growth Behavior of Fe Particle

  • 7/27/2019 005 Keiji Morokuma

    26/43

    26

    Armchair SWNT Growth Behavior of Fe Particle

    2 4 6 8 100

    1

    2

    3

    4

    5

    6

    r []

    gFe-Fe

    5 ps20 ps30 ps45 ps

    Fe-Fe radial distribution functiondata sampling in 5 ps intervals

    Snapshot at 45 psTrajectory 2: Tn=1500K, Te=10kK, Cint

    =

    500K

    Slow Fe-carbide formation

    Short polyyne chains such as C2

    ,C3, C

    form on the surface of Fe cluster

    C atoms penetrate intothe Fe cluster

    Armchair SWNT Growth Length and Ring Statistics

  • 7/27/2019 005 Keiji Morokuma

    27/43

    0 10 20 30 400

    5

    10

    15

    2025

    30

    0 10 20 30 400

    5

    10

    15

    20

    25

    30

    0 10 20 30 40

    7

    8

    9

    10

    11

    Time [ps]

    Tub

    elength[]

    Numberofrin

    gs

    0 10 20 30 40

    7

    8

    9

    10

    11

    Time [ps]

    F H

    Tub

    elength[]

    Numberofrings

    27

    Armchair SWNT Growth Length and Ring Statistics

    Relationship between ring type and length

    Armchair SWNT Growth Length and Ring Statistics

  • 7/27/2019 005 Keiji Morokuma

    28/43

    10 trajectories, Tn = 1500 K

    28

    Armchair SWNT Growth Length and Ring Statistics

    For comparison: Fullerene formation from C2 w/o Fe catalyst

    S30

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    0 5 10 15 20 25 30 35 40 45

    Time [ps]

    Pentagon# in MD geom.

    Hexagon# in MD geom.

    Heptagon# in MD geom.Pentagon# in Opt. geom.

    Hextagon# in Opt. geom.

    Heptagon# in Opt. geom.

    2000K

    SI, G. Zheng, Z. Wang, K. Morokuma, J.Phys. Chem. B 110, 14531 (2006)

    Note: No 4- or 8-membered ringsas in REBO/MD

    Growth T dependence DFTB/MD Growth Rates

  • 7/27/2019 005 Keiji Morokuma

    29/43

    29

    T=1500K T=2000KT=1000K

    Continued SWNT growth as function of

    temperature10 Trajectories for 3 temperatures

    727 C 1227 C 1727 C

    T[

    C] 727 1227 1727

    Growth rate

    [pm/ps]a 3.48 5.07 4.13

    Chain carbonsa 3.9 0.3 0.2

    SWNT C atomsa 112.9 110.1 102.7

    ( (5,5) armchair SWNT)

    Y. Ohta, Y. Okamoto, SI, K. Morokuma, J.Phys. Chem. C, 113, 159-169, (2009).

    Growth T-dependence DFTB/MD Growth Rates

    aaveraged over 10 trajectories/T

    Growth T dependence DFTB/MD Growth Rates

  • 7/27/2019 005 Keiji Morokuma

    30/43

    30Y. Ohta, Y. Okamoto, SI, K. Morokuma,J. Phys. Chem. C, 113, 159-169, (2009).

    Growth T-dependence DFTB/MD Growth Rates

    T=727

    C

    10 Trajectories after 45 ps

    Encapsulation of Fe by polyyne

    Trajectory C

    A B C D E

    F G H I J

    (a)

    8.60 ps7.40 ps 8.32 ps

    (b) Dissociation of C2

    from Fe/C

    T=1727

    C

    10 Trajectories after 45 ps

    Trajectory G

    Zigzag SWNT Growth DFTB/MD

  • 7/27/2019 005 Keiji Morokuma

    31/43

    31

    H10

    C62

    Fe38

    (8,0) zigzag

    length = 7.1

    diameter = 6.3

    Equilibrated at 1500 K

    Zigzag SWNT Growth DFTB/MD

    1C

    0.0 ps 0.5 ps

    59C

    30.0 ps 50.0 ps

    40C 52C

    76.0 ps

    Using (8,0) seed SWNT

    fcc Fe38

  • 7/27/2019 005 Keiji Morokuma

    32/43

    32

    Outline

    Motivation

    Review: state of the art SWNT growth control and

    theoretical modeling

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth onSurface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decompositiontransition metal cluster, acetylene decomposition

    Summary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

    Cap Growth DFTB/MD

  • 7/27/2019 005 Keiji Morokuma

    33/43

    Cap Growth DFTB/MD

    C20 cluster

    H10

    C20

    Fe38

    H. Yoshida et al, Nano Lett. (2008).

    1 C 32 Cs 33 Cs

    20 ps 40 pst = 0 0.5 ps

    Nanotube 10 longwas formed.

    Y. Ohta, Y. Okamoto, S. Irle, and K. Morokuma, Phys. Rev. B, in press(2009)

    Side Top

    Experimental snaphots

    0 10 20 30 400

    2

    4

    6

    8

    10

    12

    3- ring4- ring5- ring6- ring7- ring

    During growth, non-hexagonal rings and polyyne chains frequently formedand then rearrangement of sp2 network occurs to construct carbon sidewall.

    Surface Diffusion DFTB/MD Annealing

  • 7/27/2019 005 Keiji Morokuma

    34/43

    Surface Diffusion DFTB/MD Annealing

    t = 0 20 ps 180 ps

    40 Cs

    0 20 40 60 80 100 120 140 1608.0

    8.5

    9.0

    9.5

    10.0

    10.5

    0 20 40 60 80 100 120 140 16002

    4

    6

    8

    10

    1214

    16pentagon

    hexagon

    0 20 40 60 80 100 120 140 1605

    6

    7

    10

    11

    12pentagonhexagon

    Time variation of theaveraged number of rings

    Lift-off of cap clusterwas observed

    C40 cluster

    H10

    C40

    Fe38

    Annealed at1500 K

    Only pentagons

    and hexagonswere formed

    Y. Ohta, Y. Okamoto, S. Irle, and K. MorokumaCarbon 47, 1270-1275 (2009).

    Annealed at1500 K

    Cap Fragment Formation DFTB/MD Annealing

  • 7/27/2019 005 Keiji Morokuma

    35/43

    Annealed at1500 K

    Cap Fragment Formation DFTB/MD Annealing

    35

    Y. Ohta, Y. Okamoto, A. J. Page, S. Irle, and K. Morokuma, submitted

    1 3 4 5

    86 7 9 10

    2

    1 3 4 5

    86 7 9 10

    2

    10 geometries arerandomly sampledbetween 5 and 10 psfor ten trajectories.

    Initial model: Fe38

    Annealed at1500 K

    10 ps

    410 ps

    t = 0 ps

    30 C2s30 ps

    t = 410 ps

  • 7/27/2019 005 Keiji Morokuma

    36/43

    Cap Fragment Formation DFTB/MD Annealing

  • 7/27/2019 005 Keiji Morokuma

    37/43

    Cap Fragment Formation DFTB/MD AnnealingY. Ohta, Y. Okamoto, A. J. Page, S. Irle, and K. Morokuma, submitted

    A

    100 ps 410 ps

    0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0 4 0 00

    1

    23

    4

    5

    6

    7

    8

    Numbero

    fpolygonalrings

    T i m e [p s ]

    f iv e - m e m b e r e d r in gs ix - m e m b e r e d r in gs e v e n - m e m b e r e d r in g

    200 ps 300 ps

    5

    Movie, 5t(frames)=2ps

    Typical sp2 carbon network nucleation and annealing

  • 7/27/2019 005 Keiji Morokuma

    38/43

    38

    Typical sp2-carbon network nucleation and annealing(A)polyyne chains formed on the metal surface attached to eachother creating a Y-shaped structure which preferentially formeda pentagon;(B) polyyne chains on a pentagon formed a pentagon orhexagon fused to the pentagon;

    (C) pentagon-to-hexagon self-healing rearrangement took placewith the help of short-lived polyyne chains stabilized by themetal.

    The nucleation process resembles fullerene cage formation.The metal particle (catalyst) differentiates the two processes.In particular, the metal particle:

    1. holds carbon fragments on the surface (Saturation ofdangling bonds); 2. slows down diffusion; 3. makes the Fe-C bond the most reactive;

    4. slows down bond rearrangement processes; 5. prevents closure of the curved open-ended carbon structure.

    Acetylene Decomposition DFTB/MD

  • 7/27/2019 005 Keiji Morokuma

    39/43

    Polyacetylene formation, largest carbon cluster: C6Hx

    Acetylene Decomposition DFTB/MD

    Initial model: Fe38

    Annealed at1500 K10 ps

    10 geometries arerandomly sampledbetween 5 and 10 psfor ten trajectories.

    t = 0 ps

    30 C2H2s

    30 ps

    1 2 3 4 5

    6 7 8 9 10

    Annealed at

    1500 K15 ps

    1 2 3 4 5

    6 7 8 9 10

  • 7/27/2019 005 Keiji Morokuma

    40/43

    40

    Outline

    Motivation

    Review: state of the art SWNT growth control

    (experiment and theory)

    Density-functional tight-binding (DFTB) method and its

    application in molecular dynamics simulations

    Continued growth simulations of armchair SWNTs,

    temperature dependence; zigzag SWNTs

    Surface diffusion, cap formation and cap growth on

    transition metal cluster, acetylene decomposition

    Summary and outlookSummary and outlook

    http://kmweb.fukui.kyoto-u.ac.jp/nano http://qc.chem.nagoya-u.ac.jp

    SummarySummary & Outlook

  • 7/27/2019 005 Keiji Morokuma

    41/43

    41

    DFTB/MD method very useful to probe SWNT growth parameter

    space by more realistic simulations of SWNT growth on metal particle.

    Carbon atom supply in Fe/C interface region leads to developmentof short polyyne chains that grow into 5/6/7 rings, some temperature

    dependence of growth.

    Summary

    SWNT (n,m) chirality NOT preserved! Chirality should be

    preserved if carbon addition is slower than defect annealing (10sof picoseconds)

    Summary & Outlook

    Pentagon-hexagon-only growth achieved by slower surface

    diffusion.

    First-ever cap nucleation from C

    2

    molecules observed by slow

    surface diffusion.

    Cap nucleation very similar to fullerene cage nucleation,

    slowed down by presence of Fe cluster (immobility of C2

    andpolyynes)

    Summary & Outlook Outlook

  • 7/27/2019 005 Keiji Morokuma

    42/43

    42

    Extension of DFTB/MD time scale is needed:

    Faster alternatives to BOMD but with similar time step

    Different type of MD?

    Faster computer?

    y

    Future Studies:

    What is the role of carbide formation for nucleation?Different carbon feedstock and different metals

    Finally: scan of

    parameter space

    Acknowledgements

  • 7/27/2019 005 Keiji Morokuma

    43/43

    43

    Research Center for Computational Science(RCCS), Okazaki Research Facilities, National

    Institutes for Natural Sciences.

    Computer resources :

    CREST grant in the Area of High PerformanceComputing for Multi-scale and Multi-physicsPhenomena from JST

    Academic Center for Computing and MediaStudies (ACCMS), Kyoto University

    Funding :

    JST Tenure Track Funding by MEXT MSCF (to SI)

    g

    Center for Nanophase Materials Sciences(CNMS) Oak Ridge National Laboratory