zeus highlights for ichep02 a personal selection

31
ZEUS Highlights for ICHEP02 ... a personal selection [email protected] • What is the structure of the proton ? • Is DGLAP working at low-x ? • How are heavy quarks produced ? • Is the SM valid at high energies ? • How can we understand soft processes ? • More complex proton description : GPD ? • What drives colour singlet proton component ? Main Questions at HERA: Incl. DIS & PDF Fits strange, charm, beauty Tau High Et: electrons&jets DVCS/J/Ψ & F 2 D3

Upload: others

Post on 22-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

ZEUS Highlights for ICHEP02... a personal selection

[email protected]

• What is the structure of the proton ? • Is DGLAP working at low-x ?• How are heavy quarks produced ?

• Is the SM valid at high energies ?

• How can we understand soft processes ?• More complex proton description : GPD ?• What drives colour singlet proton component ?

Main Questions at HERA:

Incl. DIS & PDF Fits

strange, charm, beauty

Tau

High Et: electrons&jets

DVCS/J/Ψ & F2D3

ZEUS

0

1

2

3

4

5

1 10 102

103

104

105

F2 em

-log 10

(x)

Q2(GeV2)

ZEUS NLO QCD fit

tot. error

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5x=0.000102x=0.000161

x=0.000253

x=0.0004x=0.0005

x=0.000632x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Final incl. DIS PDF-Fits

Not always Gaussian

Proton structure function F2: impressive precision over wide x, Q2 range

•Needs precise data and careful evaluation of exp. uncertainties•much improved fit technique

Final PDF-fits:

ZEUS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10-3

10-2

10-1

1

ZEUS NLO QCD fit

αs(MZ2) = 0.118

tot. error

CTEQ 6M

MRST2001

Q2=10 GeV2

xuv

xdv

xg(× 0.05)

xS(× 0.05)

x

xfExtraction ofparton densitiesandexp. uncertainties

•impressive precision•agreement with global fits• simultaneous fit: PDF & αs:

( ) (model) 0.0018 (norm) 0.0036

(corr) 0.0032 (uncorr) 0.0008 0.1166 MZ

±±

±±=sα

scale ren.from 0.004

additional plus±

ZEUS

10-2

10-1

1

0 0.2 0.4 0.6 0.8 1

xqV

Q2=1 GeV2

0 0.2 0.4 0.6 0.8 1

20 GeV2

ZEUS ONLY fit (prel.)

(94-00 data)

200 GeV2 2000 GeV2

ZEUS + fixed targetZEUS only, i.e. F2HERA-I: high-Q2 NC/CC ZEUS

1 0 0.2 0.4 0.6 0.8 1

20 GeV2

ZEUS NLO QCD fit

2000 GeV2

uncorr. error

u better known than d, d can be fixed by high-Q2 CC, no need to discuss deuterium binding corrections in fixed target data... hardly need fixed target data

x x

Valence Quarks from One Experiment:

-0.2

0

0.2

0.4

xF3

Q2 = 1500 GeV2 Q2 = 3000 GeV2 Q2 = 5000 GeV2

0

0.2

0.4

10-1

1

Q2 = 8000 GeV2

10-1

1

Q2 = 12000 GeV2

10-1

1x

Q2 = 30000 GeV2

ZEUS e±p 96−99ZEUS-S

a)ZEUS

Parity Violating Part of the Proton Structure Function

( ) quark valence to sensitive (x)q x q(x) x ~F x RL,3 −

[ ] 2RL,3-

RL,24

22

y)-(1 1 Y with F x YF Y Q x

2 d

±== ±+

±

mπα

2

NCe

dQdx

σRL,

Comparing e+p/e-p

First measurement Need more luminosity with e-p

ZEUS

-2

0

2

4

6 Q2=1 GeV2

ZEUS ONLY fit

xg

xS

2.5 GeV2

xS

xg

0

10

207 GeV2

tot. error

uncorr. error

xS

xgxf

20 GeV2

xS

xg

0

10

20

30

10-4

10-3

10-2

10-1

1

200 GeV2

xS

xg

10-4

10-3

10-2

10-1

1

2000 GeV2

x

xS

xg

Gluon Density

• Gluon known within 20% for Q2>20 GeV2 and 10-4<x< 10-1

by ZEUS only considerable uncertainty for x>0.1 -> include jets !

•Gluon valence-like or even negative for Q2->0: end of applicability of DGLAP ? Fitted FL also negative direct determination of FL

would provide additional independent information -> lower HERA Ep or use ISR

Greatly improved precision !

ZEUSQ2 = 0.3 GeV2

F2 Q2 = 0.65 GeV2

Q2 = 1.3 GeV2 Q2 = 2.5 GeV2

Q2 = 4.5 GeV2 Q2 = 10 GeV2

Q2 = 22 GeV2

x

ZEUS 96/97

ZEUS SVX 95

ZEUS (prel.) ISR 96

ZEUS BPC 96/97 ZEUS NLO-QCD Fit

ALLM97

0

0.2

0.4

0.6

0

0.5

1

00.5

11.5

2

10-5

10-4

10-3

10-2

0

1

2

3

10-5

10-4

10-3

10-2

New F2 Points at low Q2: ISR Analysis

x

Q2 (

GeV

2 )

Kinem

atic

limit

y=1

y=0.

004

ZEUS 1996-97

ZEUS 1998-99 (Prel.)

ZEUS BPT 1997

ZEUS SVX 1995

ZEUS ISR 1996 (Prel.)

NMC

BCDMS

CCFR

E665

10-1

1

10

10 2

10 3

10 4

10-6

10-5

10-4

10-3

10-2

10-1

1

ISR lowers electron energydifficult analysis: needprecise knowledge ofBethe-Heitler overlays

previously unexplored !

Consistency in overlap region:prove of method -> direct FL in reach ?

So far only small data setanalysed

ZEUS

0

0.2

0.4

0.6

0.5 0.6 0.7 0.8 0.9 1 1.1

ZEUS (prel.) 1995-97Monte Carlo models (CTEQ5)

LEPTO,ARIADNE (0.2 < λs < 0.3):

with γ*s → s+X

without γ*s → s+X

HERWIG with γ*s → s+X

HERWIG without γ*s → s+X

xp (φ)

dσ /

d x p

(φ)

(nb)

0

10

20

30

40

1 1.02 1.04 1.06

0.8 < xp < 1.1

M (GeV)

entr

ies/

(2.5

MeV

)

Φ−meson: Access to Strange Sea ?

s

s

Lab:

Breit: current quarkhemisphere

Φ

Φ

particle leading :1 Qp 2xp Φ→=

xp -> 1: need strange sea as expected from PDF-fitslow xp : better understanding of Φ formation needed !

s

Charm: D* Cross Sections in γp CollisionsZEUS

10-3

10-2

10-1

1

10

5 10 15 20

pT(D*) (GeV)

dσ/d

p T (

nb/G

eV)

ZEUS (prel.) 98-00 a)

NLO QCD

FONLL

0

2

4

6

8

10

12

14

-1 0 1

η(D*)

dσ/d

η (n

b) b)

0

0.05

0.1

0.15

0.2

0.25

0.3

150 200 250

W (GeV)

dσ/d

W (

nb/G

eV)

c)

10

10 2

0 0.2 0.4 0.6 0.8 1

z(D*)

dσ/d

z (n

b) d)FONLL:massive NLO QCDplus resummationof NLO logs not better

central NLOsignificantly below datalargest disagreement:• medium pT,D• forward η• low z=(E-Pz)D/(E-Pz)all

major exp. progress:data errors smallerthan theory errors !

Need better theory

ZEUS

0

2

4

6

8

10

12

14

-1 0 1

η(D*)

dσ/d

η (n

b)

ZEUS (prel.) 98-001.9 < pT(D*) < 3.25 GeV

a)

0

0.5

1

1.5

2

2.5

3

3.5

-1 0 1

η(D*)dσ

/dη

(nb)

3.25 < pT(D*) < 5 GeVb)

0

0.2

0.4

0.6

0.8

1

-1 0 1

η(D*)

dσ/d

η (n

b)

5 < pT(D*) < 8 GeV c)

NLO QCD

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 0 1

η(D*)

dσ/d

η (n

b)

8 < pT(D*) < 20 GeV d)

FONLL

Central NLOsignificantly below datalargest disagreement:• medium pT,D• forward η• low z=(E-Pz)D/(E-Pz)all

major exp. progress:data errors smallerthan theory errors !

FONLL:massive NLO QCDplus resummationof NLO logsnot better

Beauty in γp Collisions - semi-leptonic µ−decay

ZEUS

1

10

3 4 5 6 7 8 9 10pT

µ (GeV)

dσ/

dp

Tµ (p

b/G

eV)

dσdpTµ (ep→bb

–→e jj µ X)

Q2<1 GeV2 0.2<y<0.8pj1,j2>7,6 GeV |ηj|<2.5pT-1.6<ηµ<2.3

ZEUS (prel.) 96-00NLO QCD x hadr.NLO QCD

ZEUS

0

5

10

15

20

25

30

35

40

-1.5 -1 -0.5 0 0.5 1 1.5 2ηµ

dσ/

dηµ (

pb

)

dσdηµ (ep→bb

–→e jj µ X)

Q2<1 GeV2 0.2<y<0.8pj1,j2>7,6 GeV |ηj|<2.5pT

pTµ>2.5 GeV

ZEUS (prel.) 96-00NLO QCD x hadr.NLO QCD

Full HERA-I data set -> data error ~ theory errors

Visible beauty cross-section: ep -> e + jet + jet + µ+X

data/theory ~ 1.4, but compatible within exp/theo uncertainty !

π

K

secondaryvertex

primary vertex

jet

jet

D

D

e

µ

µ

B

B

D*

ZEUS

ZEUS (prel.) 96-00beautycharm (prompt µ)charm (fake µ)

∆R (µ-D*)

can

did

ates

0

5

10

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3 3.5 4

Beauty in γp Collisions - via µ and D*-decayFull HERA-I data set:

Almost backgroundfree sample !

Gives access to low pTstudy b close to kin limit

( ) pb 65(syst)(stat) 41 159XDXbbpσ * ±±=→→ µγ

10-3

10-2

10-1

1

10 102

103

ZEUS

Q2 (GeV2)

dσ/

dQ

2 (p

b/G

eV2 )

ZEUS (prel.) 99-00

NLO QCD (HVQDIS)

4.5 < mb < 5.0 GeV

1/4(Q2+4mb2) < µ2 < 4(Q2+4mb

2)

σ(e+p → e+ bb- X → e+ µ± Jet X)

0.05 < y < 0.7

Pµ > 2 GeV, 30o < θµ < 160o

Et,Jet

Breit > 6 GeV, -2 < ηJet

Lab < 2.5

10-3

10-2

10-1

1

10 102

103

ZEUS

Q2 (GeV2)

dσ/

dQ

2 (p

b/G

eV2 )

ZEUS (prel.) 99-00

O(αs) QCD⊗ CCFM (CASCADE)

O(αs) QCD⊗ DGLAP (RAPGAP)

σ(e+p → e+ bb- X → e+ µ± Jet X)

0.05 < y < 0.7

Pµ > 2 GeV, 30o < θµ < 160o

Et,Jet

Breit > 6 GeV, -2 < ηJet

Lab < 2.5

Beauty in DIS - semi-leptonic µ-decayFirst time differential distributions (L~ 60 pb-1)In Breit frame: Visible beauty cross-section: ep -> e + jet + µ+X

NLO agrees within uncertainties, LO+CCFM perfect B-puzzle solved !?

D0 0.2 0.4 0.6 0.8 1

dDdn

N1

10-3

10-2

10-1

p+

ZEUS (prel.) 99-00 eSM CC DIS

(hadr.)τν →SM W

ZEUS

Tau-Identification:consider hadronic tau -decaybased on internal jet structure: collimated (pencil-like) jets, mostly only 1 track

Multi-variate Discriminant (hep-ph/0011224)based on range searchingoptimised on CC-DIS and W->ντ sample:

QCD jets Tau jets

Good separationtau efficiency ~25%bg rejection ~550

Search for Isolated Tau-Leptons and Missing Pt

(GeV) XTP

0 20 40 60 80 100

even

ts

10-3

10-2

10-1

1

10ZEUS (prel.) 94-00SMW onlySingle Top MC

(GeV) XTP

0 20 40 60 80 100

even

ts

10-3

10-2

10-1

1

10ZEUS

acoplanar not -muon or electron not -

1.8)D 0.5,(D GeV 5p with track isolated -

GeV 20p -

jettrack,tracktrack,

T

missT

>>

>

>

Event selection:

4 events found !3 are compatible with tau hypothesis, i.e. Discriminant D > 0.95

0.02 0.12 :SM 2 :data:GeV 25P

0.06 0.23 :SM 3 :data :0.95D

XT

±

>

±

>

Tau-1 Candidate

GeV 32MGeV 48 PGeV 37 P TX

TCAL

T ===

Tau-2 Candidate

GeV 68MGeV 37 PGeV 39P TX

TCAL

T ===

Status: Isolated Lepton Events at HERA I

H1 (e and µ events) (τ events)

Multi-Electron EventsZEUS

10-2

10-1

1

10

10 2

0 20 40 60 80 100 120 140M12 (GeV)

even

ts

ZEUS (prel.) 94-00

GRAPE+NC+QEDC

NC+QEDC

QEDC(a) Bethe-Heitler type diagrams

e

e

e el

l-+

l+

γp pN N

-

l-

+

l

ee

p N

γe e

p N

γ

γl

l-

+

l

/Ζ0 /Ζ0

γγ

(b) QED-Compton type diagrams

Grape:

+ electroweak diagrams

Overall good agreementno excess at high massin µ−channel no event M>100 GeV 0.11.4 0.11.4 2

GRAPE SM Data GeV 30 E :electrons Three0.1 0.5 0.10.8 2 GRAPE SM Data

:GeV 100 M :electrons Two

T,1

1,2

±±

>

±±

>

GeV 134 MGeV 53 EGeV 56 E T2T1 ===

rad 0.58 GeV 36 Erad 0.76 GeV 47 E

rad 1.0 GeV 52 E

3T3

2T2

1T1

==

==

==

θθθ

GeV 94 M2 =

Inclusive Jet-Cross Sections in γp ZEUS

10-3

10-2

10-1

1

10

10 2

ZEUS (prel.) 98-00 (82.2 pb-1)•NLO QCDLO QCD

dσ/

dET jet (

pb/G

eV)

-1

-0.5

0

0.5

20 30 40 50 60 70 80 90

jet energy scale uncertainty

NLO uncertainty

ET jet (GeV)

(Dat

a-N

LO Q

CD

)/N

LO Q

CD High precision data

Excellent agreement over4 orders of magnitudeno excess at high ET

ZEUS

0.8

1

1.2

1.4

0.2 0.3 0.4

jet energy scale uncertainty

NLO uncertainty

ZEUS (prel.) 98-00 (82.2 pb-1)•NLO QCD

scaling

Wγp= 180 GeV/Wγp= 255 GeV

-2 < ηjet

γp < 0

xT = 2 ET jet /Wγp

Rat

io o

f sca

led

cros

s se

ctio

ns ZEUS

10-6

10-5

10-4 ZEUS (prel.) 98-00 (82.2 pb-1)•

NLO QCDLO QCD

-2 < ηjet

γp < 0 and Wγp = 255 GeV

(E

T jet )4 E

jet d

3 σ/d(

pjet )3

-1

-0.5

0

0.5

0.2 0.3 0.4 0.5 0.6

jet energy scale uncertainty

NLO uncertainty

xT = 2 ET jet /Wγp

(Dat

a-N

LO Q

CD

)/N

LO Q

CD

Invariant Inclusive Jet-Cross Sections

Evidence for scaling violationsin γp collisions

Inclusive Jet Production in DIS

ZEUS

10-3

10-2

10-1

1

10

10 2

10 3

10 4

10 5

10 6

5 10 15 20 25 30 35 40 45

dσ/

dE

B

T,je

t (p

b/G

eV)

EB T,jet (GeV)

125 < Q2 < 250 GeV 2

250 < Q2 < 500 GeV 2

500 < Q2 < 1000 GeV 2

1000 < Q2 < 2000 GeV 2

2000 < Q2 < 5000 GeV 2

Q2 > 5000 GeV 2

(×105)

(×104)

(×103)

(×100)

(×10)

(×1)

ZEUS 96-97

Jet energy scale uncertainty

NLO QCD: (corrected to hadron level)

αs (MZ)= 0.1175

DISENT MRST99 (µR=EB T,jet )

DISENT MRST99 (µR=Q)

ZEUS

0.12

0.14

0.16

0.18

0.2

0.22

0.24

10 20 30 40 50

ZEUS 96-97

Theoretical uncertainty

from αs (MZ)= 0.1212 +0.0040 -0.0044

α s (E

B

T,je

t )

EB T,jet (GeV)

(theo)0.00270.0028

(syst)0.00310.0023

(stat)0.0017 0.1212)M(:GeV 500 Q for

Z

22

−+

−+

±=

>

Impressive description of NLO QCDof these precise data:

Very precise measurement !

ZEUS

10-2

10-1

1

10

10 20 30 40 50 60 70 80 90 100Q2 (GeV2)

σ(γ* p

→ γ

p)

(nb

)

ZEUS (prel.) 96-97,99-00 e+p

FFS

DD

40 < W < 140 GeV

W = 89 GeV

Deeply Virtual Compton Scattering

1 x

p’p

e’γ∗e

2x

Q2Q

γ*

x1

p

γee’

x 2

p’

High-x (HERMES) Low-x (ZEUS)

GPD-based Model (FFS)

∫ )Q,H(x, )Q/x,C( x

dx ~ A 22 ξξ

0.071.47n ,Q n 2 -DVCS ±=∝σ

b

R

1−z

zγ* γ

21 xx ≠

Colour Dipole Model (DD)

γγ ΨσΨ outzR,

dipoleini ~ A*

Data getting preciseQ2 spectrum seems harder than predicted by FFSHERA-II: e+/e- and polarisation !

H: Off-diagonal PDF

pp’

γ∗

e e’

V

p(P)

e(k)

e(k')

p(P')

γ*

Q2 γ

ZEUS

0

2

4

6

8

10

12

14

40 60 80 100 120 140W (GeV)

σ(γ* p

→ γ

p)

(nb

)

ZEUS (prel.) 96-97,99-00 e+p

FFS

DD

5 < Q2 < 100 GeV2

Q2 = 9.6 GeV2

ZEUS

ZEUS 96-97 J/ψ → µ+µ-

ZEUS 99-00 J/ψ → e+e-

H1E401E516

W (GeV)

σ γp →

J/ψ

p (n

b)

Wδ fit to ZEUS dataδ = 0.69 ± 0.02 (stat.) ± 0.03 (syst.)

0

25

50

75

100

125

150

175

200

225

0 50 100 150 200 250 300

W-dependence points to hard process as e.g. in J/Ψ production

0.10.78 ,W DVCS ±=∝ δσ δ

MX < 2

ZEUS ZEUS (prel.) 98/99

<β>=0.63

2 - 4<β>=0.23

4 - 8<β>=0.072

8 - 15<β>=0.019

15 - 25<β>=0.0064

25 - 35 GeV<β>=0.0028

Q2 =

2.2

- 3

GeV

2

<β>=0.7 <β>=0.31 <β>=0.1 <β>=0.029 <β>=0.0094 <β>=0.0043

Q2 =

3 -

5

<β>=0.77 <β>=0.4 <β>=0.15 <β>=0.043 <β>=0.014 <β>=0.0066

Q2 =

5 -

7

<β>=0.82 <β>=0.48 <β>=0.2 <β>=0.06 <β>=0.02 <β>=0.0092

Q2 =

7 -

10

<β>=0.87 <β>=0.59 <β>=0.29 <β>=0.097 <β>=0.033 <β>=0.015

Q2 =

10

- 20

<β>=0.93 <β>=0.73 <β>=0.43 <β>=0.17 <β>=0.064 <β>=0.03

Q2 =

20

- 40

<β>=0.82 <β>=0.84 <β>=0.58 <β>=0.29 <β>=0.12 <β>=0.058

Q2 =

40

- 80

γ*

e

p

MN

gap

Mx

New: F2D3 Data

Analysis using FPC (L=4 pb-1):• coverage 4.0 < η < 5.0• increased MX range• reduced bias from nucleon dissociation

! component hard has ndiffractio:data from

1) ( soft is ndiffractio if

const, ~ F x expect x1 ~F if D3

2P|P|

D32

λ

λ

p

22XP|

xx

)Q/M(1 xx

=

+=

β

+extension

to lower Q2

W

ZEUSZEUS (prel.) 98/99

MX = 0 - 2 GeV MX = 8 - 15 GeV

MX = 2 - 4 GeV MX = 15 - 25 GeV

MX = 4 - 8 GeV MX = 25 - 35 GeV

Naive expectation:

λεσ

σ

σ

ε

λ

λ

<<= 0.08 ,x ~ :Softx~)Qg(x, ~ :Hardx~ )Qg(x, ~

-diff

2-22diff

-2tot

Diffraction contains soft and hardpieces even at large Q2

What happens here ?

Same energy dependencein inclusive and diffractivescattering !

Much improved precision !

Recently models (like CDM) tried to explain this -> new challenge by more precise data !

Conclusions• New level of extraction of parton density and αs and their experimental uncertainties reached ...hardly need fixed target data HERA-II: e+/ e- program ahead of us ! (also for xF3 !) • Direct FL measurement seems in reach via ISR analysis HERA-II: dedicated run with lower beam energy ?• Analysis of hadronic final state enters new stage: many interesting results from jets -> combine with incl. DIS particle ID: strange, charm, bottom, ...tau HERA holds the key for production mechanism of heavy quarks• Isolated Lepton story continues: wait for answer at HERA-II Can the SM hold the strength ?• DVCS: towards determination of off-diagonal PDF HERA-II: e+/ e- and polarisation• new precise F2

D3 new challenge for models

Internal Jet structure

ZEUS

11.11.21.31.41.51.61.71.81.9

2

20 30 40 50 60 70 80 90100

ycut = 10 - 2 ZEUS (prel.) 95-97 e+p CC - DIS

Q2 > 200 GeV 2

EjetT > 14 GeV

-1 < ηjet < 2

MEPJET (NLO)

CDM (LO)

Ejet

T [ GeV ]

< n

sbj >

Internal jet structure well described by NLO and MC

-log(1-D) 0 1 2 3

even

ts

10-4

10-3

10-2

10-1

1

10

102

ZEUS (prel.) 94-00SMW onlySingle Top MC

-log(1-D) 0 1 2 3

even

ts

10-4

10-3

10-2

10-1

1

10

102

D>0.95

ZEUS

Isolated high-pt lepton selection:

acoplanar not muon, or electron not1.8)D 0.5,(DGeV 5p with track isolated

GeV 20p

jettrack,tracktrack,

T

missT

>>

>

>

4 events found3 are compatible with tau hypothesis