zong-liang yang guo-yue niu robert e. dickinson the university of texas at austin

32
Zong-Liang Yang Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin Modeling Surface and Subsurface Modeling Surface and Subsurface Runoff in CLM Runoff in CLM Prepared for Land Model Working Group Meeting, March 14, 2005 Funded under NASA grant NAG5-12577

Upload: justin

Post on 14-Feb-2016

31 views

Category:

Documents


1 download

DESCRIPTION

Modeling Surface and Subsurface Runoff in CLM. Zong-Liang Yang Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin. Prepared for Land Model Working Group Meeting, March 14, 2005 Funded under NASA grant NAG5-12577. Outline. Introduction - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Zong-Liang Yang Guo-Yue Niu

Robert E. Dickinson

The University of Texas at Austin

Modeling Surface and Subsurface Runoff in Modeling Surface and Subsurface Runoff in CLMCLM

Prepared for Land Model Working Group Meeting, March 14, 2005

Funded under NASA grant NAG5-12577

Page 2: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 3: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 4: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Performance of Baseline CLM (1)Performance of Baseline CLM (1)

Soil moisture (Sleepers River Catchment):Too lowOdd profile (9th layer driest)

Daily runoff (Sleepers River Catchment, Vermont, USA):Negative modeling efficiency because of large spikesSurface runoff (fast component) too high

Page 5: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Performance of Baseline CLM (2)Performance of Baseline CLM (2)

Monthly runoff (GSWP2 Project):Overestimated Surface runoff (fast component) too high Surface runoff is 80% of total runoff.

Page 6: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Parameterization of Runoff in Baseline CLMParameterization of Runoff in Baseline CLM

Guided by four considerations:

1) TOPMODEL:

topographic control on the growth and decay of saturated area and groundwater flow

2) 1-D 10-layer soil structure:

3) Topographic data availability:

a simple determination of the saturated area, allowing room for improvement when the topographic parameters are available globally.

4) BATS:

success in PILPS experiments, esp. PILPS 1c (The Red-Arkansas River Basin)

Page 7: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Parameterization of Runoff in Baseline CLMParameterization of Runoff in Baseline CLMRunoff = Surface runoff + Subsurface runoff

Surface runoff Rs = Fsat Qwat + (1 – Fsat) ws4 Qwat

TOPMODEL BATS

Qwat = Input of water at the soil surfaceFsat = Fractional saturated area = Fmax exp(–Dw)ws = averaged soil wetness in the top three soil layers

Subsurface Runoff Rsb = Fsat lb exp(–Dw) + (1 – Fsat) Kb wb2B+3

lb = maximum baseflow rate = 10-5 mm s-1 Kb = maximum drainage rate = 0.04 mm s-1

wb = averaged soil wetness in the bottom three soil layers

Ksat (z) = Ksat(0) exp(–f z )

Ksat(0) = saturated hydraulic conductivity at the soil surface, determined by soil texture following Cosby et al. (1984); f = 2 (tunable parameter)

Page 8: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Problems in the Baseline CLMProblems in the Baseline CLM1) The second term in surface runoff is redundant and too large.

Rs = Fsat Qwat + (1 – Fsat) ws4 Qwat

TOPMODEL BATS

2) The second term in subsurface runoff is redundant and too large.

Rsb = Fsat lb exp(-Dw) + (1 – Fsat) Kb wb2B+3

3) How to determine Ksat (0) and Ksat(z)? Following Cosby et al. (1984)? Allowing macorpores? How to account for vertical and horizontal Ksat?

4) How to compute Fsat?Constrained by a global constant? By topography?

5) How to determine the water table?By the total head equilibrium? The moving boundary? An explicit groundwater model?

Page 9: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Proposed Runoff Scheme in CLMProposed Runoff Scheme in CLM1) Surface runoff

Rs = Fsat Qwat + (1 – Fsat) max(0, Qwat – Imax)2) Subsurface runoff

Rsb = Rsb,max exp (-f zw) simplified from

Rsb = [ α Ksat (0) / f ] exp(- λm) exp(- f zw)

α= anisotropic factor for different Ksat in vertical and horizontal directionsλm= grid-cell averaged topographic indexzw= grid-cell mean water table depth

3) Ksat (0) = ksat exp (f Dc) Ksat (z) = Ksat(0) exp(–f z )ksat is determined by following Cosby et al. (1984).Allowing macropores.

4) Fsat = ∫λ ≥ (λm + f*zw) pdf(λ) dλ

5) The water table is diagnosed from an equilibrium relationshipψ(z) – z = ψsat – zw (i.e., the total head is equal across the soil column layers)

Page 10: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Topography-based Runoff SchemeRunoff production mechanism

Surface runoffSaturation excessInfiltration excess

Subsurface runoff Topographic control Bottom drainage “Over-saturated” water

recharged into upper unsaturated layers

Infiltration Excess

Wat

er T

able

Dep

th

Saturation Excess

Super-saturationTopography Bottomm

w

ef

KR

eRR

satsb

fzsbsb

)0(max,

max,

Page 11: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 12: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Maximum Fractional Saturated Area (FMaximum Fractional Saturated Area (Fsat,maxsat,max))

Using 1 km × 1 km topographic index (λ)

Using Γ-distribution fit to the 1 km data

Differences of (Middle – Top)

Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ when the water table is at the surface (zw = 0)

Page 13: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Defining the Maximum Fractional Saturated AreaDefining the Maximum Fractional Saturated Area

Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ

Fsat,max results when the water table is at or above the surface (zw ≤ 0)

Topographic Index λ

Page 14: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over the Sleepers River BasinSimulations over the Sleepers River Basin

TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ

SIMTOP: Fsat = Fsat,max exp (–0.5 f zw) Fsat,max = 0.42

Page 15: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 16: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Ksat, macropores and anisotropic factor

ksat depends on soil type (Cosby et al., 1984)

Stiglietz et al. (1997) :Ksat(0) = 1000 × ksat α=1, f=3.26

Chen and Kumar (2001):Ksat(0) = exp(f Dc) × ksat

= 6 × ksat α=2000, f=1.8

This study: Ksat(0) = exp(f Dc) × ksat

= 6 × ksat α=20, f=2 (global); =3.26 (Sleepers River)

or Rsb,max = 1.45×10–7m/s

fzsatsat eKzK )0()(

10–7 m/s 10–3 m/s0 m

1 m

2 m

3 m

10–10 m/s

Baseline CLM

Stiglietz et al.

mef

KR satsb

)0(

max,

Chen & Kumar

Page 17: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Ksat, macropores and anisotropic factor

fzsatsat eKzK )0()(

mef

KR satsb

)0(

max,10–7 m/s 10–3 m/s

0 m

1 m

2 m

3 m

10–10 m/s

Baseline CLM

Stiglietz et al.

Chen & Kumarα = 1

α = 20

Page 18: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 19: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over Various Regional BasinsSimulations over Various Regional Basins

West SiberiaEast Siberia

NW Canada

CongoAmazon India

E USAW USAC Europe

S AfricaSahara Australia

N America

EurasiaS Hemisphere

Page 20: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over the Sleepers River BasinSimulations over the Sleepers River Basin

TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ

Rsb,max = 1.45 ×10–7 m/s

Chen & Kumar

10–7 m/s 10–3 m/s0 m

1 m

2 m

3 m

10–10 m/s

Baseline CLM

Stiglietz et al.

Bottom sealed

Bottom NOT sealed

Page 21: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over the Sleepers River BasinSimulations over the Sleepers River Basin

10–7 m/s 10–3 m/s0 m

1 m

2 m

3 m

10–10 m/s

Baseline CLM

Stiglietz et al.

Bottom NOT sealed

Bottom sealed

Chen & Kumar

TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ

Rsb,max = 1.45 ×10–7 m/s

Page 22: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 23: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Comparison of Comparison of Simulated Water TableSimulated Water Table with with MeasurementsMeasurements in Illinois in Illinois

Page 24: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

OutlineOutline Introduction

Current treatment of runoff in CLM and problems Saturation area

Surface runoff Ksat, macropores and anisotropic factor

Subsurface runoff Constant versus exponential Ksat

Continental-scale simulations Water table

Regional-scale simulations Comparison with observations

Sensitivity to parameters f Rsub,max

Page 25: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Sensitivity to f:Sensitivity to f:Simulations over the Sleepers River Simulations over the Sleepers River

Page 26: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Sensitivity to RSensitivity to Rsb,maxsb,max

Simulations over the Sleepers River Simulations over the Sleepers River

Page 27: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over the Sleepers RiverSimulations over the Sleepers River

Page 28: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Simulations over the Amazon BasinSimulations over the Amazon Basin

Page 29: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Coupled CAM2-CLM2 Results in AmazonSu

rfac

e ru

noff

(m

m/d

)

Soil

Moi

stur

e (m

m/d

)

ET

(mm

/d)

Prec

ipita

tion

(mm

/d)

Simplified TOPMODEL produced less surface runoff, allowing more water to infiltrate into deeper soil and to increase soil moisture. Transpiration increases significantly, more than compensating the decrease in the interception loss. As a result, both ET and precipitation show favorable increases.

1-2mm/d

Page 30: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Conclusions1) Based on offline tests for a small catchment or global continents, the

proposed runoff scheme is shown to be robust for a wide range of assumptions including

a) Different methods of Fsat,• Based on 1-km topographic parameters• Assuming a global constant

b) Constant versus exponential Ksat• In the constant profile case, results depend on whether the bottom

is sealed or not c) Different methods of water table.

2) The simulations of soil moisture and runoff are all improved over the baseline version.

3) In the Amazon region, canopy evaporation and surface runoff are reduced, soil is wetter, and both ET and precipitation are increased.

Page 31: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Future Work1) Increase the total soil thickness to ~10 m and make it

a geographic variablea) Need bedrock data,b) Adjust root depth and distribution,c) Collect the water table data,d) Compare with the GRACE data.

2) Global optimization of two calibration parameters (f and Rsub,max).

3) Include (unconfined) aquifer into CLM to study groundwater recharge, discharge, and climate-groundwater interactions.

Page 32: Zong-Liang Yang  Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin

Land Surface, Surface Water and

Groundwater

Can be detected by GRACE