rstpeople.biology.ucsd.edu/gert/pubs/iscas02_ds.pdf · delta-sigmaalgorithmic analog-to-digital...

4
DELTA-SIGMA ALGORITHMIC ANALOG-TO-DIGITAL CONVERSION Grant Mulliken , Farhan Adil , Gert Cauwenberghs , and Roman Genov Adaptive Microsystems Laboratory, ECE Dept., Johns Hopkins University, Baltimore, MD 21218 BME Dept., Johns Hopkins University School of Medicine, Baltimore, MD 21205 School of Electrical Engineering, Georgia Tech, Atlanta, GA 30332 E-mail: grant,farhan,gert,roman @bach.ece.jhu.edu ABSTRACT Delta-sigma modulation for analog-to-digital conversion re- solves a number of bits logarithmic in the number of mod- ulation cycles, and linear in modulation order. As an al- ternative to higher-order noise shaping, we present an al- gorithmic scheme that iteratively resamples the modulation residue, by feeding the integrator output back to the in- put. This yields a bit resolution linear in the number of cycles, similar to an algorithmic analog-to-digital converter. The scheme simplifies the design of the digital decimator to a single shifting counter, and avoids interstage gain er- rors in conventional algorithmic analog-to-digital convert- ers. Experimental results from an integrated CMOS array of 128 converters show the utility of the design for large-scale parallel quantization in digital imaging and hybrid analog- digital computing. 1. INTRODUCTION Delta-sigma ( ) modulation has emerged as the architec- ture of choice for high-resolution analog-to-digital (A/D) conversion using low-precision analog components [1]. The increased resolution comes at the expense of reduced con- version bandwidth or increased clock speed due to over- sampling, and increased digital complexity to decimate the modulator output stream. For very low bandwidth applica- tions, lowest digital complexity is achieved with a first-order incremental converter [2], where a counter implements a rectangular decimation filter. Higher-order incremen- tal converters [3] are capable of attaining higher conversion bandwidth, using additional analog and digital circuitry. Al- ternatively, higher bandwidth can be obtained from a first- order incremental converter by further refining the modula- tion residue on the integrator at the end of conversion using a Nyquist A/D converter [4, 5, 6]. The principle is similar to dual-quantization oversampled converters [7, 8], except This work was supported by ONR N00014-99-1-0612 and ONR/DARPA N00014-00-C-0315. Chip fabrication was provided through MOSIS. S/H + - MUX Q w y u x (b) A D (a) COUNTER + - Q w y u A D S/H RST RST RST RST SHIFT COUNTER Fig. 1. (a) First-order incremental A/D converter. (b) algorithmic A/D converter, with residue resampling across the accumulator, and shifting counter for the deci- mator. the second quantizer operates at the conversion rate and re- quires no decimation. The presented architecture uses the same first-order modulator, with virtually no overhead in analog and digital hardware, to incrementally convert the modulation residue of preceding incremental conversion. By using the same signal path in ratio-insensitive manner, precise matching be- tween multiple quantization results is obtained. Matching is a concern in the precision of multiple-quantization oversam- pled data converters [9], usually requiring compensation in the digital domain [10]. The presented scheme is similar to algorithmic A/D conversion, but avoids interstage gain errors when precisely ratioed analog components are not available. Very high integration density can be achieved by virtue of the simple modulator and decimator architecture. 2. INCREMENTAL A/D CONVERSION For clarity of exposition we start the formulation with that of the first-order incremental A/D converter [2], depicted in

Upload: lamthuy

Post on 02-Jun-2019

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: RSTpeople.biology.ucsd.edu/gert/pubs/iscas02_ds.pdf · DELTA-SIGMAALGORITHMIC ANALOG-TO-DIGITAL CONVERSION Grant Mulliken , Farhan Adil , Gert Cauwenberghs , and Roman Genov Adaptive

DELTA-SIGMA ALGORITHMIC ANALOG-TO-DIGITAL CONVERSION

GrantMulliken��� �

, FarhanAdil��� �

, GertCauwenberghs�, andRomanGenov

��AdaptiveMicrosystemsLaboratory, ECEDept.,JohnsHopkinsUniversity, Baltimore,MD 21218�

BME Dept.,JohnsHopkinsUniversitySchoolof Medicine,Baltimore,MD 21205�Schoolof ElectricalEngineering,Georgia Tech,Atlanta,GA 30332

E-mail:�grant,farhan,gert,roman� @bach.ece.jhu.edu

ABSTRACT

Delta-sigmamodulationfor analog-to-digitalconversionre-solvesa numberof bits logarithmicin thenumberof mod-ulation cycles, and linear in modulationorder. As an al-ternative to higher-ordernoiseshaping,we presentan al-gorithmicschemethatiteratively resamplesthemodulationresidue,by feeding the integrator output back to the in-put. This yields a bit resolutionlinear in the numberofcycles,similar to analgorithmicanalog-to-digitalconverter.The schemesimplifies the designof the digital decimatorto a singleshifting counter, andavoids interstagegain er-rors in conventionalalgorithmicanalog-to-digitalconvert-ers.Experimentalresultsfrom anintegratedCMOSarrayof128convertersshow theutility of thedesignfor large-scaleparallelquantizationin digital imagingandhybrid analog-digital computing.

1. INTRODUCTION

Delta-sigma( �� ) modulationhasemergedasthearchitec-ture of choice for high-resolutionanalog-to-digital(A/D)conversionusinglow-precisionanalogcomponents[1]. Theincreasedresolutioncomesat the expenseof reducedcon-versionbandwidthor increasedclock speeddue to over-sampling,andincreaseddigital complexity to decimatethemodulatoroutputstream.For very low bandwidthapplica-tions,lowestdigital complexity isachievedwith afirst-order�� incrementalconverter[2], wherea counterimplementsarectangulardecimationfilter. Higher-order �� incremen-tal converters[3] arecapableof attaininghigherconversionbandwidth,usingadditionalanaloganddigital circuitry. Al-ternatively, higherbandwidthcanbe obtainedfrom a first-orderincrementalconverterby furtherrefiningthemodula-tion residueon theintegratorat theendof conversionusinga Nyquist A/D converter[4, 5, 6]. Theprinciple is similarto dual-quantizationoversampledconverters[7, 8], except

This work was supported by ONR N00014-99-1-0612 andONR/DARPA N00014-00-C-0315.ChipfabricationwasprovidedthroughMOSIS.

S/H

+� -MUX Qw� y u�

x�(b)�

A

D

(a)�

COUNTER�

+� -Qw� y u�

A�

DS/H

RST

RST RST

RST SHIFT

COUNTER�

Fig. 1. (a) First-order �� incrementalA/D converter. (b)�� algorithmic A/D converter, with residueresamplingacrossthe accumulator, and shifting counterfor the deci-mator.

thesecondquantizeroperatesat theconversionrateandre-quiresno decimation.

The presentedarchitectureuses the samefirst-ordermodulator, with virtually no overheadin analoganddigitalhardware,to incrementallyconvert the modulationresidueof precedingincrementalconversion. By using the samesignalpathin ratio-insensitivemanner, precisematchingbe-tweenmultiplequantizationresultsis obtained.Matchingisaconcernin theprecisionof multiple-quantizationoversam-pleddataconverters[9], usuallyrequiringcompensationinthe digital domain[10]. The presentedschemeis similarto algorithmic A/D conversion,but avoids interstagegainerrorswhen preciselyratioedanalogcomponentsare notavailable.Very high integrationdensitycanbeachievedbyvirtue of thesimplemodulatoranddecimatorarchitecture.

2. �� INCREMENTAL A/D CONVERSION

For clarity of expositionwe startthe formulationwith thatof thefirst-orderincrementalA/D converter[2], depictedin

Page 2: RSTpeople.biology.ucsd.edu/gert/pubs/iscas02_ds.pdf · DELTA-SIGMAALGORITHMIC ANALOG-TO-DIGITAL CONVERSION Grant Mulliken , Farhan Adil , Gert Cauwenberghs , and Roman Genov Adaptive

Figure1(a).A first-order�� modulatorconvertsananalogsequence��� ��� into abitstream��� ��� , usinga‘resetable’(RST)analogaccumulator�

� ����� � (1)�� �� "!#���

�� ���$ &%(')��� �*�,+-��� �*�).0/�1�2�3/#454#4768+9! (2)�

� 6: "!#����� 6;�,+(%<��� 6=� (3)

andasingle-bitquantizer

�>� �?�@� +A! (4)��� �*�@� BDCFEHGI'�� ���J.K/L�1�M!N/54#4#4D6O4 (5)

A binary counteraccumulatesthe bits1 ��� ��� to produceadecimatedoutput.Therectangulardecimationwindow, andinitial resetof the accumulator, avoid tonesin the quanti-zation noisespectrumat DC input that are characteristicof a conventionalfirst-order �� modulatorwith lowpassdecimationfilter [2]. The quantizationerror (conversionresidue)is directly given by the final accumulatorvalue�� 6P "!#� , asverifiedby summing(2) and(3) over � :QR S T�U ��� ���V�

QXW�YR S T�U ��� �*�$+ !%�� 6P "!#�V4 (6)

For aninput ��� ��� within theconversionrange �Z+A!H/#!#� (in di-mensionlessunits),

�� 6M [!\� in (3) is boundedby therange�Z+]%K/D%^� , andaworst-caseresolutionof _F`HEbaH'c6d. bits is war-

ranted2.Higher resolutionat lower oversampling6 canbe ob-

tained using higher-order incrementalconversion [3]. Alower-complexity alternative is presentednext.

3. �� ALGORITHMIC A/D CONVERSION

TheconversionresidueYe�� 68 f!#� in (6) is convertedfur-

ther into digital form to obtain higher resolution. As inothermultiple-quantizationoversampledconverters[3]-[8],gain mismatchbetweenquantizationsignalpathsis a lim-iting factorin theprecisionavailable[9]. Ratio-insensitivematchingis achievedby resamplingtheresiduethroughthesamesignalpathasusedfor accumulation(2), andemploy-ing thesamemodulatorto convert theresidue.

Assumea constantinput (or its average)g presentedtothe incrementalconverter for 6 initial cycles, ��� ���h�ig ,���2�$/#454#476j+9! ,QR S T�U �>� ���V�26Pgk+ !%

�� 6P 2!\�>4 (7)

1 lKm-n � correspondsto logic 0 for notationalconvenience.2Notethat the lastmodulationcycle (3) contributesonefull bit of res-

olution, since oKp qsr for qutwv in (2) is boundedby��x

in amplitude.The extra zero-inputmodulationcycle (3) canbe avoidedby quantizingoKp qsr#y x{z p qsr insteadof oKp qsr in (5).

C1 C2u

y| w}

(a)~

C1 C2

SAMPLE AND RESET�

C1

SAMPLE�

uC1 C2

ACCUMULATE�

y| w}

C1 C2

RESIDUE FEEDBACK�

w}α

(b)~

C2

S/H�

u

Fig. 2. Invertable, resetableanalog accumulator. (a) Cir-cuit diagram. (b) Operationalmodes.

At theendof conversion,theresidue

�� 68 �!#� is fed back

to theinput for subsequentincrementalconversionover 6��additionalcycles, �V��� �����8�

�� 6� M!#� , �����$/54#45476��I+�! ,

where� representstheresidueresamplinggain.ThusQ��R S T�U � � � ���>�26 � ��� 6P 2!\�,+ !%

� � � 6 � 2!\� (8)

which under the matchingcondition %�����! combineswith (7) to cancelthefirst residue

�� 6P 2!\� :

6 � QR S TIU ��� ���b Q��R S T�U � � � ���>��6�6 � gk+ !%

� � � 6 � 2!\��4 (9)

Theleft-handsideof (9) is readilyavailablein digital form,andtheright-handtermsconformto (6)with effective 6�6�� -level resolution. Therefore,the residueconversion(8) en-hancestheresolutionof (7) by anextra _F`HE a 'c6���. bits. Thealgorithmicrecursioncanbecontinuedto produce_F`HEHab'c6d.bits for every conversionof the precedingresidueover 6incrementalcycles. The recursioncorrespondsto a radix-6 algorithmicA/D converter, but without theneedfor 6 -ratioedanalogcomponents.

The matchingcondition %��j��! for ratio-insensitiveoperationis metusinganinvertablecircuit topologyfor theanalogaccumulator, describednext.

4. IMPLEMENTATION

Thehardwarecomplexity of the �� algorithmicA/D con-verter, depictedin Figure 1(b), is essentiallyidentical to

Page 3: RSTpeople.biology.ucsd.edu/gert/pubs/iscas02_ds.pdf · DELTA-SIGMAALGORITHMIC ANALOG-TO-DIGITAL CONVERSION Grant Mulliken , Farhan Adil , Gert Cauwenberghs , and Roman Genov Adaptive

that of the �� incrementalconverter in Figure1(a). Theaccumulatoris extendedto samplethe residuein ratio-insensitive manner, andthecounteris extendedto shift bitsin betweenresidueconversionsfor proper scaling in thedecimation.

4.1. Invertable, Resetable Analog Accumulator

Critical to attainingratio-insensitivesamplingof theresidueis thedesignof theaccumulator. A simplecircuit achievingmultipleobjectivesis depictedin Figure2 (a),with differentmodesof operationillustratedin Figure2 (b). The circuitis shown with minimum numberof componentsusing aninverting amplifier, but canbe directly extendedto differ-entialdesignsfor higherresolution.Correlateddoublesam-pling (CDS)in theaccumulationof thedifference�1� ���#+u�>� ���accordingto (2) offerstheadvantageof !��N� noiseandoff-set cancellation. The switched-capacitoraccumulatorhasratio-dependentgain %-�f� Y �N� a thatis proneto mismatch;however thismismatchis immaterialin theoperationof thefirst-ordermodulatorwith single-bit quantizer. For ratio-insensitivesamplingof theresidue,thesignalandfeedbackpathof theaccumulatoris invertedby interchangingthe � Yand � a componentsin the circuit topology, shown in Fig-ure2 (b). As a result,the matchingcondition %��"��! be-tween(7) and(8) is satisfiedindependentof � Y and � a , toa precisionlimited by the finite gain of the amplifier, andnoiseandchargeinjectionin thesampling.

4.2. Decimating Shifting Counter

For every algorithmic iteration, the precedingdecimatedoutputneedsto bescaledbyafactor6 , thenumberof incre-mentalcyclesin the residueconversion,prior to continuedcounting. It is particularlyconvenientto assume6 to beradix-� , sothatthescalingis simply performedby a binaryshift in the decimationcount,assuggestedin Figure1(b).A shift registeris readily incorporatedin a binary counter,with little overheadin the circuit complexity of the imple-menteddecimator.

5. EXPERIMENTAL RESULTS FROMINTEGRATED A/D ARRAY

To demonstratethe advantagesof the approachto large-scale,denselyintegratedquantizationin an embeddedap-plication, we implementeda bankof 128 �� algorithmicconvertersas part of a mixed-signalcomputationalarray.The �N�N�(��!���� array performsexternally digital matrix-vector multiplication using internally analogelementsforvery large energeticefficiency ( !�� Y a multiply-accumulatesperWattof power)[11]. Thearraycoreperformsanalogac-cumulationof binary-binarypartialproducts,requiringrow-parallelA/D conversionfor eachof the 128 outputvector

Fig. 3. Micrograph of mixed-signalarray processor[12],containing an array of �H���(��!��N� CID/DRAM multiply-accumulatecells [11], and a row-parallel bankof !��N� al-gorithmic ��� A/D converters. Die sizeis  ¢¡�¡£� ¢¡�¡ in0.5 ¤ m CMOStechnology.

components.Themicrographof the integratedsystem[12]is shown in Figure3. Eachof the128A/D channelsmeasure14 ¤ m by 850 ¤ m.

To maximizeintegrationdensity, theanalogpathof the�� algorithmic architectureof Figure 1(b) usessingle-stagecascodednMOSinvertingamplifiersthroughout,withnominalgainof +] N�N� . Capacitances� Y and � a arenom-inally 0.25 pF and 0.5 pF, respectively, with %��¥�34 � .Sample-and-holdand comparatorblocks are implementedin standardswitched-capacitorcircuitry, with CDS !��N�noiseandoffsetcompensation.Dynamiclogic implementsbinarycounterandregisters.

Exampleconversionwaveformsfrom thefabricatedar-ray are illustratedin Figure 4. Least-squaresfits of inte-gral quantizationerror observed over one channelof thearray, configuredboth for 8-bit incrementaland algorith-mic �� conversion, are within the LSB level as shownin Figure 5. However, incrementalconversion requires��¦§ �!<�:�N�b¨ cycles,while 2-stepalgorithmicconversiontakes �©�ª'*��«b <!�.©�2 �¬ cycles.With a300nsclockin 2-step8-bit algorithmicmode,the128-channelA/D bankdelivers12.8 Msamples/sat 2.6 mW power dissipation,includingdecimation.

Resolutionslarger than10-bit requirehigher-gain am-plifiers at the costof decreasedintegrationdensityandin-creasedpowerdissipation.In digital imagingandotherinte-gratedsensingmodalities,maintaininghigh spatialresolu-tion is usuallyamorestringentrequirementthanincreasingamplituderesolution.

Note that matchingis at stake even at low (8-bit) res-

Page 4: RSTpeople.biology.ucsd.edu/gert/pubs/iscas02_ds.pdf · DELTA-SIGMAALGORITHMIC ANALOG-TO-DIGITAL CONVERSION Grant Mulliken , Farhan Adil , Gert Cauwenberghs , and Roman Genov Adaptive

yy

uu

ww

INPUT RESIDUE

Fig. 4. Observedwaveformsfor two-step �� algorith-mic A/D conversion. Top: Integrator voltage

�� ��� . Cen-

ter: Sample-and-holdvoltage �1� ��� . Bottom: Outputbits �>� ���prior to decimation.

olution. Precisematchingbetweencapacitorswith up to12-bit uncalibratedprecisioncanbeachievedthroughcare-ful layout in centroidgeometry, but not within dimensionspitch-matchedto, say, a45 ­ (14 ¤ m) photosensorpixel.

6. CONCLUSION

Theproposedtechniquecombinesadvantagesof �� mod-ulationandalgorithmic(cyclic) A/D conversionin asingle,simplearchitecture.Both are includedasspeciallimitingcases:a singlealgorithmic iterationreducesto �� incre-mentalconversion,and 6��P� cyclesper iterationyield aratio-insensitiveform of algorithmicA/D conversion.

The reducedhardwarecomplexity and improved com-ponenttoleranceof the architectureoffer a major advan-tagein integratedapplicationscalling for large-scalepar-allel quantizationat low to mediumresolution(8 to 12 bits)but very high integrationdensities,with a potentialfor ex-tremely large combinedquantizationthroughputs(Gsam-ple/srangeat mW power levels). Bandwidthcanbetradedfor resolution in reconfigurablemannerthrough externalcontrol of clock waveforms. Ratio-insensitive matchingmakes the architectureespeciallysuited for applicationsof integrated digital acquisition in spatial sensorarrays.An 128-elementintegratedarray prototypedemonstratedtheprinciplefor applicationsin mixed-signalanalog-digitalcomputing[12].

7. REFERENCES

[1] J.C.CandyandG.C. Temes,“OversampledMethodsfor A/D andD/A Conversion,” in OversampledDelta-SigmaData Converters,IEEEPress,pp1-29,1992.

1.5 2 2.5 3 3.5−0.02

−0.01

0

0.01

0.02

Analog input (V)

Qua

ntiz

atio

n E

rror

(V

)

+1 LSB

−1 LSB

256 incremental

1.5 2 2.5 3 3.5−0.02

−0.01

0

0.01

0.02

Analog input (V)

Qua

ntiz

atio

n E

rror

(V

)

+1 LSB

−1 LSB

16+16 algorithmic

Fig. 5. Integral quantizationresidue, recordedfroma singlechannelof the VLSI A/D array in Figure 3, configured for8-bit conversion. Top: �� incrementalconversion ( 6®��N�N� ). Bottom: �� algorithmic A/D conversion ( 6��¯!5� ,2-step).

[2] J. Robert,G.C. Temes,V. Valencic,R. Dessoulavy, andP. Deval,“A 16-Bit Low-VoltageCMOSA/D Converter,” IEEEJ. Solid-StateCircuits,vol. SC-22, pp157-163,1987.

[3] O.J.A.P. Nys andE. Dijkstra, “On ConfigurableOversampledA/DConverters,” IEEE J. Solid-StateCircuits,vol. 28 (7), pp 736-742,1993.

[4] C. Jansson,“A High-Resolution,Compact,andLow-Power ADCSuitablefor Array Implementationin StandardCMOS,” IEEE T.CircuitsandSystemsI, vol. 42 (11),pp904-912,1995.

[5] R. Harjani andT.A. Lee, “FRC: A Methodfor ExtendingtheRes-olution of NyquistRateConvertersUsingOversampling,” IEEE T.CircuitsandSystemsII, vol. 45 (4), pp482-494,1998.

[6] P. Rombouts,W. De Wilde, andL. Weyten, “A 13.5-b1.2-V Mi-cropower ExtendedCountingA/D Converter,” IEEE J. Solid-StateCircuits,vol. 36 (2), pp 176-183,2001.

[7] T. Hayashi,Y. Inabe,K. Uchimura,T. Kimura,“A MultistageDelta-SigmaModulatorwithout DoubleIntegrationLoop,” ISSCCTech.Dig. Pap., vol. 39, pp182-183,1986.

[8] T.C.LeslieandB. Singh,“An ImprovedSigma-DeltaModulatorAr-chitecture,” Proc.IEEEInt. Symp.CircuitsandSystems(ISCAS’90),pp372-375,1990.

[9] D.B. Ribner, “A Comparisonof Modulator Networks for High-Order OversamplingSigma-DeltaAnalog-to-Digital Conversion,”IEEE T. CircuitsandSystems, vol. 38, pp145-159,1991.

[10] G. CauwenberghsandG.C.Temes,“Adaptive Digital CorrectionofAnalog Errorsin MASH ADCs — Part I. Off-Line andBlind On-Line Calibration,” IEEE Trans.CircuitsandSystemsII , vol. 47 (7),pp.621-628,July 2000.

[11] R. Genov andG. Cauwenberghs,“Charge-ModeParallelArchitec-ture for Matrix-Vector Multiplication,” IEEE Trans. Circuits andSystemsII , vol. 48 (10),Oct.2001.

[12] R. Genov, G. Cauwenberghs,G. Mulliken,andF. Adil, “A 5.9mW6.5GMACSCID/DRAM Array Processor,” submitted.