ws-1 workshop define a composite material nas121, workshop, may 6, 2002

25
WS-1 WORKSHOP Define a Composite Material NAS121, Workshop , May 6, 2002

Upload: liliana-thornton

Post on 23-Dec-2015

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-1

WORKSHOP

Define a Composite Material

NAS121, Workshop , May 6, 2002

Page 2: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-2NAS121, Workshop , May 6, 2002

Problem Description A 1 in. x 1 in. composite plate is

loaded with 2000 #/in. in the Y direction on the top edge, 1000 #/in. in both the X direction and Y direction on the right hand side edge.

The left side reacts the loads with X, Y, Z, and Ry constraints.

Page 3: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-3NAS121, Workshop , May 6, 2002

Problem Description The layup is made of

graphite/epoxy tape and is shown to the right.

The angles shown are relative to the global axis shown.

Thus, the 0 degree ply 1 has it’s fibers coming out of the page in the Y direction.

Note that while the positive sense of the angles are right hand rule around the Z global axis in this layup definition, in the Nastran definition, it is around the Z element axis and thus dependent on the element GRID order.

Page 4: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-4NAS121, Workshop , May 6, 2002

Problem Description (cont.) The composite plies are graphite/epoxy tape with a

thickness of 0.0054 in. The elastic and strength properties are shown on

the right. The failure theorem to be used is Hill.

E11 20e6

E22 2e6

U12 .35

G12 1e6

G13 1e6

G23 1e6

Xt 120 ksi

Xc 110 ksi

Yt 13 ksi

Yc 16 ksi

S 14 ksi

Sb 5 ksi

Page 5: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-5NAS121, Workshop , May 6, 2002

Suggested Exercise Steps1. Create a geometry model.2. Use mesh seeds to define the mesh density.3. Create a finite element mesh. 4. Apply boundary conditions to the model.5. Apply loads to the model.6. Define ply material properties. 7. Check element normals8. Define composite material properties.9. Define a material coordinate system10. Apply the material coordinate system to the elements.11. Submit the model to MSC.Nastran for analysis.12. Attach xdb Results File13. Display ply stresses using MSC.Patran. 14. View ply failure indices in MSC.Nastran15. Change layup to make failure indices below 1.0.16. Analyze the model with the new composite layup17. View the changed ply failure indices

Page 6: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-6NAS121, Workshop , May 6, 2002

CREATE NEW DATABASE

Create a new database called composite1.db:

a. In File select New

b. Enter composite1 as the file name

c. Click OK

d. Choose Default Tolerance

e. Select MSC.Nastran as the Analysis Code

f. Select Structural as the Analysis Type

g. Click OK

a

b c

d

e

f

g

Page 7: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-7NAS121, Workshop , May 6, 2002

Step 1. Create a geometry model

In Geometry create the first curve.

a. Select Create / Surface / Vertex

b. On the Surface Vertex “n” Lists enter [0 0 0], [1 0 0], [1 1 0], [0 1 0]

c. Click Apply

d. Click the Show Label icon

a

b

c

d

Page 8: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-8NAS121, Workshop , May 6, 2002

Step 2. Use mesh seeds to define the mesh density

In Elements, create mesh seeds.

a. Select Create / Mesh Seed / Uniform

b. Click on the top edge of the plate to create a mesh seed

c. Then click on the right edge

a

b

c

Page 9: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-9NAS121, Workshop , May 6, 2002

Step 3. Create a finite element mesh

In the Elements menu create surface mesh based on the mesh seeds assigned in the previous steps.

a. Select Create / Mesh / Surface

b. Select Quad as the Elem Shape

c. Click on surface 1

d. Click Apply

a

b

c

d

Page 10: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-10NAS121, Workshop , May 6, 2002

Step 4. Apply boundary conditions to the model

a

b

c

d

e

g

f

In Loads/BCs

a. Select Create / Displacement / Nodal

b. For New Set Name enter “constraints”

c. In Input Data, enter <0,0,0> for Translations, <,0,> for Rotations then OK

d. On the top menu click on the Curve or Edge icon

e. In Select Application Region click lefthand edge of the surface

f. Click Add and OK

g. Click Apply

Page 11: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-11NAS121, Workshop , May 6, 2002

Step 5. Apply loads to the model

a. On the top menu click Reset Graphics

b. Select Create / Distributed Loads / Element Uniform

c. Enter “Dist. Load Y” for New Set Name

d. In Input Data, Enter <0 –2000 0> for Edge Distr Load <f1 f2 f3>, then OK

e. In Select Application Region, click on the top curve of the surface

f. Click Add then OK

g. Click Apply

b

c

d

e

g

f

a

Page 12: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-12NAS121, Workshop , May 6, 2002

Step 5a. Apply loads to the model (cont.)

In a similar way create Dist. Load X:

a. Enter “Dist. Load X” for New Set Name.

b. In Input Data, Enter <0 –1000 0>, then OK

c. In Select Application Region, click on the right hand side curve of the surface, then Add, then OK.

d. Click Apply

a

b

c

And then create Dist. Load XY:

a. Enter “Dist. Load XY” for New Set Name.

b. In Input Data, Enter <–1000 0 0>, then OK

c. In Select Application Region, again click on the right hand side curve of the surface, then Add, then OK.

d. Click Apply

e. Note that since the same edge was picked, the loads are combined

d

e

Page 13: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-13NAS121, Workshop , May 6, 2002

Step 6. Define ply material properties

Go to Material menu

a. Select Create / 2d Orthotropic / Manual Input

b. For Material Name enter “graphite-epoxy_tape”

c. Click Input Properties, Select Linear Elastic, enter 20e6, 2e6, .35, 1e6, 1e6, 1e6

d. Click OK

e. Click Apply

f. Click Input Properties again, Select Failure / Stress / Hill and enter 120e3, 13e3, 110e3, 16e3, 13e3, 5000.

g. Click OK

h. Click Apply again

a

b

c

d

e

f

g h

Page 14: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-14NAS121, Workshop , May 6, 2002

Step 7. Check Element Normals

Check element normals to determine the location of ply 1.

Select the Element menu:

a. At the top menu click Reset Graphics

b. At the top menu click Hide Labels

c. Select Verify / Element / Normals

d. Click Draw Normal Vectors

e. Click Apply

a b

c

d

e

Page 15: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-15NAS121, Workshop , May 6, 2002

Step 8. Define composite material properties

Go to Materials:

a. Select Create/ Composite/ Laminate

b. At Material Name enter 8_ply_symmetric_quasi

c. Click tape property name (graphite-epoxy_tape) slowly 8 times to make 8 plies

d. At Thickness for all layers enter .0054<cr>

e. Click on ply 1’s empty Orientation cell

f. Enter the following into the Insert Orientations box: 0 -45 45 90 90 45 -45 0 . Note that the +-45 degree plies have changed sign due to the element Z axis being in the opposite direction to the global Z axis.

g. Click Load Text Into Spreadsheet

h. Click Apply

a

b

c

d

e

h

f

g

Page 16: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-16NAS121, Workshop , May 6, 2002

Step 9. Define a material coordinate system

Go to Geometry:

a. Select Create / Coord / 3Point

b. Enter Coord ID (99 in this case) you want at Coord ID list

c. At Origin enter [0 0 0]

d. At Point on Axis 3 enter [0 0 1]

e. At Point on Plane 1-3 enter [0 1 0]

f. Click Apply

a

b

c

d

e

f

Page 17: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-17NAS121, Workshop , May 6, 2002

Step 10. Apply the material coordinate system to the elements

Go to Properties:

a. Select Create / 2D / Shell

b. Enter “composite1” at Property Set Name

c. At Options select Laminate

d. In Input Properties click on the composite material name (8_ply_symmetric_quasi)

e. At Material Orientation select CID and then click the material coordinate system 99 on the screen

f. Click OK

g. Click Application Region and click on Surface 1

h. Click Add

i. Click Apply

a

b

d

e

f

g

h

c

g

Page 18: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-18NAS121, Workshop , May 6, 2002

Step 11. Submit the model to MSC.Nastran for analysis

Go to Analysis:

a. Select Analyze / Entire Model / Full Run

b. Click Subcases

c. At Available Subcases click Default

d. Click Output Requests

e. At Form Type select Advanced

f. At Output Requests, click twice STRESS(SORT1,REAL,VONMISES,BINLIN)=ALL;PARAM,NOCOMPS,-1

g. At Composite Plate Opt: select Ply Stresses. Note that PARAM, NOCOMPS,-1 has now changed to 1.

h. Click OK

i. Click Apply at Subcases and then Cancel

j. And click Apply at the Analyze menu

a

b

c

e

f

g

h

i

j

d

Page 19: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-19NAS121, Workshop , May 6, 2002

Step 12. Attach xdb Results File

Go to Analysis:

a. Select Attach XDB / Result Entities / Local

b. Click Select Results File

c. Use the Select File tool to find your xdb file in your local Patran directory and click it, in this case, “composite1.xdb”

d. Click OK

e. Click Apply

a

b

c

d

e

Page 20: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-20NAS121, Workshop , May 6, 2002

Step 13. Display ply stresses using MSC.Patran

To display the ply 8’s 1 direction stresses: go to the Results menu:

a. First turn off the geometry in Plot/Erase Geometry Erase

b. Select Create / Quick Plot

c. Click Stress Tensor

d. Click Position then select Layer 8 and click Close

e. Click Quantity and select X Component

f. Click Displacements Translational

g. Click Apply

b

c

d

e

f

g

a

Page 21: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-21NAS121, Workshop , May 6, 2002

F A I L U R E I N D I C E S F O R L A Y E R E D C O M P O S I T E E L E M E N T S ( Q U A D 4 ) ELEMENT FAILURE PLY FP=FAILURE INDEX FOR PLY FB=FAILURE INDEX FOR BONDING FAILURE INDEX FOR ELEMENT FLAG ID THEORY ID (DIRECT STRESSES/STRAINS) (INTER-LAMINAR STRESSES) MAX OF FP,FB FOR ALL PLIES 1 HILL 1 6.1711 0.0000 2 7.7170 0.0000 3 6.4169 0.0000 4 7.3154 0.0000 5 7.3154 0.0000 6 6.4169 0.0000 7 7.7170 0.0000 8 6.1711 7.7170 *** ...

Step 14. View ply failure indices in MSC.Nastran To view the failure indices, open the composite1.f06 file in an editor and search for the following section. It is organized as follows:

a. Element number

b. Ply number

c. Ply failure index

d. Ply interlaminar failure index

e. Highest failure index in element

f. Flag if highest failure index is greater than 1.0 (indicating ply failure)

a bc d

e f

Note that Patran does not display composite failure indices.

Page 22: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-22NAS121, Workshop , May 6, 2002

Hand calculations

Element 1, ply 2, a –45 degree ply, has the highest failure index of 7.72 but all of the plies have similar values, thus it is difficult to determine which direction to add plies. However, looking at the terms of Hill’s theorem may tell us:

Substituting values:

Shows that the 1 direction is the largest contributor to the failure and thus the composite needs more -45 degree plies.

Using this same method, it was found that a 20 ply symmetric layup will give failure indices less than 1.0. The layup is a 0 ply, 4 45 plies, 2 –45 plies, and 3 90 plies and then a symmetric layup for the other 10 plies.

SXYX2

2

12221

2

2

22

2

1 t

92.739.110.014.029.6313

453.1

3120

378.4501.3

313

378.4

3120

501.32

2

22

2

2

2

e

e

e

ee

e

e

e

e

Step 15. Change layup to make failure indices below 1.0

Page 23: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-23NAS121, Workshop , May 6, 2002

Step 15a. Change layup to make failure indices below 1.0

To change to a new layup:

go to Materials:

a. Select Modify / Composite / Laminate

b. In Laminated Comp. To Modify click 8_ply_symmetric_quasi

c. At New Material Name enter 0_4x45_2x-45_3x90_sym

d. In the Laminated Composite popup click on ply 1 and then shift click on ply 8 to select all the plies

e. Click on Delete Selected Rows

f. Select Text Entry Mode Insert.

g. In the Modify Menu on the right, click slowly on graphite-epoxy_tape 10 times, once for each ply

h. On Stacking Sequence Convention select Symmetric

i. At Thickness For All Layers enter .0054<cr>

j. Click on the empty ply 1 Orientation cell

k. Select Text Entry Mode Overwrite

l. In Overwrite Orientations enter 0 45 45 45 45 -45 -45 90 90 90

m. Click Load Text Into Spreadsheet

n. Click Apply

a

b

c

d

e

g

k

j

i

h

n

m

l

f

Page 24: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-24NAS121, Workshop , May 6, 2002

Step 16. Analyze the model with the new composite layup

Go to Analysis:

a. Select Analyze / Entire Model / Full Run

b. Click Apply

c. Click Yes on both overwrite messages.

a

b

c

c

Page 25: WS-1 WORKSHOP Define a Composite Material NAS121, Workshop, May 6, 2002

WS-25NAS121, Workshop , May 6, 2002

Step 17. View the changed ply failure indices

To view the changed failure indices, again open the composite1.f06 file. Note that the failure indices are all below 1.0.

F A I L U R E I N D I C E S F O R L A Y E R E D C O M P O S I T E E L E M E N T S ( Q U A D 4 ) ELEMENT FAILURE PLY FP=FAILURE INDEX FOR PLY FB=FAILURE INDEX FOR BONDING FAILURE INDEX FOR ELEMENT FLAG ID THEORY ID (DIRECT STRESSES/STRAINS) (INTER-LAMINAR STRESSES) MAX OF FP,FB FOR ALL PLIES 1 HILL 1 0.6422 0.0000 2 0.7709 0.0000 3 0.7709 0.0000 4 0.7709 0.0000 5 0.7709 0.0000 6 0.6580 0.0000 7 0.6580 0.0000 8 0.7494 0.0000 9 0.7494 0.0000 10 0.7494 0.0000 11 0.7494 0.0000 12 0.7494 0.0000 13 0.7494 0.0000 14 0.6580 0.0000 15 0.6580 0.0000 16 0.7709 0.0000 17 0.7709 0.0000 18 0.7709 0.0000 19 0.7709 0.0000 20 0.6422 0.7709