wrc_1992.pdf

Upload: cebrac-itatiba

Post on 06-Jul-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 WRC_1992.pdf

    1/8

  • 8/17/2019 WRC_1992.pdf

    2/8

    CURVC 4 M n S

    0 2 4 6 8

      10 12 14 16 IS 2 0 22

      2 4

      26 26

      JO

      J2

      3 4

      56 IB

      4 0

    Chromium  Equivoltnt • XCr + %Mo*l.5i\S *0.S i XCb

    Fig. 1  — Schaeffler diagram (Ref.   2).

    t h e e x i s t in g W R C - 1 9 8 8 d i a g r a m w i t h

    reasonable accuracy, Lake (Ref . 6) has

    sho wn that a coe f f ic ient for Cu wi l l im

    p rove the accu racy fo r we ld me ta l s i n

    wh ich Cu i s an impor tan t a l l oy in g e le

    men t . One pu rpose o f th i s paper i s to

    exam ine the ef fect of Cu , using data de

    ve loped by bo th Lake and Ko teck i .

    These data a l low compar ison of the   ca l

    cu la ted FN w i th m easured FN fo r fe r

    r i t ic-austen i t ic we ld meta ls over a range

    of Cu.

    A coeff icient for Cu in the   N i

    e q

      of the

    Schaeff ler or DeLong diagrams has been

    proposed by va r ious researchers . Hu l l

    has proposed a coeff icient of 0.44 (Ref.

    7),

      Cast ro and deCadene t p roposed a

    coef f ic ient o f 0 .6 (Ref . 8) , Potak and

    Sagalevich prop osed a coe ff icien t of 0.5

    (Ref . 9) , and Ferree proposed a

    coeff icient of 0.3 (Ref.

      10).

     These reports

    suggest the effect of Cu is signif icant and

    shou ld be cons ide red wh en p red ic t i ng

    FN.

    D u r i n g d e ve l o p me n t o f t h e W R C -

    1988  d iag ram , a Cu coe f f i c i en t was

    sough t , bu t no t rend was ev iden t . The

    major i ty o f the Cu data that was submi t

    ted were for weld meta ls o f

      low-FN

      and

    low-Cu  con ten t ( l ess than 0 .3% Cu) .

    Abo ut 20 of the duplex ferr i t ic-austen i t ic

    c o m p o s i t io n s i n c l u d e d C u a b o ve 1 % ,

    but there were l i t t le data for duplex co m

    p o s i t i o n s w i t h l o w C u f o r co mp a r i so n .

    Thus,

      i t is l ikely that any effect of Cu was

    stat ist ica l ly confounded wi th the FN ef

    fect . Th is conc lusion is supported by the

    Cu te rm tha t appeared in some o f the

    analyses (on var ious subsets o f the

    database) dur ing the developm ent o f the

    WRC-1988  d iag ram , bu t the ca l cu la ted

    coef f ic ients for Cu d i f fered wide ly, and

    each had a large uncertainty (Ref.

      11).

    Lake (Ref . 6) developed data

    LL

    TD

    _CJ

    5

    o

    O

    l__U

    100

    80

    60

    40

    20

    n

    1

    o

    D

    '

    Alloy

    Alloy

    1

    255

    2205

    1 1 1

    Q

      ° n ^

    o

    o

    O D

    J r ^

    >o  o

    1

      '

    O D /

    1

    o•

    s

    0 10 20 30 40 50 6 0 7 0 8 0 9 0 100 110 120

    Measured FN

    Fig. 2 —   Data for the predicted  vs. measured FN values using a coefficient of 0.25 for Cu.

    spec i f i ca l l y fo r eva lua t i on o f the e f fec t

    o f Cu in the WRC -1 988 d iag ra m. H is

    da ta have a un i fo rm d i s t r i bu t i on o ve r

    the range of 0 to 4% Cu, which permi ts

    accu ra te de te rmina t ion o f the e f fec t o f

    C u .  Fur ther , Lake 's data are wel l d is

    t r ibuted around the WRC-1988  d iag ram,

    which permi ts examinat ion of the e f fect

    o f Cu in d i f fe ren t so l i d i f i ca t i on modes

    and FN ranges. He found the ef fect o f

    Cu on the

      N i

    e q

      to be l inear and fa i r ly

    un i form regard less o f the locat ion wi th in

    the  WRC-1988  d iag ram. As a resu l t ,

    Lake proposed adding a Cu term to the

    N i

    e q

      of the WRC-1988  d iagram. For var

    i ous austen i t i c we ld me ta l s con ta in ing

    some ferr i te , th is contr ib ut ion to the  N i

    e q

    am ounted to a coef f ic ient o f 0 .25 to 0 .30

    to be mul t ip l ied by the % Cu in the weld

    meta l .

      The contr ibut ion is then added to

    the o r ig ina l

      N i

    e q

      a s ca l cu l a t e d a cc o r d

    ing to the

     WRC-1988

      diagram (Ref. 4).

    Using Lake's data as a basis, Kotecki

    (Ref.  1  2) p roposed a coe f f i c i en t fo r Cu

    of 0.25 in the

      N i

    e q

      equ iva len t and p re

    pared a tab le o f ca lcu la ted vs. measured

    FN fo r a se r ies o f comp os i t i on s based

    o n 2 2 C r - 5 N i - 3 M o - N ( A l l o y 2 2 0 5 ) an d

    2 5 C r - 5 N i - 3 M o - 2 C u - N ( A l l o y 2 5 5 ) d u

    p lex ferr i t ic-austen i t ic weld meta ls. For

    con ven ienc e, th is is reproduce d as Table

    1.  Two regressions of measured FN vs.

    ca lcu la ted FN were per formed on these

    data, as indicated at the bottom of Table

    1.  In  the f i rst , a nonzero in tercept

      (con

    stant) and a slope were pe rmi t ted . W hen

    the standard error of an FN estimate was

    observed to be g rea te r than the ca l cu

    la ted i n te rcep t ( imp ly ing tha t the te rm

    is not sta t ist ica l ly s ign i f icant) , a second

    reg ress ion was pe r fo rmed in wh ich the

    l i ne was fo rced th rough the o r ig in ( i n

    tercept o f zero) . In th is second regres

    s io n ,  the f i t (R-squared) is near ly the

    same as in the f i rst regression, and the

    slope is very close to   1 , wi t h a very sm al l

    standard error . The data are then p lo t

    ted in F ig . 2 wi th d i f ferent symbols that

    i den t i f y wh ic h po in ts a re fo r A l l oy 255

    (we ld me ta l s con ta in ing abou t 2% Cu) ,

    a n d w h i c h p o i n t s a re f o r A l l o y 2 2 0 5

    (we ld me ta l s con ta in ing ve ry l i t t l e Cu) .

    As can be seen in Fig. 2, al l of the data

    fa l l a long a 1:1  l ine, and there appears

    to be no cluster ing of po in ts w i th or   w i t h

    out Cu on ei ther side of the  1:1  l ine.

    I f t he con t r i bu t i on o f Cu to the   N i

    e q

    were om i t ted , the ca lcu la ted N i equ iva

    len t fo r eve ry A l l oy 255 we ld me ta l

    w ou ld be about 0.5 less than is given in

    Table  1 ,  and the result ing calculated Fer

    r i te Num bers for the Al lo y 255 w eld met

    als would therefore be on the order of 7

    FN greater than the values give n in Ta ble

    1 .Then v i r tua l ly a l l o f the Al loy 255 data

    po in ts wou ld be above the   1:1  l ine o f

    Fig.

      2 , ind icat ing a b ias. The good f i t o f

    the l ine in F ig . 2 ind icates that the

    coef f ic ient developed by Lake for Cu in

    172-s I

      M A Y 1 9 9 2

  • 8/17/2019 WRC_1992.pdf

    3/8

    e

      N i

    e q

      o f the WRC -1 988 d iag ram i s ,

    l east to a f i rs t app rox im a t io n , qu i te

      WRC-1992

      d iag ram

    ich is exact l y the same as the WR C-

      988 d iagram, except that the new  N i

    e q

      WRC-1992  d i

    is presented as Fig. 3.

      WRC-1992

    Whereas the Schae f f l e r d iag ram o f

    rs pred ict ions fo r

     Cr

    eq

      f rom 0 to 40 and

    i

    e q

      f ro m 0 to 32 , the WR C-1 992 d ia

      Cr

    eq

      1

     7 to 31 and

      N i

    e q

      f rom 9 to

      1

     8. The

      d iag ram can be ex tended to p re

    at least as broad a range as covere d

    A l though Fer r i te Numbers do no t

      Cr

    eq

      and

    i

    e q

    ,  the pos i t i ons o f such a l l oys can

     Cr

    eq

      and

    i

    e q

      un i t s on the WR C-1 992 d iag ram .

      l in

      5,

    that used wi t h the

    s a l l ow a w id e range o f i n i t i a l co m

    on ly a ccu ra te fo r we ld c om pos i

      100  FN) drawn on

    eq

      and

      N i

    e q

      regions could result in er

    For some  Cr

    eq

      a n d  N i

    e q

      va lues be

    e

     WRC-1992

      d iagram, martensi te may

    foun d in the we ld me ta l s . In the

      1 .  In contrast to

      N i

    e q

      o f the WRC -1 992 d ia

      Self,

      13)  show tha t

    Table 1—Measured FN vs. FN Calculated by WRC-88 Diagram, Data from Ref. 12

     Ni

    eq

     +  0.25

    (%Cu)

    W e l d

    Number

    9292-622

    9276-999

    9276-057

    9276-014

    9292-678

    9276-998

    9276-854

    9292-650

    9292-136

    9276-056

    9292-112R

    9276-996

    9292-109

    9276-012

    9276-013

    9276-864

    9276-984

    9292-174

    9276-997

    9292-358

    9292-137

    9292-112

    9292-203

    9276-004

    9292-231

    9276-904

    9276-863

    9276-853

    9292-161

    9276-053

    9276-817

    9276-055

    9276-844

    9292-204

    9276-054

    9292-202

    Type

    255

    2205

    255

    255

    255

    2205

    2205

    255

    255

    255

    255

    2205

    2205

    255

    255

    2205

    2205

    255

    2205

    255

    255

    255

    255

    255

    255

    2205

    2205

    2205

    255

    255

    2205

    255

    2205

    2205

    255

    255

    Regression: Measu red vs.

    Constant

    Std

      Err

      of Y Est

    R Squared

    No. of Observat

    ons

    Degrees of Freedom

    X Coefficient(s)

    Std Err of

      Coef.

    CT

    e

    q

    28.61

    25.25

    28.14

    28.70

    29.69

    25.79

    23.13

    28.32

    26.70

    28.43

    27.69

    25.33

    24.75

    28.03

    28.24

    25.61

    25.18

    27.08

    25.56

    29.66

    27.08

    27.69

    28.09

    27.69

    28.53

    25.95

    25.63

    23.72

    27.19

    29.55

    24.02

    28.71

    24.08

    25.71

    29.49

    28.19

    N i

    e q

    15.81

    12.57

    14.57

    16.33

    16.46

    12.57

    10.81

    15.93

    12.54

    14.30

    13.20

    12.24

    11.70

    14.57

    14.94

    11.66

    12.36

    13.70

    12.62

    15.32

    12.74

    12.88

    13.38

    14.29

    13.36

    12.03

    11.44

    10.36

    13.24

    12.78

    9.81

    12.78

    9.39

    10.92

    12.99

    10.66

    Calculated FN

    3.663357

    7.990919

    0.769152

    36

    34

    0.938617

    0.088187

    Calculated

    FN

    36

    39

    46

    32

    39

    46

    J6

    33

    57

    51

    58

    45

    46

    45

    43

    57

    4 1

    46

    42

    5 0

    58

    63

    6 0

    45

    65

    56

    6 1

    54

    52

    8 1

    69

    73

    8 1

    71

    7 7

    99

    Measured

    FN

    34

    34

    35

    36

    36

    38

    40

    42

    42

    44

    45

    46

    46

    47

    49

    49

    50

    50

    53

    53

    53

    53

    54

    56

    58

    60

    61

    62

    64

    73

    75

    75

    76

    88

    88

    100

    Measured

    Minus Calculated

    FN

    - 2

    - 5

    - 1 1

    4

    - 3

    - 8

    4

    9

    - 1 5

    - 7

    - 1 3

    1

    0

    2

    6

    - 8

    9

    4

    11

    3

    - 5

    - 1 0

    - 6

    11

    - 7

    4

    0

    8

    12

    - 8

    6

    2

    - 5

    17

    11

    1

    Regression: Measured vs. Calculated FN

    Constant 0

    Std Err of Y Est 7.938712

    R Squared 0.765457

    No .

     of Observations 36

    Degrees of Freedom 35

    X Coefficient(s)  1.001287

    Std Err of

     Coef.

      0.023495

    martensi te . Because of the d i f fer ing e f

    fec ts o f Mn in the two tempera tu re

    ranges, i t is not possible to include a  s in

    gle l ine bounding  martensite-containing

    weld meta ls on the WRC-1992  d iag ram.

    Example

     1:

     Overlay of AISI

     1

    050 steel with

    AWS A5.4 Class E312-16 e lectrode.

    Tab le 2 l i s t s t yp i ca l p la te compos i

    t i o n a n d a l l - w e l d - me t a l co mp o s i t i o n

    p roduced w i th th i s e lec t rode . The

      Cr

    eq

    and  N i

    e q

      for the  AISI  1050  steel (0.0 and

    1  7.50, respectively) do not permit an FN

    ca lcu la t i on fo r th i s m a te r ia l . The

      Cr

    eq

    and

      N i

    e q

      for the

      E31

     2-16  e lec t rode a l l -

    we ld -m e ta l com pos i t i on (29 .0 and 11 .9 ,

    respe ct ive ly) resu l t in a pred icted 88.2

    FN for this material . I f the Cr

    eq

      and   N i

    e q

    for each com pos i t ion is p lo t ted in F ig . 4

    and a l i ne is d ra wn b e tw een the p o in t

    corresponding to the AISI  1  0 5 0 c o m p o

    si t io n (Poin t A in F ig . 4) and the po in t

    corresponding to the

      E31

     2 -1 6 com pos i -

    W E L D I N G R E SE A RC H S U P P L E M E N T

      I  173-s

  • 8/17/2019 WRC_1992.pdf

    4/8

    Table   2—Cladding  of AISI 1050 with E312-16

    AISI E312-16

    Mater ia l 1050

      All-V

    C % 0.50

    M n % 0 .30

    Si % 0.02

    Cr % -

    Ni % -

    N % 0.004

    Cr

    eq

      0.00

    N i

    e q

      17.58

    WRC-1988

      FN -

    0.060

    1.20

    0.60

    29.00

    8.60

    0.06

    29.00

    11.90

    88.2

    30 %

      Di lut ion

    Cladding

    0.192

    0.93

    0.43

    20.30

    6.02

    0.043

    20.30

    13.60

    4.6

    Table

      3 -

    Mater ia l

    C %

    M n %

    S i %

    Cr %

    Ni %

    M o %

    N %

    Cr

    eq

    N i

    eq

    -Joining

    WRC-1988

      FN

    304 to A36 with  w w -•_-_

    AISI

    304

    0.05

    1.60

    0.40

    18.75

    9.90

    0.08

    0.04

    18.83

    12.45

    3.2

    ASTM

    A36

    0.20

    0.80

    0.20

    0.004

    0.00

    7.08

    E309L-16

    Al l -We ld -Meta l

    0.03

    1.40

    0.60

    24.40

    12.70

    0.20

    0.06

    24.60

    14.95

    17.4

    70%

    E309L-16,

    AISI 304,

      15%

    0.059

    1.34

    0.51

    19.89

    10.38

    0.15

    0.049

    20.04

    13.39

    4.3

    15%

    A36

    g

    10

    Fig. 3 — WRC-1992 diagram.

    22 24 26

    Cr

    eq

      = Cr • Mo

      +

      0.7 Nb

    (due to unequal p la te th ickness of a co m

    p lex j o in t des ign , fo r exa m p le ) , then

    Po in t F w ou ld s l i de a long th i s l i ne p ro

    por t ionate ly toward the greater contr ib

    utor. In any case, the average base metal

    con t r i bu t i on to the we ld poo l wou ld l i e

    along this l ine.

    T h e a l l - w e l d - m e t a l  Cr

    eq

      an d  N i

    e q

    (24 .60 and  1 4 .9 5, respec t ive ly) for the

    E309L-1

      6 electrode is shown as Point G

    in Fig. 5, and a  17.4  F N w o u l d b e p r e

    d icted for that e lect rode. The root pass

    we ld me ta l , cons ist ing o f the E309L-1 6

    electrode and equal parts of

     the

     two base

    meta ls, must l ie a long the l ine f rom Point

    G to Poin t F in F ig . 5 . Ag ain ass um ing

    n o r ma l 3 0 % b a se me t a l d i l u t i o n w i t h

    the shielded metal arc process, the root

    pass we ld w ou ld   lie  30% of the d istance

    along the l ine f rom Point G to Poin t F.

    Th is is shown as Poin t H in F ig . 5 . The

    calcu la t ions to reach Poin t H are shown

    be low.

    t ion (Point B in Fig. 4), then al l possible

    mixtures o f these two mater ia ls must l ie

    along this l ine.

    The lever rule is then used to est imate

    the pos i t i on o f the we ld me ta l . In

    sh ie lded me ta l a rc we ld ing , t yp i ca l d i

    lu t io n is 30 % . A w el d pass of E31 2-1 6

    w i t h 3 0 % d i l u t i o n f r o m A I S I

      1050

      steel

    wou ld l i e a t a Po in t C , l oca ted 30% o f

    the d istance f ro m Point B to Poin t A in

    Fig.  4 . Ma themat i ca l l y , th i s can be  c a l

    culated as

    Cr

    eq

    (C)  = 0 .7  Cr

    eq

    (B) 4-  0 .3  Cr

    eq

    (A)  =

    0.7 29.00) + 0.3 0.00) = 20 .30,

    Ni

    eq

    (C)

      = 0.7

      Ni

    eq

    (B

    0.7(11.90)+ 0.3(17.58)

    + 0.3

      Ni

    eq

    (A)

    13.60.

    The  Cr

    eq

      and  N i

    e q

      o f Po in t C correspond

    to 4 .6 FN , w hic h ind icates that the we ld

    pass w i l l have su f f i c i en t FN to avo id

    f issuring (Ref. 4). Any addit ional passes,

    ove r lapp ing pa r t o f th i s f i r s t pass, w i l l

    a lso l ie a long the l ine between Poin t B

    and Poin t A, but they wi l l be closer to

    Point B than is Point C, so al l subse quent

    passes w i l l con ta in even more fe r r i t e

    than the f i rst pass, and the weld cladding

    should be crack- f ree.

    Example 2: Joining AISI 304 Stainless Steel

    to ASTM A36 with  E309L-16 Electrode.

    Tab le 3 l i s t s t yp i ca l p la te compos i

    t i o n s a n d a l l - w e l d - m e t a l co m p o s i t i o n

    f r o m t h e e l e c t r o d e . T h e  Cr

    eq

      an d  N i

    e q

    for the A36 steel (0.00 and 7.08, respec

    t i ve l y ) do no t pe rmi t an FN ca lcu la t i on

    fo r th i s ma te r ia l . The

     Cr

    eq

      an d  N i

    e q

      for

    the AISI 304 steel  (18.83  and 12.45, re

    spec tively) result in a ca lcu late d 3.2 FN

    fo r th i s ma te r ia l . The

     Cr

    eq

      and

      N i

    e q

      for

    these two base metals are shown in Fig.

    5 as Poin t D (A36 ) and Poin t E (304 ) .

    Any mix tu re o f these two base me ta l s

    w i l l l i e a long the l i ne connect ing Po in t

    D to Point E. I f each base metal   c o n

    t r ibutes equal ly to the weld meta l , then

    the ove ra l l base me ta l con t r i bu t i on i s

    g i ven by the midpo in t o f the l i ne be

    tween Point D and Point E, indicated in

    Fig.  5 as Point F. I f one base metal  c o n

    tr ibuted more than the other to the joint

    Cr

    eq

    (F)  = 0.5  Cr

    eq

    (D)  + 0.5  Cr

    eq

    (E)

    (0.00)4-0.5 (18.83)  = 9 .47

    0.5

    Ni

    eq

    (F)

      = 0.5

      Ni

    eq

    (D)

    0

    (7.08)4-0.5 (12.45) = 9 .77

    5

      Ni

    eq

    (E)

      = 0.5

    Cr

    eq

    (H) : 0 .7  Cr

    eq

    (G)  + 0.3 Cr

    e q

    (F) :

    0.7

    24.6 0)+ 0.3 9.47) = 20.04

    Ni

    eq

    (H ) = 0 .7  Ni

    eq

    (G) + 0.3  Ni

    eq

    (F)  = 0.7

    (14.95)+ 0.3 (9 .77) = 13.39

    Point H corresponds to 4 .3 FN , whi ch

    would be expected to resu l t in a crack-

    f ree root pass in th is jo in t . Higher   d i l u

    t i o n ,

     or excess d i lu t ion f ro m the A36 side

    of the jo in t , c ou ld reduce the ferr ite  c o n

    tent and  increase the l ike l iho od of crack

    ing.

    I t is not necessary actual ly to plot the

    ca l cu l a t e d

      Cr

    eq

      a n d

      N i

    e q

      for the base

    meta l s and e lec t rode on the ex tended

    WR C-1 992 d iag ram in o rde r to ob ta in

    use fu l i n fo rma t ion . A f te r ca l cu la t i on o f

    th e

      Cr

    eq

      an d

      N i

    e q

    ,

      on ly the f i na l we ld

    metal need be plotted on the  WRC-1992

    diagram to obta in a we ld m eta l FN pre

    d i c t i o n .

      However , p lo t t i ng a l l t he da ta

    174-s I  M A Y  1992

  • 8/17/2019 WRC_1992.pdf

    5/8

    s

    A

    / ,.

    ^

    5

    nf^

    ^s*

    1 2 3 4 5 6 7 8 9 10 11 12 13

    Cr,

    q

    4 5

    = Cr

    16 17

    Mo •

    18 19 20

    0.7 Nb

    21 22 23 24 25 26 27 28 29 30 31

      —  Illustration of dilution calculation in Example  1.

    3

    CM

    8

    7

    6

    5

    4

    3

    Ijt

    F

    /

    YY

    A

    /

    t

    / '

    AF

    FA

    o

    /

    /

    S /

    U  /

    y

    \i,

    /

    A

    fa /

    /

    V

    Y/J

    y v

    y

    '/

    P

    '46

    m

    ¥A

    y

    YY^Y

    VYY/Y

    Yfr

    '4<

    0 ^

    _-_^a

    V ^

    ^

  • 8/17/2019 WRC_1992.pdf

    6/8

  • 8/17/2019 WRC_1992.pdf

    7/8

    tO

      LOo r - t o i o ^ j - c o c M r i o c n o o

    T - T

    -

      1—

      T—  ^  T— T

    -

      ^ - ^ W # « _ -

    n o

      S20

      • N  0 2  • 0  9C  • N =

     b3

     N

    CO   C\J t -

    co

    o

    CO

    en

    o j

    co

    CM

    CM

    CM

    CNJ

    rvj

    ro

    Al

    M

    o

      _

    CM - Q

    m

  • 8/17/2019 WRC_1992.pdf

    8/8

    o n t h e d i a g r a m i s u s e f u l i n t h a t i t g i v e s

    a c l e a r e r p i c t u r e o f t h e s i t u a t i o n , s o t h a t

    o n e c a n a p p r e c i a t e t h e r is k s o f h i g h e r

    t h a n e x p e c t e d d i l u t i o n .

    It  is a l s o p o s s i b l e t o e x t e n d t h e

      W R C -

    1992  d i a g r a m t o h i g h e r  N i

    e q

    ,  t o e x a m

    i n e d i s s i m i l a r m e t a l j o i n t s i n v o l v i n g

    n i c k e l - b a s e a l l o y s . It is r e a s o n a b le t o e x

    p e c t t h a t o t h e r c o m b i n a t i o n s c o u l d b e

    f o u n d t h a t w o u l d p r o d u c e w e l d m e t a l

    c o m p o s i t i o n s f a l l i n g w i t h i n t h e l i m i t s o f

    t h e d i a g r a m .

    T o f a c i l i t a t e t h e u se o f t h i s n e w d i a

    g r a m ,  F i g s . 6 a n d 7 a r e c o p ie s o f t h e

    W R C - 1 9 9 2 d i a g r a m a n d a n e x t e n d e d

    v e r s i o n f o r d i s s i m i l a r m e t a l w e l d p r e d i c

    t i o n s .

    C o n c l u s i o n s

    W e p r o p o s e a n e w d i a g r a m , t h e

    W R C - 1 9 9 2 d i a g r a m fo r t h e F N p r e d i c

    t i o n o f s t a i n l e s s s t e e l w e ld s . I t im p r o v e s

    t h e F N p r e d i c t i o n a c c u r a c y f o r s t a i n l e s s

    s t e el w e l d m e t a l s t h a t h a v e s i g n i f i c a n t

    C u c o n t e n t s . F o r w e l d s w i t h

      low-Cu

      c o n

    t e n t s , i t s p r e d i c t i o n s a r e n o t s i g n i f i c a n t l y

    d i f f e r e n t f r o m t h o s e o f t h e W R C - 1 9 8 8

    d i a g r a m .

    W e a l s o o f f e r t h e d i a g r a m o n e x

    t e n d e d a x e s ( s i m i l a r t o t h e r a n g e o f t h e

    S c h a e f f l e r d i a g r a m ) f o r i m p r o v e d p r e

    d i c t i o n o f F N f o r d i s s i m i l a r w e l d a n d

    c l a d d i n g a p p l i c a t i o n s .

    References

    1.   O lson , D. L . 1985 . Pred ic t ion o f

    a u s t e n i t i c w e ld m e t a l m i c r o s t r u c t u r e a n d

    proper t ies .

      Welding journal  64(10):281

     -s to

    295-s.

    2.

      Schaeffler, A. L.  1 9 4 9 .  Cons t i tu t ion d i

    ag ram fo r s ta in less s tee l we ld meta l .  Metal

    Progress

     56(11 ) : 6 8 0 - 6 8 0 B .

    3 . D e L o n g ,

      W.

      T. 1974. Ferr i te in

    aus ten i t i c s ta in less s tee l we ld meta l .

      Weld

    ing Journal

      53(7) :273-s to 286-s.

    4 .  S i e w e r t , T . A . , M c C o w a n , C . N . , a n d

    O l s o n ,  D . L  1 9 8 8 .  Ferr i te number predict ion

    to   100 FN in sta in less steel weld met al .  Weld

    ing Journal

      67(1 2):289-s to 29 8-s.

    5. Kotecki , D. ) .  1 9 8 8 .  Ver i f i ca t ion o f the

    NBS-CSM fe r ri te d iag ram. In te rna t iona l  Ins t i

    tu te o f W e ld ing Docu ment l l -C-834-88 .

    6. Lake, F. B.  1 9 9 0 .  Effect of Cu on stain

    less s tee l we ld meta l fe r r i te con ten t , Paper

    p resen ted at AWS Ann ua l Mee t ing .

    7.

      H u l l ,

      F . C. 197 3 . De l ta fe r r i te a nd

    martensi te form at ion in sta in less steels.

      Weld

    ing journal  52(5):193-s  to 203-s.

    8. Castro, R. J., and deC aden et, J. |.  1974.

    Welding Metallurgy of Stainless and Heat Re

    sisting Steels.

      Cambr idge Un ive rs i t y Press ,

    Cambr idge, U.K.

    9. Potak,  M „  and Saga levich, E. A.  1972.

    Structura l d iagram for sta in less steels as ap

    pl ied to cast metal and metal deposi ted dur

    i n g w e ld i n g .

      Avt. Svarka

      (5):10—13.

    10 .  Fer ree , J . A. 1 969 . F ree m ach in in g

    austeni t ic sta in less steel . U.S. Patent

    3 ,460 ,939 .

    11 .

      McCowan, C. N. , S iewer t , T . A. , and

    O l s o n ,

      D . L. 1989. Sta inless steel weld me tal :

    P r e d i c t i o n o f f e r r i t e c o n t e n t . WR C Bu l l e t i n

    3 4 2 ,

      We ld i n g R e s e a r c h C o u n c i l , N e w Yo r k ,

    N.Y.

    12.  Kotecki , D. J.

     1

     99 0. Ferr i te measure

    ment and con t ro l in dup lex s ta in less s tee l

    we lds . We ldab i l i t y o f Mate r ia ls — Proceed

    ings o f the Mate r ia ls W e ldab i l i t y Sympo s ium.

    October , ASM In te rna t iona l , Mate r ia ls Park ,

    O h io .

    1  3. Sel f , ) . A. , Mat lock, D. K„ and Olson,

    D. L.  1  984 . An ev a lua t ion o f aus ten i t i c Fe-

    Mn-Ni we ld meta l fo r d iss im i la r meta l  w e l d

    ing .

      Welding Journal  63(9) :282-s to 288-s.

    WRC Bulletin 370

    February 1992

    Recommendations Proposed by the PVRC Committee on Review of ASME

    Nuclear Codes and Standards Approved by the PVRC Steering

    Committee

    The ASME Board on Nuclear Codes and Standards (BNCS) determined in 1986 that an overall technical

    review of existing ASME nuclear codes and standards was needed. The decision to initiate this study was re

    inforced by many fac tors , but most impo rtantly by the need to capture a pool of knowledge and lessons

    learned

    from the existing generation of technical experts with codes and standards background.

    Project responsibility was placed with the Pressure Vessel Research Council and activity initiated in

     Jan

    uary 1988. The direction was vested in a Steering Committee which had overview of six subcommittees.

    The recommendations provided by nuclear utilities and industry were combined with the independent  con

    siderations and recommendations of the PVRC Subcommittees and Steering Committees.

    Publication of this document w as spo nsored by the Steering C ommittee on the Review of ASME Nuclear

    Codes and Standards of the Pressure Vessel Research Council. The price of WRC Bulletin 37 0 is $30.00 per

    copy, plus $5.00 for U.S. and $10.00 for overseas, postage and handling. Orders should be sent with pay

    ment to the Welding Research Council, Room 1301, 345 E.

     47th

     St.,

     New

     York, NY 1001 7.