documenthv

7
High Voltage Techniques - 2010 Prof.Dr.Aydoğan ÖZDEMİR Department of Electrical Engineering Istanbul Technical University 34469 Maslak, ISTANBUL Tel: 212 285 6758 High Voltage Laboratory ITU Gümüşsuyu Campus Tel 212 252 2220 Email : [email protected] Website : http://www.elk.itu.edu.tr/~ozdemir Grading Policy Midterm test: 25 % 2 Homeworks: 5% + 5% 1 group project : 15% Final test : 50% References 1. Prof.Dr.Muzaffer ÖZKAYA, Yüksek Gerilim Tekniği : Cilt 1, Birsen Yayınevi, İstanbul 1996. 2. Akpınar S., Yüksek Gerilim Tekniği, Karadeniz Teknik Üniv., Trabzon, 1997. 3. Gönenç İ.., Yüksek Gerilim Tekniği, Cilt 1: Statik Elektrik Alanı ve Basit Elektrot Sistemleri, İ.T.Ü. Kütüphanesi, Sayı:1085, İstanbul, 1977. 4. E. Kuffel, W. S. Zaengl, J. Kuffel, High Voltage Engineering Fundamentals, Pergamon Press, Oxford, 2000. 5. E. Kuffel, W. S. Zaengl, J. Kuffel , Yüksek Gerilim Mühendisliği Temelleri, Tercüme yayın EMO Yayınları, 2008. 6. M. S. Naidu, V. Kamaraju, High Voltage Engineering, Tata McGraw-Hill, New Delhi, 1997. 7. M. Abdel-Salam, H. Anis, A. El Morshedy, R. Radwan, High Voltage Engineering: Theory and Practice, Marcel Dekker, New York, 2000. 8. Kind, D., Feser, K., High-Voltage Test Techniques, SBA Publ./Vieweg, 2. Ed. 1999.

Upload: hueseyin-aksoy

Post on 03-Apr-2015

293 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Documenthv

High Voltage Techniques - 2010

Prof.Dr.Aydoğan ÖZDEMİR

Department of Electrical Engineering

Istanbul Technical University

34469 Maslak, ISTANBUL

Tel: 212 – 285 6758

High Voltage Laboratory

ITU Gümüşsuyu Campus

Tel 212 – 252 2220

Email : [email protected]

Website : http://www.elk.itu.edu.tr/~ozdemir

Grading Policy

Midterm test: 25 %

2 Homeworks: 5% + 5%

1 group project : 15%

Final test : 50%

References

1. Prof.Dr.Muzaffer ÖZKAYA, Yüksek Gerilim Tekniği : Cilt 1, Birsen Yayınevi, İstanbul

1996.

2. Akpınar S., Yüksek Gerilim Tekniği, Karadeniz Teknik Üniv., Trabzon, 1997.

3. Gönenç İ.., Yüksek Gerilim Tekniği, Cilt 1: Statik Elektrik Alanı ve Basit Elektrot

Sistemleri, İ.T.Ü. Kütüphanesi, Sayı:1085, İstanbul, 1977.

4. E. Kuffel, W. S. Zaengl, J. Kuffel, High Voltage Engineering Fundamentals, Pergamon

Press, Oxford, 2000.

5. E. Kuffel, W. S. Zaengl, J. Kuffel , Yüksek Gerilim Mühendisliği Temelleri, Tercüme

yayın EMO Yayınları, 2008.

6. M. S. Naidu, V. Kamaraju, High Voltage Engineering, Tata McGraw-Hill, New Delhi,

1997.

7. M. Abdel-Salam, H. Anis, A. El Morshedy, R. Radwan, High Voltage Engineering:

Theory and Practice, Marcel Dekker, New York, 2000.

8. Kind, D., Feser, K., High-Voltage Test Techniques, SBA Publ./Vieweg, 2. Ed. 1999.

Page 2: Documenthv

9. M. Khalifa, High Voltage Engineering, Theory and Practice, Marcel Dekker, New York,

1990.

10. H. M. Ryan, High Voltage Engineering and Testing, Peter Peregrinus Ltd., London,

2001.

11. C. L. Wadhwa, High Voltage Engineering, New Age Int. Ltd., New Delhi, 1995.

12. Subir Ray, An Introduction to High Voltage Engineering, Printice Hall of India, New

Delhi 2004

Page 3: Documenthv

October 13,2010

Homework I

1. a) Determine the potential and the field strength expressions for concentric spherical electrode

system. Plot field strength versus radial distance and assign the maximum and the minimum

field strengths. Evaluate the geometric characteristics of the system providing the best

conditions from the point of maximum field strength.

b) Outer sphere radius of a concentric spherical electrode system is given to be r2 = 15 cm.

Determine the maximum voltage that can safely be applied to the system if the dielectric

strength of the insulation is Ed = 30 kV/cm.

c) Determine the inner radius of the system in order to apply U=100 kV.

d) Evaluate the system from the point of discharge phenomena (will there be a discharge, if so

the type) for the inner radiuses of r1’= 2 cm , r1’’= 7 cm and r1’’’= 14 cm.

a) Refer the textbook for the expressions and derivations.

12

212min

12

121max21

12

21

2

/)(,

/)(,;)(

rr

rrUrEE

rr

rrUrEErrr

rr

rr

r

UrE

An example is given below

Refer the textbook for the evaluation of the system geometric characteristic providing the

best conditions from the point of maximum field strength,

4/)(,2,2/

2

minmax1

2/1

221

21

r

UErE

r

rprr d

rr

dd

d

b) kVUUrr

rrUEcmkVEcmr

mr

mrd 5.1125.715

5.7/15//30,15 maxmax

12

12maxmax2

5.71

152

Page 4: Documenthv

c) 15,5solved if15

/15100

/

100

/30

15

2111

1

1

12

12max

2

152

cmrcmrr

r

rr

rrUEE

kVU

cmkVE

cmr

mrdd

d)

/2since discharge partial a be willThere

/7.57/

100,2,15

21

12

12max12

rr

EcmkVrr

rrUEkVUcmrcmr d

discharge a bet won'There

/8.26/

100,7,1512

12max12

dEcmkV

rr

rrUEkVUcmrcmr

/2sincebreakdown totala be willThere

/0.107/

100,14,15

21

12

12max12

rr

EcmkVrr

rrUEkVUcmrcmr d

2. Potential distribution of an electrode system for a voltage of U=100 kV is given as follows,

cmycmxyxkVyx

bayxv ,,41;1.),( 22

22

a) Determine the constants ( a and b) if v(0 , 1 cm)=100 kV and v(2 cm , 0)=0 kV.

b) Determine and sketch the equipotential curves of v1=0 kV and v2=100 kV.

c) Determine the field strength vector E

andminmax

, EE

.

a) cm2bandkV100a solved if

2/12

.)0,2(

11

.)1,0(

aabb

av

aabb

av

b) cm 2 of radius a with Circle212

.1000 222

221

yx

yxkVv

cm 1 of radius a with Circle112

.100100 222

222

yx

yxkVv

c)

jyx

yi

yx

xj

y

vi

x

vvgradE

yxv

2/32/3 222222

2002001

2.100

cmkVEEcmkVEE

yxyxyx

yxyxE

yxyx/100,/200

21200

*200),(

21

3

2222 minmax

22

2222

22

Page 5: Documenthv

3. a) Determine the potential and the field strength for coaxial cylindrical electrode system. Plot

field strength versus radial distance and assign the maximum and the minimum field

strengths. Evaluate the geometric characteristics of the system providing the best

conditions from the point of maximum field strength.

b) Given that the maximum voltage that can safely be applied to an air-insulated (Ed = 30

kV/cm) coaxial cylindrical system is 300 kV. Determine the inner radius of the system in

order to apply U=250 kV.

c) Evaluate the maximum field strengths for an inner radius of r1 and for an increased outer

radiuses of r2’= 1.5* r2, r2’’= 2.0* r2, r2’’’= 3.0* r2 and r2’’’’= 4.0* r2; where r1 and r2

are the inner and outer radiuses calculated in b). What can you say about the maximum

field strength versus outer radius of the system?

a) Refer the textbook for the expressions and derivations.

)/()(,

)/()(,;

)/()(

122

2min

121

1max21

12 rrLnr

UrEE

rrLnr

UrEErrr

rrLnr

UrE

An example is given below

Refer the textbook for the evaluation of the system geometric characteristic providing the

best conditions from the point of maximum field strength,

2/)(,,/

2

minmax1

/1

221

21

r

UErEe

r

rperr d

err

dd

d

b) cmrercmrrrrLnr

UEcmkVE

errd 18.27*,10

300

)/(/30 121

1121

maxmax

/21

cmrcmrsolvedifrLnr

EEkVUFor d 8.4,3.1630)/18.27(

250250 2111

11

max

Page 6: Documenthv

c) )/(

,250,8.4121

max1rrLnr

UEkVUcmr

cmkVEcmr

cmkVEcmr

cmkVEcmr

cmkVEcmr

/7.167.10818.27*0.4

/3.185.8118.27*0.3

/4.214.5418.27*0.2

/3.248.4018.27*5.1

4max2

3max2

2max2

1max2

Increasing r2 decreases Emax. However decreasing rate decreases r2 increases and therefore r2

is not an effective means of reducing Emax, especially after a certain value.

Due date : October 20, 2010

Week Date Subject

1 29.9.2010 Introduction. Basic concepts of electrostatic field, Laplace's and Poisson's

equations in different coordinate systems.

2 6.10.2010 Basic equations of electrostatic fields. Planar electrode systems. Concentric

spherical electrode systems.

3 13.10.2010 Concentric spherical electrode systems. Coaxial cylindrical electrode

systems.

4 20.10.2010 Coaxial cylindrical electrode systems (cont).

5 27.10.2010 High Voltage Laboratory Visit

6 3.11.2010 Non-coaxial cylindrical electrode systems: eccentric and parallel cylindrical

electrode systems.

7 10.11.2010 Approximate calculation of maximum electric field strength for different

electrode systems.

8 24.11.2010 Electrode systems with multi-dielectrics: planar electrode systems of two

dielectrics.

9 01.11.2010 Electrode systems with multi-dielectrics: coaxial cylindrical systems with

multi-dielectrics

10 8.12.2010 Numerical methods for electrostatic field calculations.

11 15.12.2010 Conduction and breakdown in gases.

12 22.12.2010 Midterm test

Page 7: Documenthv

13 29.12.2010 Conduction and breakdown in gases (cont.). Corona discharges, surface

discharges and lightning discharges. Breakdown in liquid and solid dielectrics

14 05.01.2011 Project presentation