y-unified guts: mssm at large tanoct 03, 2013  · supersymmetric guts dimopoulos, raby, wilczek...

46
Y-Unified GUTS: MSSM at large tanβ Archana Anandakrishnan The Ohio State University October 3, 2013 Based on arXiv:1212.0542 (Phys. Rev. D 87, 055005 (2013)) & arXiv:1303.5125 & arXiv:1307.7723 (Accepted in PRD) & work in progress with Stuart Raby, B. Charles Bryant, Linda Carpenter (OSU), Kuver Sinha (Syracuse), Akın Wingerter(LPSC) Theory Seminar, Los Alamos National Lab 1

Upload: others

Post on 04-Apr-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Y-Unified GUTS: MSSM at large tanβ

Archana Anandakrishnan

The Ohio State University

October 3, 2013

Based on arXiv:1212.0542 (Phys. Rev. D 87, 055005 (2013))

& arXiv:1303.5125& arXiv:1307.7723 (Accepted in PRD)

& work in progresswith Stuart Raby, B. Charles Bryant, Linda Carpenter (OSU),

Kuver Sinha (Syracuse), Akın Wingerter(LPSC)

Theory Seminar, Los Alamos National Lab

1

Page 2: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Outline

Introduction to SO(10) SUSY GUTS

Constraints from Yukawa Unification

The Analysis

Spectrum and Phenomenology

Effective“Mirage” Mediation.

Summary

2

Page 3: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Supersymmetric GUTS

Dimopoulos, Raby, Wilczek (1981)

(Fig. from Martin’s Primer)

Argument in favor of SUSY, independent of the solution to hierarchyproblem.

Requires some superpartners of around the TeV scale.

Unification of couplings at ∼ 1016 GeV.

3

Page 4: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

SO(10) GUTS and Yukawa Unification

SO(10) → SU(3)C × SU(2)L × U(1)Y × U(1)(B−L)

16 → (3, 2)1/3,1/3 + (3, 1)−4/3,−1/3 + (1, 1)−2,1 + (3, 1)2/3,−1/3 + (1, 2)−1,−1 + (1, 1)0,1

Q u e d L ν

SO(10) GUTS are very economical: 16 dimensional representation.

Only renormalizable Yukawa coupling is of the form,

W ⊃ λ 16 10 16

allowing for unified Yukawa couplings at the GUT scale.

Third family Yukawa Unification is consistent with current data.

λt = λb = λτ = λντ = λ

Effective higher dimensional operators could generate the first twofamily hierarchical Yukawa couplings.

4

Page 5: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

5

Page 6: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Blazek, Dermisek & Raby

PRL 88, 11804; PRD 65, 115004

Baer & Ferrandis

PRL 87, 211803

Auto, Baer, Balazs, Belayaev, Ferrandis,& Tata

JHEP 0306:023

Tobe & Wells

NPB 663,123

Dermisek, Raby, Roszkowski, & Ruiz de Austri

JHEP 0304:037; JHEP 0509:029

Baer, Kraml, Sekmen, & Summy

JHEP 0803:056; JHEP 0810:079

Badziak, Olechowski & Pokorski

JHEP 2011:147

Gogoladze, & Shafi,Un

JHEP 2012:028; PLB 704, 201

Ajaib, Gogoladze, Shafi, & Un

JHEP 2013:139

AA & Raby

arXiv:1303.5125

6

Page 8: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

A quick refresher

GUT scale parameters of a ’minimal’ SO(10) SUSY GUT

m16 - Universal scalar mass

m10 - Universal Higgs mass

M1/2 - Universal gaugino mass

A0 - Trilinear coupling

tanβ - Ratio of the Higgs vev.

g - Unified gauge coupling

λ - Unified Yukawa coupling at the GUT scale

8

Page 9: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Higgs vev

Ratio of the Higgs vev is defined as

tanβ =vu

vd=〈Hu〉〈Hd〉

Fermion masses are generated by coupling to the Higgs boson

L ⊃ λtvu tt + λbvd bb + λτvd τ τ

The value of tanβ is restricted by the requirement of Yukawa unification.

tanβ ' 50

9

Page 10: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

tanβ ' 50

10

Page 11: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Bottom quark mass

In the large tanβ regime, there are large corrections to the bottomquark mass.

δmb/mb 'g2

3

12π2

µMg tanβ

m2b

+λ2

t

32π2

µAttanβ

m2t

Hall et. al; Carena et. al; Blazek et. al

In order to fit data, δmb/mb ' −(few)%

µMg > 0;⇒ µAt < 0

Trilinear Coupling A0 < 0

11

Page 12: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Electroweak Symmetry Breaking

The RGEs for the up and down-type Higgs mass squared can bewritten as:

dm2Hd

dt=

2

16π2

(−3

5g2

1 M21 − 3g2

2 M22 − 3

10g2

1 S + 3λ2bXb + λ2

τXτ

)dm2

Hu

dt=

2

16π2

(−3

5g2

1 M21 − 3g2

2 M22 +

3

10g2

1 S + 3λ2t Xt + λ2

ντXντ

)

RGE evolution in standard MSSM scenarios

-200

0

200

400

600

2 4 6 8 10 12 14 16

GeV

log10(µ/GeV)

(µ2+mHd2)1/2

(µ2+mHu2)1/2

M1

M2

M3

mQl

mEr

SOFTSUSY3.0.5

SPS1a

Fig from SOFTSUSY

12

Page 13: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Electroweak Symmetry Breaking

The RGEs for the up and down-type Higgs mass squared can bewritten as:

dm2Hd

dt=

2

16π2

(−3

5g2

1 M21 − 3g2

2 M22 − 3

10g2

1 S + 3λ2bXb + λ2

τXτ

)dm2

Hu

dt=

2

16π2

(−3

5g2

1 M21 − 3g2

2 M22 +

3

10g2

1 S + 3λ2t Xt + λ2

ντXντ

)

In Yunified models, since, λt = λb = λτ = λν = λ, in order forREWSB, one needs

m2Hu < m2

Hd

Non-universal Higgs masses!

13

Page 14: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

tanβ

Corrections to bottom mass

Non-universal Higgs mass

14

Page 15: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Bs → Xsγ

Exp BR(Bs → Xsγ)Exp = (3.43± 0.30)× 10−4

SM NNLO BR(Bs → Xsγ)SM = (3.15± 0.23)× 10−4

In MSSM,

C χ+

7 ∝ µAt

m2tanβ × sign(CSM

7 )

Data constrains

C eff7 = CSM

7 + CSUSY7 ' ±CSM

7

CSUSY7 ' −2CSM

7 , implying light scalars.

CSUSY7 ' 0, implying heavy scalars scalars.

Which possibility does data accommodate?

15

Page 16: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

B → K ∗µ+µ−

Forward-Backward Asymmetry in B → K∗µ+µ−!

If C eff7 = +CSM

7 , then AFB crosses zero at some momentum.

If C eff7 = −CSM

7 , then there is no zero-crossing in the AFB .

]4c/2 [GeV2q0 5 10 15 20

FB

A

-1

-0.5

0

0.5

1

Theory Binned theoryLHCb

PreliminaryLHCb

2012 Result from LHCb

Heavy Scalars

16

Page 17: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Breaking News!

17

Page 18: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Bs → µ+µ−

2012 LHCb BR(Bs → µ+µ−)Exp = (3.2± 1.5)× 10−9

SM BR(Bs → µ+µ−)SM = (3.37± 0.31)× 10−9

MSSM contributions are enhanced in the large tanβ limit.

BR(Bs → µ+µ−) ∝ (tanβ)6

M4A

In MSSM models with large tanβ, MA ≥ 1500 GeV

Standard Model like Higgs

18

Page 19: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

tanβ

Corrections to bottom mass

Non-universal Higgs mass

Flavor Physics

19

Page 20: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Discovery of the millenia

CMS ; ATLAS

Mh = 125.3± 1 GeV

20

Page 21: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Light Higgs Mass

Boundary conditions consistent with minimal Yukawa unification:

m16 > few TeV; m10 ∼√

2m16;

A0 ∼ −2m16; µ,M1/2 << m16;

tanβ ∼ 50

Bagger, Feng, et al

Maximal mixing region - easy to get ∼ 125 GeV Higgs.

Carena, Quiros, Wagner

21

Page 22: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Higgs and Bottom quark

To fit bottom quark mass:

δmb/mb 'g2

3

12π2

µMg tanβ

m2b

+λ2

t

32π2

µAttanβ

m2t

Fitting the Higgs mass:

0 500 1000 1500 2000 2500

M(g) [GeV]

0

1

2

3

4

5

6

7

χ2

95% C.L.

2092

90% C.L.

2010

68% C.L.

1436

m16 = 20 TeV

22

Page 23: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

tanβ

Corrections to bottom mass

Non-universal Higgs mass

Flavor Physics

Higgs Mass

23

Page 24: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Neutrino sector

Observables in the neutrino sector:

sin2 θ12 = 0.27− 0.34

sin2 θ23 = 0.34− 0.67

sin2 θ13 = 0.016− 0.030

∆m221 = (7.00− 8.09)× 10−5 eV2

∆m231 = (2.27− 2.69)× 10−3 eV2

(3σ range) from Nu-fit Collaboration

θexp13 = 9◦(7.29− 9.96)

θDR−model13 . 6◦

DayaBay; Reno

Flavor violating corrections to the Kahler potential.

Chen, Fallbacher et al

24

Page 25: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunification and Boundary Conditions

One can use Yukawa Unification to constrain the GUT scaleboundary conditions.

Yukawa Unification & Soft SUSY breaking

tanβ

Corrections to bottom mass

Non-universal Higgs mass

Flavour Physics

Higgs Mass

Neutrino masses and mixing angles

25

Page 26: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Dermisek-Raby ModelRecent analysis by AA, S.Raby, and A. Wingerter 1212.0542

Sector Third Family Analysis # Full three family Analysis #gauge αG , MG , ε3 3 αG , MG , ε3 3SUSY (GUT scale) m16, M1/2, A0, mHu , mHd

5 m16, M1/2, A0, mHu , mHd5

textures λ 1 ε, ε′, λ, ρ, σ, ε, ξ 11neutrino 0 MR1

, MR2, MR3

3SUSY (EW scale) tan β, µ 2 tan β, µ 2Total # 11 24

(Compared to 32 parameters in the CMSSM)

Wch.fermions = λ 163 10 163 + 16a 10 χa + χa (Mχ χa + 45φa

M163 + 45

φa

M16a + A 16a)

Effective operators to generate the first two family and off-diagonal Yukawa couplings.

16

10

163 3

45 Φa

MX

10

16 χa χa_

~

1622

45 Φa

MX

10

16 χa χa_

16a cb

MX

10

16 χa

A

χa

_16b c

26

Page 27: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Model defined in terms of 24 real parameters: αG, MG, ǫ3, m16,M1/2, A0, mHu , mHd

, λ, ǫ, ǫ′, ρ, σ, ǫ, ξ, MR1 , MR2 , MR3 , tan β, µ

GUT (24 parameters)

Right-handed neutrinos integrated out

RHN

1st and 2nd generation scalars are integrated out

m16

SUSY spectrum & flavor observ-ables calculated (susy flavor)

MSUSY

Calculate top pole mass

Mtop

SM spectrum & flavor observables cal-culated (SuperIso) & tanβ, µ, mh,mH , mA, mH±

MEW

Calculate light quarkmasses mu, md, ms

2 GeVGauge & EW sector: MZ , MW , αem, Gµ, α3, Mh

Quark sector: Mt, mb, mc, ms, md/ms, 1/Q2, |Vus|, |Vcb|,|Vub|, |Vtd|, |Vts|, sin2β

Lepton sector: Mτ , Mµ, Me, θ12, θ23, θ13, m221, m2

31

Flavor observables: ǫK , ∆MBs/∆MBd, ∆MBd, B → Xsγ,Bs → µ+µ−, Bd → µ+µ−, B → τν, B → K∗µ+µ− (3x)

Experiment (36 Observables)

RGEs for MSSM w/right-handed neutrinos

RGEs for MSSM

RGEs for MSSM w/o 1stand 2nd generation scalars

RGEs for MSSM w/o 1stand 2nd generation scalars

Corrections

Compare

Compare

Compare

RGEs for SM

RGEs: 3-loop QCD &1-loop EW

27

Page 28: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

SUSY Spectrum

Benchmark Pointsm16 10 TeV 15 TeV 20 TeV 25 TeV 30 TeVA0 -20.2 TeV -30.6 TeV -41.1 TeV -51.3 TeV -61.6 TeVµ 791 513 1163 1348 1647M1/2 201 201 168 158 162

χ2 49.65 31.02 26.58 27.93 29.48MA 2333 3662 1651 2029 2036mt1

1681 2529 3975 4892 5914mb1

2046 2972 5194 6353 7660

mτ13851 5576 7994 9769 11620

mχ01

133 134 137 149 167

mχ+1

260 263 279 309 351

Mg 853 850 851 910 1004

SUSY spectrum is predominantly determined by fitting:

Third family masses

light Higgs mass

BR(Bs → Xsγ) and BR(Bs → µ+ µ−)

28

Page 29: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

SUSY Spectrum

0 500 1000 1500 2000 2500

M(g) [GeV]

0

1

2

3

4

5

6

7

χ2

95% C.L.

2092

90% C.L.

2010

68% C.L.

1436

m16 = 20 TeV

SUSY spectrum is predominantly determined by fitting:

Third family masses

light Higgs mass

BR(Bs → Xsγ) and BR(Bs → µ+ µ−)

29

Page 30: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Topologies

T1bbbb

(GeV)g~m400 600 800 1000 1200 1400

(G

eV)

0 1χ∼m

0

200

400

600

800

1000

1200

-310

-210

-110

1

= 8 TeVs, -1CMS , L = 19.4 fb

NLO+NLL exclusion1

0χ∼ b b → g~, g~g~ →pp

theoryσ 1 ±Observed

experimentσ 1 ±Expected

95%

CL

uppe

r lim

it on

cro

ss s

ectio

n (p

b)

BR(g → bbχ01) = 100%

T1tttt

(GeV)g~m400 600 800 1000 1200 1400

(G

eV)

0 1χ∼m

0

100

200

300

400

500

600

700

800

-310

-210

-110

1

= 8 TeVs, -1CMS , L = 19.4 fb

NLO+NLL exclusion1

0χ∼ t t → g~, g~g~ →pp

theoryσ 1 ±Observed

experimentσ 1 ±Expected

95%

CL

uppe

r lim

it on

cro

ss s

ectio

n (p

b)

BR(g → ttχ01) = 100%

Results from CMS wiki

30

Page 31: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Not so simplified model

AA, Bryant, Raby, and Wingerter: arXiv:1307.7723, arXiv:1308.2232

Benchmark point with m16 = 20 TeV , Mg = 1.06 TeV

BR(g → btχ+1 ) = 27%

BR(g → tbχ−1 ) = 27%

BR(g → ttχ02) = 22%

BR(g → g χ01) = 15%

Compare with data from LHCAnalysis Luminosity Signal Region Reference

SS di-lepton 10.5 Njet ≥ 4, Nb−jet ≥ 2, CMS-SUS-12-017

EmissT > 120, HT > 200

αT analysis (for Simplified models) 11.7 Njet ≥ 4, Nb−jet = 3, HT > 875

(for the benchmark models) Njet ≥ 4, Nb−jet = 2, 775 < HT < 875 CMS-SUS-12-028

∆φ analysis 19.4 Nb−jet ≥ 3, EmissT > 350, HT > 1000 CMS-SUS-12-024

31

Page 32: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Yunified vs Simplified

From Hadronic ∆φ analysis:T1tttt Benchmark Model

600 800 1000 1200 1400

M(g) [GeV]

0

5

10

15

20

25

30

35

40

Num

bero

feve

nts

pass

ing

allc

uts

NUL = 8.0

∆φ analysis: L = 19.4 fb−1, M(χ01) = 200 GeV, B(g → χ0

1tt) = 100%

Mg ≥ 1100GeV

380 526 666 801 9321060

11861309

14301550

16651779

18902010

2102

M(g) [GeV]

0

5

10

15

20

25

30

35

40

Num

bero

feve

nts

pass

ing

allc

uts

NUL = 8.0

∆φ analysis: L = 19.4 fb−1, Benchmark models

Mg ≥ 1000GeV

MATON → SDECAY → PYTHIA → DELPHES

32

Page 33: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Predictions

Rare ProcessesCurrent Limit 10 TeV 20 TeV 30 TeV

e EDM ×1028 < 10.5 e cm −0.224 −0.0173 −0.0084

µ EDM ×1028 (−0.1 ± 0.9) × 109 e cm 34.6 3.04 1.20

τ EDM ×1028 −0.220 − 0.45 × 1012 e cm −2.09 −0.185 −0.0732

BR(µ → eγ) × 1012 < 2.4 5.09 0.211 0.0447

BR(τ → eγ) × 1012 < 3.3 × 104 58.8 2.40 0.502

BR(τ → µγ) × 108 < 4.4 1.75 0.0837 0.0182

sin δ -0.60 -0.27 -0.53

BR(µ→ e γ) ∼ 10−12 − 10−13 for values of m16 = 15− 25 TeV.Latest result from MEG BR(µ→ eγ) < 0.57× 10−12.

Neutrinos obey a normal hierarchy.

PROBLEMS:

Bino LSP - over-abundant dark matter. (Axions Baer, Haider, et al.)

(g − 2)µ too small, due to heavy scalars (sleptons).

33

Page 34: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

PART II

34

Page 35: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Effective “Mirage” Mediation

arXiv:1303.5125 AA and Stuart Raby

We investigate a new set of boundary conditions at the GUT scale,consistent with Yukawa unification.

Non-universal gaugino masses with mirage pattern.

Mi =

(1 +

g2Gbiα

16π2log

(MPl

m16

))M1/2

Choi,Nilles

where M1/2 and α are free parameters and bi = (33/5, 1,−3)

We choose µ < 0, M1/2 < 0 such that M3 > 0 and M1,2 < 0

Simultaneously satisfy (i) corrections to bottom quark mass (ii)BR(Bs → Xsγ) and (iii) anomalous magnetic moment of muon*.

Badziak, Olechowski, Pokorski

* Now, ruled out after the Higgs result.

35

Page 36: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Scalar Masses

Two different cases for non-universal Higgs masses [NUHM] with“just so” Higgs splitting

m2Hu(d)

= m210 − (+)2D

or,

D-term Higgs splitting, in addition, squark and slepton masses aregiven by

m2a = m2

16 + QaD, {Qa = +1, {Q, u, e};−3, {L, d}}

with the U(1) D-term, D, and SU(5) invariant charges, Qa.

Sector Third Family Analysis

gauge αG , MG , ε3SUSY (GUT scale) m16, M1/2, α, A0, m10, D

textures λSUSY (EW scale) tan β, µ

Total # 12

36

Page 37: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

SUSY Spectrum

NUHM “Just-so” D-term

m16 5.00 TeV 5.00 TeVA0 8.07 TeV 5.59 TeVµ -615 GeV -1.29 TeVM1/2 -105 GeV -100 GeVα 11.59 11.99

MA 1558 1236mt1

1975 2920mb1

2049 2158

mτ1 2473 3601mχ0

1231.98 219.11

mχ+1

232.05 219.11

∆M ≡ Mχ+ −Mχ0 519 MeV 434 MeVMg 882 874

Very different spectrum from the minimal Yukawa unificationscenario.

Heavier gluino, degenerate charginos and neutralinos.

37

Page 38: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

SUSY Spectrum

−1000−800−600−400−2000

M1/2, in GeV4

5

6

7

8

9

10

11

12

α

1000

.000

1500.000 2000.000 2500.0003000.000

Very different spectrum from the minimal Yukawa unificationscenario.

Heavier gluino, degenerate charginos and neutralinos.

38

Page 39: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Degenerate Chargino-Neutralino

NUHM “Just-so” D-termmχ0

1231.98 219.11

mχ+1

232.05 219.11

∆M ≡ Mχ+ −Mχ0 519 MeV 434 MeV

Signatures:

χ± → χ0π±

Disappearing charged tracks, kinks, large impact parameter.

Associated photon and Z production

Work in progress with Linda Carpenter & Stuart RabyLinda’s talk at SUSY

39

Page 40: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Topologies

Chargino Decay length (cm)

Pion pT (GeV)

1 GeV

10 cm

LARGE IMPACT PARAMETER

KINKS

DISAPPEARING CHARGED TRACKS

40

Page 41: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Decay Rates

Branching Ratios for the ”Just-so” Higgs splitting scenario

BR(g → btχ+1 ) = 14%

BR(g → tbχ−1 ) = 14%

BR(g → ttχ02) = 8%

BR(g → g χ0) = 63%

Branching Ratios for the D-term splitting scenario

BR(g → btχ+1 ) = 38%

BR(g → tbχ−1 ) = 38%

BR(g → ttχ01) = 14%

BR(g → bbχ01) = 4%

Work in progress with Charles Bryant & Stuart Raby

41

Page 42: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Summary

Yunified SUSY GUTS -

tanβ ≈ 50, CP odd Higgs mass, mA � MZ . Light Higgs ispredicted to be Standard Model-like.

In the minimal Yukawa-unified scenario:

I, II family of scalars are of the order m16 > 10TeV , third familyscalars are naturally much lighter.

Upper bound on the gluino mass, in order to fit the Higgs mass.

Cannot be described by a simple ’simplified model’.

In the effective mirage mediation scenario:

Very different ‘lighter’ spectrum.

Degenerate charginos and neutralinos. Wino-like LSP.

Interesting signatures at the LHC.

Well tempered neutralinos can be accomodated.

42

Page 43: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Thank you!

43

Page 44: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

EXTRA SLIDES

44

Page 45: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Benchmark Point

GUT scale parameters m16 20 M1/2 0.25 A0 -41EW parameters µ .8 tanβ 50Spectrum mt1

3.695 mb14.579 mτ1

7.834

mχ0

10.172 m

χ+1

0.342 Mg 1.061

mu,d,e 20 mc,s,µ 20 MA 2.2

Gluino Branching Fractions g χ04 38% g χ0

3 35% tbχ±1 14%g χ0

2 8% ttχ01 1.2% bbχ0

1 0.006%

45

Page 46: Y-Unified GUTS: MSSM at large tanOct 03, 2013  · Supersymmetric GUTS Dimopoulos, Raby, Wilczek (1981) (Fig. from Martin’s Primer) Argument in favor of SUSY, independent of the

Dark Matter

Universal Yunified models - bino LSP

Effective Mirage scenario - wino LSP

Well Tempered neutralinos in Yukawa unified models:

300 350 400 450 500 550 600 650 700

µ, in GeV250

300

350

400

450

500

550

600M

1/2,i

nG

eV

0.080

0.200

900.000

1000.000

1100.000

1200.000

Best fit points and Relic abundance

Work in progress with Kuver Sinha

46