www. cinf. dtuhj/h-school10/lecturenotes/ibchorkendorff2.pdf6 photoelectrocatalysis: lots of good...

30
1 I. Chorkendorff, B. Abams, J. Bonde, S.Dahl, C. Damsgaard, Y. Hou, S. Inn, NEW CATALYSTS FOR PRODUCTION OF SOLAR FUELS Summer School on ‘Materials for the hydrogen economy’, Iceland, 17-21 August,2010 S. Horch, T. F. Jaramillo, O. Hansen, K. P. Jørgensen, J.H. Nielsen, C. Pedersen, and P. C. H. Vesborg Center for Individual Nanoparticle Functionality (CINF) Department of Physics, DTU & WWW. CINF. DTU.DK M. Bjorketun, B. Hinnemann, P. G. Moses, J. Rossmeisl, and J. K. Nørskov Center for Atomic-scale Materials Design (CAMD) Department of Physics, DTU & K. Herbst Haldor Topsøe A/S CINF Approach & test Heterogeneous Catalysis Electrocatalysis Photocatalysis The common denominator is surface science where the functionality of nanoparticles plays an essential role.

Upload: others

Post on 18-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

1

I. Chorkendorff, B. Abams, J. Bonde, S.Dahl, C. Damsgaard, Y. Hou, S. Inn,

NEW CATALYSTS FOR PRODUCTION OF SOLAR FUELS

Summer School on ‘Materials for the hydrogen economy’, Iceland, 17-21 August,2010

S. Horch, T. F. Jaramillo, O. Hansen, K. P. Jørgensen, J.H. Nielsen, C. Pedersen, and P. C. H. Vesborg

Center for Individual Nanoparticle Functionality (CINF)Department of Physics, DTU

& WWW. CINF. DTU.DK

M. Bjorketun, B. Hinnemann, P. G. Moses, J. Rossmeisl, and J. K. NørskovCenter for Atomic-scale Materials Design (CAMD)

Department of Physics, DTU&

K. HerbstHaldor Topsøe A/S

CINF Approach

& test

Heterogeneous CatalysisElectrocatalysisPhotocatalysis

The common denominator is surface science where the functionality of nanoparticles plays an essential role.

Page 2: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

2

Catalysis for sustainable Energy (CASE)

WWW. CASE. DTU.DK

Energy content of fuels

40 DieselGasoline

Fill up the tank with gasoline!20 l/min or 720MJ/minCorresponds to 60.000A @ 200V

MJ/

liter

20

30 Butane

PropaneEthanol

MethanolLiq. NH3

NG 250 b

MJ/kg0 20 40 60 80 100 120 140

0

10 Liq. H2

700 bar H2

NG 250 bar

Batteries

Page 3: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

3

Averaging renewal energy sourcesCathode: 2(H++e-) H2

Anode: H2O ½ O2 +2 H+____________________________________

Total: H2O ½ O2 +H2

ΔG0 =2.46 eV (1.23 eV/electron)

Could be a route for averaging out sustainable energy production i.e. from wind and PV

In DK ~ 21% power from wind alone~3 % of total energyconsumption Horns rev 80 x 2MW

H2-production from windPoul la Cour, Askov school for popular education for adults (Denmark) ~1891-19081000 l/h H2 ~1.3kW www.poullacour.dk

H2O→½O2+H2

Electricity

Page 4: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

4

Trends for Hydrogen Production

Expensiveand scarce

Exchange currentSome 200 Ton Pt a yearT d 1 Pt kWBonds too Today: 1g Pt per kW or4 million cars per year!Barrier for dissociation

Bonds too strongly

J.K. Nørskov, T. Bligaard, Á. Logadóttir, J.R. Kitchin, J.G. Chen, Pandelov, and U. Stimming: J. Electrochem. Soc. 152, J23, (2005) R. Parson 1957

m w

eigh

t

104105106107

H

O Si

B

Ca Fe

Composition of Earths Crust

abun

denc

e in

ppm

10-310-210-1100101102103

H

Ar

HPtRu

Pb Th

U

Ba

OSiAlF

47,4%27,7%8,2%4 1%

Element No0 10 20 30 40 50 60 70 80 90E

arth

s cr

ust a

10-710-610-510-410 3

Ne RaIrXeKr

He AuRh

Pd ReOs

FeCaNaMgKTiSum

4,1%4,1%2,3%2,3%2,1%0,56%98,8%

Page 5: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

5

The Solar spectrum

3eV

Ideally: H2O + 2hυ 1Η2 +1/2Ο2A strongly activated process Problem: Photon efficiency and H2 storage

1eV 0.5eV2eV4eV

21,231000

Ghv

hv eVh

Δ>

><

IC-9/74 Lecture-2 8-02-2010

1000hv nm<

Basic principle

IC-10/74 Lecture-2 8-02-2010

Page 6: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

6

Photoelectrocatalysis: Lots of good Physics

n-type

IC-11/74 Lecture-2 8-02-2010

All a matter of getting a sufficient bandgap matching the redox potentials for oxidizing water

not connected connected Light on

Some important definitions:

• Anode: The electrode where oxidation occurs i.e. Ax Ax+1

• Cathode: The electrode where reduction occurs i.e. Ax Ax-1

• Going anodic means going positive potential• Going cathodic means going negative potential

• An anion is, however, negative A-

• While a Cations are positive A+

IC-12/74 Lecture-2 8-02-2010

• While a Cations are positive A+

Confused ? Learn more about electrochemistry and you will get your plate full.

Page 7: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

7

Setups for water splitting• Nanoparticles• Self contained• Simple - cheap

• Macroscopic electrodes• Can have complex

nanostructuresp p• Very hard to separate H2 from O2

explosive gas (900kg TNT /Ha*hour)

• More expensive• Trivial H2 separation

IC-13/74 Lecture-2 8-02-2010Yates et al Chem. Rev. 1995

Band gap Engineering

This is basically an bulk effect except for nano particles

TiO2 was found in 1972 but is not efficient for Water splittingNeeds a potential for H2evolution.

Though good for self-

IC-14/74 Lecture-2 8-02-2010

cleaning surfaces

Page 8: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

8

The band gap limitations Ideally: H2O + 2hυ 1Η2 +1/2Ο2

2

1

2 2

[ ]*237 [ / ]@1.5 1.5

[ ]* [ ]H

Total

F Mol s kJ MolSTH Air Mass G

P Wcm Area cm

− −≡[ ] [ ]Total

http://hydrogen.energy.gov/pdfs/review06/pd_6_miller.pdf

Stability: Splitting water• Stability is a major issue for many materials - eg Cu2O• Electrochemical corrosion, photo-corrosion, dissolution• Criteria: All surface effectsCriteria: All surface effects

,

zc

za

cn d

A

ad

AB ze B A G

AB zh A B GGE

zNGE

− −

+ +

+ → + + Δ

+ → + + Δ

Δ=

Δ=

IC-16/74 Lecture-2 8-02-2010Bak et al, 2002, Intl. J. Hyd. Energy, 27

,

2 ,

2 2 ,

( / )( / )

p dA

n d

p d

EzN

E H H EE O H O E

+ >

<

Page 9: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

9

Why do we need band engineering?Some potential photocatalysts

Cu2O: (1) narrower bandgap (2 eV)ZnO: (1) bandgap too wide (3 eV)

(2) good O2 energetics

IC-17/74 Lecture-2 8-02-2010

2(2) “fair” O2 energetics(3) good H2 energetics(4) photoanodic AND

photocathodic corrosionTiO2: (1) bandgap too wide (3 eV)(2) good O2 energetics(3) “fair” H2 energetics(4) stable under illumination

(2) good O2 energetics(3) “fair” H2 energetics(4) photoanodic corrosion

Bak et. al., Int. J. Hydrogen Energy,vol 27 (2002) 991-1022

How can we get alleviate this over potential ?

Basic principle of photocatalysis

4e- +4H+ 2H2

4h+ + 2H2O 4H+ +O2

4hν

Page 10: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

10

What are the Alternatives – Tandem cells?

Photocathode Hydrogen Evolution

H. L. Wang, et al. J. ECS 155, F91 (2008).

Double electrode Cell

CB

• Choose different materials with optimized properties for each half reaction

Photoanode Oxygen evolution

H2O + 4h+ O2 + 4H+

The dream device

The Helios concep(Nate Lewis)

Large band gap >2.0 eV

4H+ + 4e- 2H2

Small band gap < 1,1 eV

Page 11: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

11

Trends for Hydrogen Production

Expensiveand scarce TOF~0.9 s-1

Exchange currentSome 200 Ton Pt a yearT d 1 Pt kWBonds too Today: 1g Pt per kW or4 million cars per year!Barrier for dissociation

Bonds too strongly

J.K. Nørskov, T. Bligaard, Á. Logadóttir, J.R. Kitchin, J.G. Chen, Pandelov, and U. Stimming: J. Electrochem. Soc. 152, J23, (2005) R. Parson 1957

m w

eigh

t

104105106107

H

O Si

B

Ca Fe

Composition of Earths Crust

Mo W

abun

denc

e in

ppm

10-310-210-1100101102103

H

Ar

HPtRu

Pb Th

U

Ba

OSiAlF

47,4%27,7%8,2%4 1%

Element No0 10 20 30 40 50 60 70 80 90E

arth

s cr

ust a

10-710-610-510-410 3

Ne RaIrXeKr

He AuRh

Pd ReOs

FeCaNaMgKTiSum

4,1%4,1%2,3%2,3%2,1%0,56%98,8%

Page 12: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

12

Nitrogenase:

How does nature make Hydrogen?

B. Hinnemann and J.K Nørskov, J. Am. Chem. Soc. 126, 3920 (2004)Hydrogenase: Per Siegbahn, Adv. Inorg. Chem. 56, 101 (2004).

The Nano effect:The edges of MoS2 are metallic

Bollinger, Jacobsen, Besenbacher, Nørskov Phys. Rev. Lett. 87, 196803 (2001).

Page 13: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

13

MoS2 as a catalyst for hydrogen evolution

Differential h d bi di

Model with four rows

Differential free energy (eV)

25% -0.33 hydrogen binding free energies

50%

75%

0.08

0.76

• The coverage cannot be changed continuously.• Probably only coverage changes between 25% and 50% contribute.

100% 0.79

Measurements on MoS2 on Graphite

Are edge states really h i i

500Å200Å

B. Hinnemann, P.G. Moses, J. Bonde, K. P. Jørgensen, J.H. Nielsen, S. Horch, I. Chorkendorff, and J.K. Nørskov, J. Am. Chem. Soc., 127 (2005) 5308-5309.

the active sites?

What is the activity per site ?

Page 14: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

14

1) Synthesis and STM of MoS2 on Au(111)

2) Measure electrochemical activity of the MoS2 just

Combining surface science and electrochemistry

under UHV. characterized with STM.

470 Å X 470 Å

470 Å X 470 Å

T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 137 (2007) 100

Variation of the MoS2 nano-particles

• Prepare a sample set of MoS2 nanoparticles on Au(111) with variations: • coverage: controlled by Mo deposition rate / time.• particle size: controlled by sintering at elevated temperatures.p y g p

400 ºC 550 ºC 550 ºC

470 Å x 470 Å 470 Å x 470 Å 60 Å x 60 Å

Page 15: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

15

0,4

eom

etric

)

0,4

omet

ric)

Exchange current density

0 0

0,1

0,2

0,3

ch. C

urr.

Den

sity

(μA

/cm

2 g e

0 0

0,1

0,2

0,3

h. C

urr.

Den

sity

(μA/

cm2 ge

0,05 0,10 0,15 0,200,0

Exc

MoS2 edge length (nmMoS2/nm2geometric)

0,1 0,2 0,30,0

Exc

MoS2 area coverage (nm2MoS2/nm2

geometric)

○Annealed to 400 ºC●Annealed to 550 ºC

T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 137 (2007) 100

per active site:1 in 4

MoS2 on the volcano

We now know

TOF~0.9 s-1

edge state atomsWe now knowexactly whereto look forimprovement:Increase the hydrogen bondingto the edge!

TOF~0.02 s-1

T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 137 (2007) 100

g

Page 16: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

16

Normalized current at -0.4 V vs NHE as a function of the calculated free energies of

Overall trends

400E

CoWsCoWS g

hydrogen adsorption.

200

300

ent /

C@

-0.4

V v

s N

HE

CoMoS

MoS2 Mo edge

WS2

MoS2 S edge

CoMoS

WS

MoS2Mo edge

MoS2S edge

0,05 0,10 0,15 0,20

100Cur

re

ΔGH/eV

2WS2S and W

J. Bonde, P. G. Moses, T. F. Jaramillo, J. K. Nørskov, I. Chorkendorff Faraday Discussions. 140 (2008) 219-231.

Mo3S4 going small

Incomplete Cubanes [Mo3S4]4+

The smallest entity of the active site of MoS2 ?T. F. Jaramillo, J. Zhang, B. Lean Ooi, J. Bonde, K. Andersson, J. Ulstrup, I. Chorkendorff, J. Phys. Chem. 112 (2008) 17492.

4 Cl- to ensure charge neutrality

Page 17: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

17

STM of Mo3S4 on activated HOPGZ range:1.32 nm

BZ range:1.47 nm

A

0.2

0.4

0.6

t / n

m

C

40 nm0.0 40 nm

a b

0.0 100 nm

-0.4

-0.2

0.0

heig

ht

0 2 4 6 8

length / nm

• Coverage of Mo3S4 molecule (most likely including ligands) on HOPG is approx. 1.0 (± 0.1) x1013 molecules /cm2

• Each molecule is ca. 2.0 (± 0.5) nm in diameter.Close-packed coverage is ~ 3.2 (± 0.8) x 1013 molecules /cm2.

T. F. Jaramillo, J. Zhang, B. Lean Ooi, J. Bonde, K. Andersson, J. Ulstrup, I. Chorkendorff, J. Phys. Chem. 112 (2008) 17492.

Mo3S4 going smallThe smallest entity of the active site of MoS2 ?

Fuel cell

Z range:1 32 nm

T. F. Jaramillo, J. Zhang, B. Lean Ooi, J. Bonde, K. Andersson, J. Ulstrup, I. Chorkendorff, J. Phys. Chem. 112 (2008) 17492.

Z range:1.32 nm

0.0 40 nm

a b

BOn graphite HOPGCoverage 1*1013 cm-2~1%

Page 18: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

18

H2O + 4h+ O2 + 4H+

The dream device

The Helios concep(Nate Lewis)

Large band gap >2.0 eV

4H+ + 4e- 2H2

Small band gap < 1,1 eV

20 uL Mo3S4 dissolved inDi l th d M OH 1 1

Drop-casting p-type (100) Sip-type (100) Si

Preparation

Dicloromethane and MeOH 1:1 HF etch

Si

H

HF etch

Si

H

Si

H

Deposit cubane and heat to

H-terminated Si(100)

Transfer to cell

Si

H

cocatalystSi

H

Si

H

cocatalyst

60 C to remove solvent

Xenon lamp with a combinatorial filters 1 M HClO4, bubbling with hydrogen

Page 19: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

19

Experimental

1000 W Xenon Lamp "AM1 5G fil “"AM1.5G filter“ +635 nm long-pass filter

Effect of cubane on PEC activity

Issues:Planar Si limited by-4

0

)

bare planar Si,dark bare planar Si,light cubane/planar Si, darkcubane/planar Si, lightcm

2 )

25

0

limited by low surface area

Minority carrier (e) has long

-12

-8

App

aren

t IPC

E (%

cubane/planar Si, light Pt/planar Si, dark Pt/planar Si, light

Phot

ocur

rent

(mA

/c

75

50

Planar Si(100)+lightSi(100)+ cubane+light

diffusion length to reach the surface

The Pt/planar Si was prepared by photolelectrochemical reduction from 25 uM H2PtCl6 in 1M HClO4

The current reaches 8.4 mA/cm2 over cubane/Si at 0 vs. RHE

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

-16

Potential (V vs. RHE)

100

( ) gSi(100)+Pt+light

Page 20: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

20

XPS of 2nmol cubane before and after test

a.u.

)

(b)

4500

5000

5500Mo3d5/2B

S2s A

S2s CMo3d3/2A

Mo3d3/2BMo3d5/2A

2 nmol Cubane (after test)

a.u.

)

4000

5000

6000

7000

S2p C

S2p A

Si plasmon 2 nmol Cubane (after test)

(d)

238 236 234 232 230 228 226 224

6000

12000

18000

Mo3d5/2B

Binding energy (eV)

Cou

nts

(a

4000

S2s B

2 nmol Cubane (before test)

S2s C S2s A

Mo3d3/2B

Mo3d3/2A

Mo3d5/2A

178 176 174 172 170 168 166 164 162 160 158

1500

3000

4500

6000

Binding energy (eV)

Cou

nts

(

S2p BS2p C

S2p A

Si plasmon2 nmol Cubane (before test)

3000

2 nmol-Mo: S: S(sulfonate) = 3:3 8:0 92 nmol-Mo: S: S(sulfonate) = 3:3.8:0.9After test2 nmol-Mo: S: S(sulfonate) = 3:2,7:2

Obliviously deactivated by exposure to air by oxidationCubane coverage ~ 1% of a ML~2*1017m-2

Theoretical considerations

Page 21: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

21

Electrolyte

URHE = 0 V

Electrolyte

URHE = 0.2 V

(b)

Electrolyte

URHE = 0 V

Electrolyte

URHE = 0.2 V

(b)

The flat-band is shutting it of

ECB

EFn

VFB~0.2V

Illuminated p-Si

Electrolyte

ECB

E

Illuminated p-Si

Electrolyte

ECB

EFn

VFB~0.2V

Illuminated p-Si

Electrolyte

ECB

E

Illuminated p-Si

Electrolyte

EVB

EFp

~0.55 V

EH+/H2

EVB

EFn

EFp

~0.55 V EH+/H2EVB

EFp

~0.55 V

EH+/H2

EVB

EFn

EFp

~0.55 V EH+/H2

Si-pyramids: A Definite Enhancement

-4

0

)

planar Si,light cubane/planar Si, light Si pyramids, lightcubane/Si pyramids lightm

2 )

25

0 About 1 sun with red filter

-16

-12

-8

App

aren

t IPC

E (%

) cubane/Si pyramids, light

Phot

ocur

rent

(mA

/cm

8.38.6

100

75

50

The limiting current over Si pyramids was enhanced by 30% compared to planar SiPyramid structure facilitates the release of hydrogen bubbles produced on the photoelectrode surface

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2

Potential (V vs. RHE)

100

Microstructuring with 0.35 M KOH and IPA

Page 22: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

22

Surface Enhancement

Measurements on pillared structures• UV-lithography and dry-etching of silicon• 3 μm diameter circular w 6 μm spacing• Hexagonal pattern and 60 μm long• 32000 pillars/mm2 increased area of ∼1532000 pillars/mm increased area of ∼15

Page 23: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

23

Hydrogen evolution and stabilityPillars, (λ > 620nm, 28.3 mW/cm2, Area ~0.25 cm2, Vbias=0.0V

Basically 100% Faradayic efficiencyTON~41.000

TOF 5.7 s-1

The pillared structure scales linear with light intensity

Could be important if focusing the light.

Naturally Si(100) is way tooExpensive, but Nate Lewishave made extensive studies inoptimizing growth of suchpillared structure by muchcheaper CVD processes. p p

Boettcher S. W. et al.: Energy-conversion properties of vapor-liquid-solid grown Silicon wire-array photocathodes. Science 327, 185-187 (2010).

Page 24: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

24

H2O + 4h+ O2 + 4H+

The dream device: The real challenge

The Helios concep(Nate Lewis)

Large band gap >2.0 eV

4H+ + 4e- 2H2

Small band gap < 1,1 eV

Page 25: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

25

The Oxygen evolution is the hard part

Experiments from: S. Trasatti. Electrochimica Acta. 29, (1984), 1503.

AlkalineAlkaline

Must be combined with a 2.0 eV band gap material that is stable under extremeoxidizing conditions

H.A. Hansen, H.A. Hansen, RossmeislRossmeisl, 2008, 2008

Acidic Acidic

The Major loss in ORR and OERThe anode reaction in a fuel cell: O2+4H++4e- = 2H2O

Adapted from Gasteiger et al.

Page 26: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

26

Using ΔEO as a ‘descriptor’ for Pt alloys

O binds too strongly: O binds too weakly:

Theoretical trends for oxygen reduction

All catalysts with‘Pt-skin’ overlayers

enta

lact

ivity

, rel

ativ

e to

Pt

Need to search for new Pt-alloy catalyst with

Theoretical O adsorption energy, relative to Pt

Exp

erim

e

~PtOO EE Δ−Δ 0.2 eV

Experimental data from: Zhang et al Angew. Chem. Int. Ed., 2005; Stamenkovic et al, Angew. Chem, Int. Ed 2006; Stamenkovic et al, Science, 2007

Screening of Pt3X and Pd3X alloys

Greeley, Stephens, Bondarenko, Johansson, Hansen, Jaramillo, Rossmeisl, Chorkendorff, Nørskov (2009) Nature Chemistry 1 (2009) 522

Page 27: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

27

Experimental verification of theory:Activity measurements of Pt, Pt3Y and Pt3Sc

5 mm

Polycrystalline Pt, Pt3Sc and Pt3Y disc electrodes cleaned and characterised under ultra high vacuum conditions.

Rotating disc electrode (RDE) measurements in liquid cell withO2-saturated 0.1 M HClO4solution, at room temperature.

5 mm

Measured polarization curves0,9 V

Greeley, Stephens, Bondarenko, Johansson, Hansen, Jaramillo, Rossmeisl, Chorkendorff, Nørskov (2009)Greeley, Stephens, Bondarenko, Johansson, Hansen, Jaramillo, Rossmeisl, Chorkendorff, Nørskov (2009) Nature Chemistry 1 (2009) 522

Page 28: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

28

Kinetic current at 60 ºC,(now including Pt3Sc and Pt5Y and Pt3La)

102

Pt LaPt3Y

Pt3Ni (111) (S tam enkovic, Science, 2007)

1

10 Pt3Sc

Pt5YPt5La

j k / m

A c

m-2

P t

0.85 0.90 0.9510-1

1

U / V (RHE)

Using ΔEO as a ‘descriptor’ for Pt alloys

O binds too strongly: O binds too weakly:

Theoretical trends for oxygen reduction

All catalysts with‘Pt-skin’ overlayers

ntal

activ

ity, r

elat

ive

to P

t

Pt3Y

Need to search for new Pt-alloy catalyst with

Exp

erm

en

~PtOO EE Δ−Δ 0.2 eV

Experimental data from: Zhang et al Angew. Chem. Int. Ed., 2005; Stamenkovic et al, Angew. Chem, Int. Ed 2006; Stamenkovic et al, Science, 2007

Page 29: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

29

Kinetic rates

Greeley, Stephens, Bondarenko, Johansson, Hansen, Jaramillo, Rossmeisl, Chorkendorff, Nørskov (2009)Greeley, Stephens, Bondarenko, Johansson, Hansen, Jaramillo, Rossmeisl, Chorkendorff, Nørskov (2009) Nature Chemistry 1 (2009) 522

• Inspiration by the Nitrogenase enzyme leads us to MoS2 or WS2 which in nano-particulate form are showing useful characteristic for HER

Summary of Approach

and can be promoted by Co

• Even smaller entities like the incomplete cubanes display interesting effects and the overpotential may be reduced when considering the moderate current for photoelectrolysis

• The Cubanes can be coupled to p-Si nano-structures and the overThe Cubanes can be coupled to p Si nano structures and the over potential can be negated by utilizing the otherwise useless part of the solar spectrum matching a say 10 % efficiency for water splitting.

• Ultimate goal is to produce and average energy by for example couplingthe hydrogen production with storable fuels like NH3 or CH3OH by direct hydrogenation of N2 or CO2

Page 30: WWW. CINF. DTUhj/h-school10/LectureNotes/IbChorkendorff2.pdf6 Photoelectrocatalysis: Lots of good Physics n-type IC-11/74 Lecture-2 8-02-2010 All a matter of getting a sufficient bandgap

30

New Nano-materialsIt might be a good idea for mankind to be in some sort of

balance with NatureWe need a Revolution on the Energy Productiongy

We need super bright people You_!!!!