wÅw»Ï` ^ 2 l .å5dq=Òju; eb ¬:!sci.thu.edu.tw/upload_files/21-2 (2).pdf · 2019. 11. 6. · 4...

14
⚸▞埅垻⋏悍帇㊙䲘⻥㔀摑㷒䩕㮓䕂Ậ㨡 㣲㔎佼* 㣲⬿柌* 嫅䵕厗* Schwarz et al. 妪↢➢⚈墯墥⎹慷攻䘬嶅暊炻ẍ㍊妶㬋➢⚈䳬冯儓䗌➢⚈䳬䘬ⶖ 嶅炻㍸↢妰䬿嶅暊䘬㺼䬿㱽 MEDICC [2]炻Ữ㛒↮㜸妰䬿墯暄⹎炻ᶼ⛐㝸ṃね㱩 ᶳ炻㚫㗗㊯㔠✳ンˤ⼴ Zeira et al. ㍸↢䶂⿏㗪攻䘬㺼䬿㱽[1]炻ỮㆹᾹ䘤䎦⛐㍐⮶忶 䦳炻㚱ṃ⛘㕡ᶵ㬋䡢炻䡢娵 Zeira et al. 㺼䬿㱽䘬䳸婾㚱婌ˤ⎎⢾ㆹᾹ㍸↢㕘䘬㺼 䬿㱽炻⮵⍇㕡㱽 Ḯ劍⸚ᾖ㬋ˤ 撚戳⨕濣䗴炻➢⚈䳬慵㕘㌺↿炻➢⚈墯墥⎹慷ˤ ᲾƱ侊 ➢⚈䳬慵㕘㌺↿(genome rearrangement)㗗䈑䧖㺼⊾䗴䕯䞼䨞䘬㟠⽫⓷柴炻 侴ℑ侭㚨⣏䘬ⶖ䔘⛐㕤㬟䴻䘬㗪攻攟䞕ˤ䈑䧖㺼⊾≽庺䘦叔⸜炻侴䗴䕯㚱⸦⋩ ⸜炻䚠庫ᶳㆹᾹ傥㚜⬴㔜㓞普䗴䕯➢⚈㺼嬲䘬屯㕁ˤ忶⍣⛐➢⚈䳬慵㕘㌺↿㕡 朊䘬ⶍἄ炻⣏悐↮⛐㍊妶䈑䧖㺼⊾ˤ2006 ⸜攳⥳䘬伶⚳䗴䕯➢⚈橼⚾嬄妰䔓 TCGA(The Cancer Genome Atlas) 炻⣏夷㧉⛘吸普ˣ↮栆Ḯ㔠叔⎵䕭Ṣ䘬䗴䕯➢⚈ 䨩嬲㔠㒂ˤ㚨慵天䘬㗗炻妰䔓䘬屯㕁⣏悐ấ↮㜸䳸㝄䘮℔攳㕤䵚嶗ᶲ炻⎗ὃ㾷 奥⍲ᶳ庱ˤ⚈㬌䚖⇵㚱⼰⤥䘬㨇㚫炻⇑䓐忁ṃ㔠㒂炻⍣↮㜸ˣ妰䬿䗴䕯➢⚈㺼⊾ 䘬忶䦳ˤ *㜙㴟⣏⬠ㅱ䓐㔠⬠䲣 Tunghai Science Vol. 21: 15-28 15 July, 2019

Upload: others

Post on 24-Oct-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    21 1-14

    * * *

    Schwarz et al.

    MEDICC [2]

    Zeira et al. [1]

    Zeira et al.

    (genome rearrangement)

    2006

    TCGA(The Cancer Genome Atlas)

    *

    Tunghai Science Vol. 21: 15−28 15 July, 2019

  • 2

    DNA (deletions) (amplifications)

    TCGA Research Network, 2011 [3] (copies

    or alleles) 2 (copy

    number profile) CNP DNA

    CNP CNP

    CNP G (G-

    banding) (Fluorescence in situ hybridization, FISH)

    (array CGH) (deep sequencing)

    CNP

    CNP

    Euclidean Schwarz et al.,

    2014 [2] Chowdhury et al. FISH CNP (edit distance)

    Chowdhury et al.,

    2013, 2014, 2015 [4][5][6]

    TuMult CNP Letouzé

    et al., 2010 [7]

    Schwartz et al. Schwarz et al., 2014

    [2] CNP 1

    MEDICC [2]

    Zeira et al.

    [1]

    16

  • 3

    CNP

    DNA CNP

    1 1

    3 CNP S CNP T

    Copy Number

    Transformation CNT CNP S CNP T CNT

    CNT

    CNP

    CNP CNTP

    CNPs

    CNT CNT

    17

  • 4

    Zeira et al. CNTP

    3.1 Zeira et al. [1]

    1.

    CNT

    ordered

    1.

    ordered CNT

    2.

    1 elongated

    2.

    ordered CNT elongated

    3.

    CNT

    zero-skipping

    3.

    CNT zero-skipping ordered

    4.

    bounded

    4.

    zero-skipping ordered CNT bounded

    deletions amplifications

    1 2 3 4 5 6 7 8

    18

  • 5

    3.2 Zeira et al. CNTP DpCntpAlg

    DpCntpAlg NewDpCntpAlg

    CNP DpCntpAlg

    CNT

    ordered elongated zero-skipping bounded

    [1]

    3

    DpCntpAlg

    zero-skipping

    1

    3

    j 1 2 3 ~ 9 10 S 5 3 3 6 T 9 6 0 8 = 0 4 4 9 = 1 6 5 10 = 2 8 7 11 = 3 10 7 12 = 4 12 8 13 … =

    19

  • 6

    DpCntpAlg

    NewDpCntpAlg

    DpCntpAlg NewDpCntpAlg j

    j

    zero-skipping

    20

  • 7

    3.3 Zeira et al. CNTP LinearCntpAlg

    LinearCntpAlg DpCntpAlg M piecewise linear

    function [1]

    GreedyCntpAlg

    Excel [ ]

    (random value) S T DpCntpAlg (Greedy

    algorithm)

    CNT

    GreedyCntpAlg

    DpCntpAlg

    21

  • 8

    F E

    ( + , + )

    ( - , - )

    ( - , + )

    ( + , - )

    22

  • 9

    +K

    +2

    +K

    +0

    +2 2+1

    +0

    +2 22+1

    23

  • 10

    +2

    +2

    +2 +1 222

    +1

    +0

    24

  • 11

    +2 2222+1 +2

    +1

    +2 +1

    +2 222222+2+2+1

    25

  • 12

    GreedyCntpAlg Zeira et al.

    LinearCntpAlg

    1. zero-skipping S T

    2. LinearCntpAlg

    GreedyCntpAlg

    26

  • 13

    1. Zeira R., Zehavi M., Shamir R. 2017 A Linear-Time Algorithm for the Copy Number Transformation Problemhttps://www.ncbi.nlm.nih.gov/pubmed/28837352

    2. Schwarz R.F., Trinh A., Sipos B., Brenton J.D., Goldman N., Markowetz F. 2014 Phylogenetic quantification of intra-tumour heterogeneityhttps://www.ncbi.nlm.nih.gov/pubmed/24743184

    3. TheCancer GenomeAtlas Research Network. 2011 Integrated genomic analyses of ovarian carcinomahttps://www.ncbi.nlm.nih.gov/pubmed/21720365

    4. Chowdhury S.A., Shackney S.E., Heselmeyer-Haddad K., Ried T., Schäffer A.A., Schwartz R. 2013 Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populationshttps://www.ncbi.nlm.nih.gov/pubmed/23812984

    5. Chowdhury S.A., Shackney S.E., Heselmeyer-Haddad K., Ried T., Schäffer A.A., Schwartz R. 2014 Algorithms to model single gene, single chromosome, and whole genome copy number changes jointly in tumor phylogenetics PLoS Comput. Biolhttps://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003740

    6. Chowdhury S.A., Gertz E.M., Wangsa D., Heselmeyer-Haddad K., Ried T., Schäffer A.A., Schwartz R. 2015 Inferring models of multiscale copy number evolution for single-tumor phylogeneticshttps://www.ncbi.nlm.nih.gov/pubmed/26072490

    7. Letouzé E., Allory Y., Bollet M.A., Radvanyi F., Guyon F. 2010 Analysis of the copy number profiles of several tumor samples from the same patient reveals the successive steps in tumorigenesishttps://www.ncbi.nlm.nih.gov/pubmed/20649963

    Excel DpCntpAlg GreedyCntpAlg LinearCntpAlg

    https://drive.google.com/drive/folders/1b2Mkk1xuff0OX2f92TvyqjdYUKvexrj5?usp=sharing

    27

  • 14

    Correction of the linear-time alogorithm for the Copy Number Transformation Problem

    Dun-Siang Yang* Tsung-Yi Yang* Wei-Hua Hsieh*

    Abstract

    Schwarz et al. set the distance between copy number profiles to explore the gap between normal genome and tumor genome. They proposed the MEDICC algorithm for calculating distance[2], but did not analyze its complexity. However, in some cases, MEDICC would be exponential time. After that, Zeira et al. proposed a linear time algorithm [1], but we found the process that leading out the result has something wrong. So we propose a new algorithm and make some changes to the original method.

    Keywords: Cancer, Genome rearrangement, Copy number profile

    *Department of Applied Mathematics, Tunghai University, Taichung 40704, Taiwan

    28