z plane

59
 Z-Plane Analysis DR. Wajiha Shah

Upload: boppanamuralikrishna

Post on 04-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 1/59

 

Z-Plane Analysis

DR. Wajiha Shah

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 2/59

 

Content Introduction

z -Transform

Zeros and Poles

Region of Convergence

Important z -Transform Pairs Inverse z -Transform

z -Transform Theorems and Properties

System Function

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 3/59

 

The z-Transform

Introduction

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 4/59

 

Why z-Transform? A generalization of Fourier transform

Why generalize it? – FT does not converge on all sequence

 – Notation good for analysis

 – Bring the power of complex variable theory deal with

the discrete-time signals and systems

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 5/59

 

The z-Transform

z-Transform

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 6/59

 

Definition The z -transform of sequence x(n) is defined by

∑∞

−∞=

−=n

n z n x z  X  )()(

Let z = e−  jω .

( ) ( ) j j n

n

 X e x n eω ω 

∞−

=−∞

= ∑

 Fourier 

Transform

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 7/59 

z -Plane

Re

Im

 z = e−  jω 

ω∑

−∞=

−=n

n z n x z  X  )()(

( ) ( )

 j j n

n X e x n e

ω ω 

∞−

=−∞= ∑Fourier Transform is to evaluate z-transform

on a unit circle.

Fourier Transform is to evaluate z-transform

on a unit circle.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 8/59 

z -Plane

Re

Im

 X ( z )

Re

Im

 z = e−  jω 

ω

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 9/59 

Periodic Property of FT

Re

Im

 X ( z )

π−π ω

 X (e jω)

Can you say why Fourier Transform is

a periodic function with period 2π?

Can you say why Fourier Transform is

a periodic function with period 2π?

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 10/59 

z-Plane Analysis

Zeros and Poles

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 11/59 

DefinitionGive a sequence, the set of values of  z for which the

 z -transform converges, i.e., | X ( z )|<∞, is called theregion of convergence.

∞<== ∑∑

−∞=

−∞

−∞=

n

n

n

n  z n x z n x z  X  |||)(|)(|)(|

ROC is centered on origin and

consists of a set of rings.

ROC is centered on origin and

consists of a set of rings.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 12/59 

Example: Region of Convergence

Re

Im

∞<== ∑∑∞

−∞=

−∞

−∞=

n

n

n

n  z n x z n x z  X  |||)(|)(|)(|

ROC is an annual ring centered

on the origin.

ROC is an annual ring centered

on the origin.

+− << x x R z  R ||r 

}|{ +−

ω <<== x x

 j  Rr  Rre z  ROC 

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 13/59 

Stable Systems

Re

Im

1

A stable system requires that its Fourier transform is

uniformly convergent. Fact: Fourier transform is to

evaluate z -transform on a unit

circle.

A stable system requires the

ROC of  z -transform to include

the unit circle.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 14/59 

Example: A right sided Sequence

)()( nuan x n=

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8

n

 x(n)

. . .

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 15/59 

Example: A right sided Sequence

)()( nuan x n=

n

n

n  z nua z  X  −∞

−∞=∑= )()(

∑∞

=

−=0n

nn z a

∑∞

=

−=0

1)(

n

naz 

For convergence of  X ( z ), we

require that

∞<∑∞

=

0

1 ||n

az  1|| 1 <−az 

|||| a z  >

a z 

 z 

az az  z  X 

n

n

−=

−== −

=

−∑ 10

1

1

1)()(

|||| a z  >

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 16/59 

a− a

Example: A right sided Sequence 

ROC for  x(n)=anu(n)

|||| ,)( a z a z 

 z  z  X  >

=

Re

Im

1 a− a

Re

Im

1

Which one is stable?Which one is stable?

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 17/59 

Example: A left sided Sequence

)1()( −−−= nuan x n

1 2 3 4 5 6 7 8 9 10-1-2-3-4-5-6-7-8

n

 x(n)

 . . .

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 18/59 

Example: A left sided Sequence

)1()( −−−= nuan x n

n

n

n  z nua z  X  −∞

−∞=

∑ −−−= )1()(

For convergence of  X ( z ), we

require that

∞<∑∞

=

0

1 ||n

 z a 1|| 1 <−  z a

|||| a z  <

a z 

 z 

 z a z a z  X 

n

n

−=

−−=−= −

=

−∑ 10

1

1

11)(1)(

|||| a z  <

n

n

n z a −−

−∞=∑−=

1

n

n

n z a∑∞

=

−−=1

n

n

n z a∑∞

=

−−=0

1

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 19/59 

a− a

Example: A left sided Sequence 

ROC for  x(n)=−anu(− n−1)

|||| ,)( a z a z 

 z  z  X  <

=

Re

Im

1 a− a

Re

Im

1

Which one is stable?Which one is stable?

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 20/59 

The z-Transform

Region of 

Convergence

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 21/59 

Represent z -transform as a

Rational Function

)(

)(

)(  z Q

 z  P 

 z  X  =where P ( z ) and Q( z ) are

 polynomials in z .

Zeros: The values of  z ’s such that X ( z ) = 0

Poles: The values of  z ’s such that X ( z ) = ∞

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 22/59

 

Example: A right sided Sequence

)()( nuan x n= |||| ,)( a z 

a z 

 z  z  X  >

=

Re

Im

a

ROC is bounded by the

 pole and is the exterior of a circle.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 23/59

 

Example: A left sided Sequence

)1()( −−−= nuan x n|||| ,)( a z 

a z 

 z  z  X  <

=

Re

Im

a

ROC is bounded by the

 pole and is the interior of a circle.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 24/59

 

Example: Sum of Two Right Sided Sequences

)()()()()(31

21 nunun x nn −+=

31

21

)(+

+−

= z 

 z 

 z 

 z  z  X 

Re

Im

1/2

))((

)(2

31

21

121

+−−= z  z 

 z  z 

−1/3

1/12

ROC is bounded by poles 

and is the exterior of a circle.

ROC does not include any pole.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 25/59

 

Example: A Two Sided Sequence

)1()()()()(21

31 −−−−= nunun x nn

21

31

)(−

++

= z 

 z 

 z 

 z  z  X 

Re

Im

1/2

))((

)(2

21

31

121

−+−= z  z 

 z  z 

−1/3

1/12

ROC is bounded by poles and is a ring.

ROC does not include any pole.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 26/59

 

Example: A Finite Sequence

10 ,)( −≤≤= N nan x n

n N 

n

n N 

n

n  z a z a z  X  )()( 11

0

1

0

−−

=

−−

=∑∑ ==

Re

Im

ROC: 0 < z < ∞

ROC does not include any pole.

1

1

1

)(1−

−=

az 

az  N 

a z 

a z 

 z 

 N  N 

 N  −−= −1

1

 N -1 poles

 N -1 zeros

Always StableAlways Stable

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 27/59

 

Properties of ROC

A ring or disk in the z-plane centered at the origin.

The Fourier Transform of  x(n) is converge absolutely iff the ROC

includes the unit circle. The ROC cannot include any poles

Finite Duration Sequences: The ROC is the entire z -plane except

 possibly z =0 or  z =∞.

Right sided sequences: The ROC extends outward from the outermost

finite pole in X ( z ) to z =∞.

Left sided sequences: The ROC extends inward from the innermost

nonzero pole in X ( z ) to z =0.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 28/59

 

More on Rational z -Transform

Re

Im

a b c

Consider the rational z -transform

with the pole pattern:

Find the possibleROC’sFind the possibleROC’s

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 29/59

 

More on Rational z -Transform

Re

Im

a b c

Consider the rational z -transform

with the pole pattern:

Case 1: A right sided Sequence.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 30/59

 

More on Rational z -Transform

Re

Im

a b c

Consider the rational z -transform

with the pole pattern:

Case 2: A left sided Sequence.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 31/59

 

More on Rational z -Transform

Re

Im

a b c

Consider the rational z -transform

with the pole pattern:

Case 3: A two sided Sequence.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 32/59

 

More on Rational z -Transform

Re

Im

a b c

Consider the rational z -transform

with the pole pattern:

Case 4: Another two sided Sequence.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 33/59

 

The z-Transform

Important

z -Transform Pairs

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 34/59

 

Z-Transform Pairs

Sequence z -Transform ROC

)(nδ 1 All z 

)( mn −δ m z − All z except 0 (if m>0)

or ∞ (if m<0)

)(nu 11

1−− z 

1|| > z 

)1( −−− nu1

1

1−

− z 1|| < z 

)(nua n 11

1−− az 

|||| a z  >

)1( −−− nua

n 1

1

1−

− az 

|||| a z  <

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 35/59

 

Z-Transform Pairs

Sequence z -Transform ROC

)(][cos 0 nunω 21

0

1

0

]cos2[1

][cos1−−

+ω−

ω−

 z  z 

 z 1|| > z 

)(][sin 0 nunω 21

0

1

0

]cos2[1

][sin−−

+ω−ω

 z  z 

 z 1|| > z 

)(]cos[ 0 nunr n ω 221

0

1

0

]cos2[1

]cos[1−−

+ω−

ω−

 z r  z r 

 z r r  z  >||

)(]sin[ 0 nunr n ω 221

0

1

0

]cos2[1

]sin[−−

+ω−ω

 z r  z r 

 z r r  z  >||

−≤≤

otherwise0

10 N nan

11

1−

−−

az 

 z a N  N 

0|| > z 

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 36/59

 

The z-Transform

Inverse z -Transform

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 37/59

 

The z-Transform

z -Transform Theorems

and Properties

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 38/59

 

Linearity x R z  z  X n x ∈=  ),()]([Z

 y R z  z Y n y ∈=  ),()]([Z

 y x R R z  z bY  z aX nbynax ∩∈+=+  ),()()]()([Z

Overlay of 

the above two

ROC’s

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 39/59

 

Shift x R z  z  X n x ∈=  ),()]([Z

 x

n R z  z  X  z nn x ∈=+  )()]([ 0

0Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 40/59

 

Multiplication by an Exponential Sequence

+<<= x x- R z  R z  X n x || ),()]([Z

 x

n  Ra z  z a X n xa ⋅∈= − || )()]([ 1Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 41/59

 

Differentiation of  X (z )

 x R z  z  X n x ∈=  ),()]([Z

 x R z dz 

 z dX  z nnx ∈−=  

)()]([Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 42/59

 

Conjugation x R z  z  X n x ∈=  ),()]([Z

 x R z  z  X n x ∈=  *)(*)](*[Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 43/59

 

Reversal x R z  z  X n x ∈=  ),()]([Z

 x R z  z  X n x /1 )()]([ 1 ∈=− −Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 44/59

 

Real and Imaginary Parts

 x R z  z  X n x ∈=  ),()]([Z

 x R z  z  X  z  X n xe ∈+=  *)](*)([)]([21R

 x jR z  z  X  z  X n x ∈−=  *)](*)([)]([

21Im

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 45/59

 

Initial Value Theorem

0for ,0)( <= nn x

)(lim)0( z  X  x z  ∞→

=

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 46/59

 

Convolution of Sequences

 x R z  z  X n x ∈=  ),()]([Z

 y R z  z Y n y ∈=  ),()]([Z

 y x R R z  z Y  z  X n yn x ∩∈=  )()()](*)([Z

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 47/59

 

Convolution of Sequences

∑∞

−∞=

−=k 

k n yk  xn yn x )()()(*)(

∑ ∑∞

−∞=

−∞

−∞=

  

  

 −=

n

n

 z k n yk  xn yn x )()()](*)([Z

∑ ∑∞

−∞=

−∞

−∞=

−=k 

n

n

 z k n yk  x )()( ∑ ∑∞

−∞=

−∞

−∞=

−=k 

n

n

k   z n y z k  x )()(

)()( z Y  z  X =

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 48/59

 

The z-Transform

System Function

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 49/59

 

Shift-Invariant System

h(n)h(n)

 x(n) y(n)= x(n)*h(n)

 X ( z ) Y ( z )= X ( z ) H ( z ) H ( z )

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 50/59

 

Shift-Invariant System

 H ( z ) H ( z )

 X ( z ) Y ( z )

)(

)()(

zX

 z Y  z  H  =

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 51/59

 

th

-Order Difference Equation

∑∑==

−=− M 

 N 

k  r n xbk n ya00

)()(

∑∑=

=

− = M 

 N 

k  z b z  X  z a z Y 00

)()(

∑∑==

=

−N 

 M 

r  z a z b z  H 00

)(

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 52/59

 

Representation in Factored Form

=

=

−=

 N 

 M 

 z d 

 z c A

 z  H 

1

1

1

1

)1(

)1(

)(

Contributes poles at 0 and zeros at cr 

Contributes zeros at 0 and poles at d r 

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 53/59

 

Stable and Causal Systems

=

=

−=

 N 

 M 

 z d 

 z c A

 z  H 

1

1

1

1

)1(

)1(

)(Re

Im

Causal Systems : ROC extends outward from the outermost pole.

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 54/59

 

Stable and Causal Systems

=

=

−=

 N 

 M 

 z d 

 z c A

 z  H 

1

1

1

1

)1(

)1(

)(Re

Im

Stable Systems : ROC includes the unit circle.

1

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 55/59

 

ExampleConsider the causal system characterized by

)()1()( n xnayn y +−=

1

1

1)( −

=az 

 z  H 

Re

Im

1

a

)()( nuanh n=

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 56/59

 

Determination of Frequency Response

from pole-zero pattern

 A LTI system is completely characterized by its

pole-zero pattern.

))((

)(21

1

 p z  p z 

 z  z  z  H 

−−

−=

Example:

))(()(

21

1

00

0

0

 pe pe

 z ee H 

 j j

 j j

−−−

= ωω

ωω

0ω je

Re

Im

 z 1

 p1

 p2

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 57/59

 

Determination of Frequency Response

from pole-zero pattern

 A LTI system is completely characterized by its

pole-zero pattern.

))((

)(21

1

 p z  p z 

 z  z  z  H 

−−

−=

Example:

))(()(

21

1

00

0

0

 pe pe

 z ee H 

 j j

 j j

−−−

= ωω

ωω

0ω je

Re

Im

 z 1

 p1

 p2

|H (e jω )|=?|H (e jω )|=? ∠   H (e jω )=?∠   H (e jω )=?

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 58/59

 

Determination of Frequency Response

from pole-zero pattern

 A LTI system is completely characterized by its

pole-zero pattern.

Example:

0ω je

Re

Im

 z 1

 p1

 p2

|H (e jω )|=?|H (e jω )|=? ∠   H (e jω )=?∠   H (e jω )=?

|H (e jω )| =| |

| | | | φ1

φ 2

φ 3

∠   H (e jω ) = φ 1−(φ 2+

φ 3 )

7/29/2019 z plane

http://slidepdf.com/reader/full/z-plane 59/59

Example1

1

1)( −

=az 

 z  H 

Re

Im

a

0 2 4 6 8

- 1 0

0

1 0

2 0

0 2 4 6 8

- 2

- 1

0

1

2

      d      B